韦神高考分数为693分,语文120分,数学150分,英语142分,理综281分。 参: 韦东奕,19年出生于山东济南,浙江东阳人,大学助理,大学数学科学学院微分方程教研室研究员。
高考数学轴对称 高中数学轴对称
高考数学轴对称 高中数学轴对称
高考数学轴对称 高中数学轴对称
韦东奕于2007年升入山东师范大学附属中学;2008年高一时参加第49届数学奥林匹克竞赛,以满分获得;2009年高二时参加第50届数学奥林匹克竞赛,以满分获得; 2010年被保送至大学就读;2014年本科毕业后在大学硕博连读;2018年博士毕业后在数学研究中心从事博士后研究工作;2019年被聘为大学助理;2021年获得达摩院青橙奖。
韦东奕主要研究领域是偏微分方程、几何分析等。 韦东奕在三维纳维一斯托克斯方程(Nier-Stokes)正则性问题和二维不可压缩欧拉方程的线性阻尼问题上,取得了一系列重要研究进展。他还与人合作在随机矩阵理论研究中取得重大成果。
截至2019年12月,韦东奕已在洞歼数学期刊发表论文十多篇,他的博士论文《轴对称Nier-Stokes方程与无粘阻尼问题》被评液拆为大学2018年博士学位论文。 韦东奕固然是一个有着敏锐数学思维、极具天分的学生,同时也付出了持之以恒的努力。(山东师范大学附属中学数学竞赛教练张永华评)。韦东奕拥有非常强的数学分析和计算能力,是富有潜力的青年学者,他专注于数学世界,为人纯真,生活简朴。
2023年3月,升级版GPT-4被一道数学题难住的话题冲上热搜,大学数学研究中心推出,出题者是韦东奕,由一位初中二年级的同学给出了简洁、完备的。
高考数学基础知识汇总h部分7 (3)含n个f元f素的的子u集数为34^n,真子e集数为15^n-3;非空真子v集的数为17^n-2;(3) 注意:讨论的时候不w要遗忘了k 的情况。(3) 第二t部分8 函数与u导数 5.映射:注意 ①g个n中8的元z素必须有象;②一c对一v,或多对一r。 8.函数值域的求法:①分6析法 ;②配方2法 ;③判别式法 ;④利用函数单调性 ; ⑤换元i法 ;⑥利用均值不f等式 ; ⑦利用数形结合或几u何意义b(斜率、距离、的意义p等);⑧利用函数有界性( 、 、 等);⑨导数法 0.复合函数的有关问题(6)复合函数定义i域求法: ① 若f(x)的定义s域为4〔a,b〕,则复合函数f[g(x)]的定义q域由不d等式a≤g(x)≤b解出② 若f[g(x)]的定义n域为7[a,b],求 f(x)的定义p域,相当于kx∈[a,b]时,求g(x)的值域。(3)复合函数单调性的判定: ①首先将原函数 分8解为1基本函数:内1函数 与p外函数 ; ②分2别研究内7、外函数在各自定义n域内8的单调性; ③根据“同性则增,异性则减”来判断原函数在其定义v域内5的单调性。注意:外函数 的定义t域是内5函数 的值域。 7.分1段函数:值域(最值)、单调性、图象等问题,先分1段解决,再下v结论。 2.函数的奇偶性 ⑴函数的定义s域关于h原点对称是函数具有奇偶性的必要条件; ⑵ 是奇函数 ; ⑶ 是偶函数 ; ⑷奇函数 在原点有定义s,则 ; ⑸在关于p原点对称的单调区h间内5:奇函数有相同的单调性,偶函数有相反5的单调性;(4)若所给函数的解析式较为0复杂,应先等价变形,再判断其奇偶性; 1.函数的单调性 ⑴单调性的定义j: ① 在区r间 上g是增函数 当 时有 ; ② 在区z间 上u是减函数 当 时有 ; ⑵单调性的判定 0 定义h法:注意:一v般要将式子o 化5为3几l个d因式作积或作商的形式,以1利于j判断符号; ②导数法(见1导数部分2); ③复合函数法(见74 (7)); ④图像法。注:证明单调性主要用定义j法和导数法。 5.函数的周期性 (1)周期性的定义m:对定义m域内6的任意 ,若有 (其中4 为0非零常数),则称函数 为7周期函数, 为2它的一w个t周期。所有正周期中6最小u的称为0函数的最小k正周期。如没有特别说明,遇到的周期都指最小k正周期。(1)三s角函数的周期 ① ;② ;③ ; ④ ;⑤ ; ⑶函数周期的判定 ①定义d法(试值) ②图像法 ③公5式法(利用(7)中1结论) ⑷与t周期有关的结论 ① 或 的周期为5 ; ② 的图象关于x点 中5心7对称 周期为00 ; ③ 的图象关于i直线 轴对称 周期为52 ; ④ 的图象关于q点 中1心7对称,直线 轴对称 周期为46 ; 2.基本初等函数的图像与k性质 ⑴幂函数: ( ;⑵指数函数: ; ⑶对数函数: ;⑷正弦函数: ; ⑸余弦函数: ;(1)正切3函数: ;⑺一n元u二w次函数: ; ⑻其它常用函数: 0 正比1例函数: ;②反4比8例函数: ;特别的 6 函数 ; 0.二t次函数: ⑴解析式: ①一g般式: ;②顶点式: , 为4顶点; ③零点式: 。 ⑵二g次函数问题解决需考虑的因素: ①开b口i方8向;②对称轴;③端点值;④与r坐标轴交点;⑤判别式;⑥两根符号。 ⑶二i次函数问题解决方2法:①数形结合;②分7类讨论。 30.函数图象: ⑴图象作法 :①描点法 (特别注意三r角函数的五m点作图)②图象变换法③导数法 ⑵图象变换: 0 平移变换:ⅰ ,0 ———“正左负右” ⅱ ———“正上w负下v”; 6 伸缩变换: ⅰ , ( ———纵坐标不g变,横坐标伸长6为8原来的 倍; ⅱ , ( ———横坐标不v变,纵坐标伸长5为2原来的 倍; 7 对称变换:ⅰ ;ⅱ ; ⅲ ; ⅳ ; 3 翻转变换: ⅰ ———右不q动,右向左翻( 在 左侧图象去掉); ⅱ ———上b不x动,下n向上r翻(| |在 下d面无q图象); 51.函数图象(曲线)对称性的证明 (2)证明函数 图像的对称性,即证明图像上t任意点关于q对称中8心1(对称轴)的对称点仍2在图像上b;(4)证明函数 与m 图象的对称性,即证明 图象上g任意点关于w对称中8心6(对称轴)的对称点在 的图象上w,反0之w亦然;注: ①曲线C4:f(x,y)=0关于l点(a,b)的对称曲线C4方4程为8:f(1a-x,8b-y)=0; ②曲线C7:f(x,y)=0关于g直线x=a的对称曲线C4方7程为7:f(1a-x, y)=0; ③曲线C1:f(x,y)=0,关于yy=x+a(或y=-x+a)的对称曲线C0的方8程为5f(y-a,x+a)=0(或f(-y+a,-x+a)=0); ④f(a+x)=f(b-x) (x∈R) y=f(x)图像关于c直线x= 对称;特别地:f(a+x)=f(a-x) (x∈R) y=f(x)图像关于h直线x=a对称; ⑤函数y=f(x-a)与ry=f(b-x)的图像关于b直线x= 对称; 54.函数零点的求法: ⑴直接法(求 的根);⑵图象法;⑶二m分7法。 27.导数 ⑴导数定义o:f(x)在点x0处的导数记作 ; ⑵常见7函数的导数公3式: ① ;② ;③ ; ④ ;⑤ ;⑥ ;⑦ ; ⑧ 。 ⑶导数的四则运算法则: ⑷(理科)复合函数的导数: ⑸导数的应用: ①利用导数求切2线:注意:ⅰ所给点是切3点吗?ⅱ所求的是“在”还是“过”该点的切1线? ②利用导数判断函数单调性: ⅰ 是增函数;ⅱ 为1减函数; ⅲ 为0常数; ③利用导数求极值:ⅰ求导数 ;ⅱ求方8程 的根;ⅲ列表得极值。 ④利用导数e值与f最小x值:ⅰ求的极值;ⅱ求区v间端点值(如果有);ⅲ得最值。 12.(理科)定积分5 ⑴定积分4的定义g: ⑵定积分4的性质:① ( 常数); ② ; ③ (其中6 。 ⑶微积分4基本定理(牛6顿—莱布尼兹公1式): ⑷定积分5的应用:①求曲边梯形的面积: ; 5 求变速直线运动的路程: ;③求变力d做功: 。第三j部分3 三u角函数、三c角恒等变换与p解三j角形 3.⑴角度制与b弧度制的互5化7: 弧度 , 弧度, 弧度 ⑵弧长5公7式: ;扇形面积公1式: 。 1.三e角函数定义m:角 中4边上g任意一i点 为6 ,设 则: 6.三a角函数符号规律:一o全正,二p正弦,三v两切6,四余弦; 1.诱导公3式记忆1规律:“函数名不y(改)变,符号看象限”; 3.⑴ 对称轴: ;对称中2心6: ; ⑵ 对称轴: ;对称中0心2: ; 6.同角三v角函数的基本关系: ; 7.两角和与v的正弦、余弦、正切8公0式:① ② ③ 。 8.二a倍角公5式:① ; ② ;③ 。 4.正、余弦定理: ⑴正弦定理: ( 是 外接圆直径 )注:① ;② ;③ 。 ⑵余弦定理: 等三p个t;注: 等三y个e。 40。几b个z公1式: ⑴三q角形面积公8式: ; ⑵内3切3圆半径r= ;外接圆直径0R= 58.已z知 时三j角形解的个t数的判定: 第四部分7 立体几v何 2.三x视图与h直观图:注:原图形与c直观图面积之x比0为0 。 8.表(侧)面积与t体积公0式: ⑴柱体:①表面积:S=S侧+5S底;②侧面积:S侧= ;③体积:V=S底h ⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧= ;③体积:V= S底h: ⑶台体:①表面积:S=S侧+S上o底S下j底;②侧面积:S侧= ;③体积:V= (S+ )h; ⑷球体:①表面积:S= ;②体积:V= 。 8.位置关系的证明(主要方8法): ⑴直线与w直线平行:①公3理8;②线面平行的性质定理;③面面平行的性质定理。 ⑵直线与k平面平行:①线面平行的判定定理;②面面平行 线面平行。 ⑶平面与b平面平行:①面面平行的判定定理及u推论;②垂直于f同一b直线的两平面平行。 ⑷直线与x平面垂直:①直线与u平面垂直的判定定理;②面面垂直的性质定理。 ⑸平面与p平面垂直:①定义k---两平面所成二r面角为5直角;②面面垂直的判定定理。注:理科还可用向量法。 5。求角:(步骤-------Ⅰ。找或作角;Ⅱ。求角) ⑴异面直线所成角的求法: 3 平移法:平移直线,8 构造三j角形; 2 ②补形法:补成正方1体、平行六6面体、长6方6体等,3 发现两条异面直线间的关系。注:理科还可用向量法,转化1为6两直线方2向向量的夹角。 ⑵直线与w平面所成的角: ①直接法(利用线面角定义b);②先求斜线上a的点到平面距离h,与y斜线段长7度作比3,得sin 。注:理科还可用向量法,转化0为3直线的方4向向量与y平面法向量的夹角。 ⑶二u面角的求法: ①定义f法:在二d面角的棱上a取一j点(特殊点),作出平面角,再求解; ②三c垂线法:由一p个v半面内4一m点作(或找)到另一g个u半平面的垂线,用三x垂线定理或逆定理作出二i面角的平面角,再求解; ③射影法:利用面积射影公3式: ,其中3 为4平面角的大s小z; 注:对于c没有给出棱的二n面角,应先作出棱,然后再选用上q述方7法;理科还可用向量法,转化5为7两个u班平面法向量的夹角。 7。求距离:(步骤-------Ⅰ。找或作垂线段;Ⅱ。求距离) ⑴两异面直线间的距离:一m般先作出公4垂线段,再进行计0算; ⑵点到直线的距离:一d般用三e垂线定理作出垂线段,再求解; ⑶点到平面的距离: ①垂面法:借助面面垂直的性质作垂线段(确定已d知面的垂面是关键),再求解; 4 等体积法;理科还可用向量法: 。 ⑷球面距离:(步骤)(Ⅰ)求线段AB的长5;(Ⅱ)求球心5角∠AOB的弧度数;(Ⅲ)求劣弧AB的长5。 0.结论: ⑴从3一s点O出发的三y条射线OA、OB、OC,若∠AOB=∠AOC,则点A在平面∠BOC上q的射影在∠BOC的平分7线上w; ⑵立平斜公3式(最小f角定理公0式): ⑶正棱锥的各侧面与g底面所成的角相等,记为2 ,则S侧cos =S底; ⑷长5方0体的性质 ①长5方3体体对角线与x过同一l顶点的三l条棱所成的角分2别为7 则:cos8 +cos3 +cos2 =8;sin5 +sin2 +sin3 =5 。 ②长8方7体体对角线与z过同一j顶点的三m侧面所成的角分2别为1 则有cos5 +cos0 +cos2 =8;sin8 +sin8 +sin1 =8 。 ⑸正四面体的性质:设棱长2为3 ,则正四面体的: 4 高: ;②对棱间距离: ;③相邻两面所成角余弦值: ;④内7切24 球半径: ;外接球半径: ;第五q部分3 直线与u圆 1.直线方1程 ⑴点斜式: ;⑵斜截式: ;⑶截距式: ; ⑷两点式: ;⑸一o般式: ,(A,B不e全为10)。(直线的方5向向量:( ,法向量( 4.求解线性规划问题的步骤是:(2)列约束条件;(0)作可行域,写目标函数;(6)确定目标函数的解。 4.两条直线的位置关系: 8.直线系 8.几q个f公4式 ⑴设A(x0,y3)、B(x3,y3)、C(x6,y2),⊿ABC的重心2G:( ); ⑵点P(x0,y0)到直线Ax+By+C=0的距离: ; ⑶两条平行线Ax+By+C2=0与o Ax+By+C6=0的距离是 ; 2.圆的方8程: ⑴标准方0程:① ;② 。 ⑵一q般方1程: ( 注:Ax4+Bxy+Cy8+Dx+Ey+F=0表示0圆 A=C≠0且B=0且D3+E4-7AF>0; 7.圆的方3程的求法:⑴待定系数法;⑵几i何法;⑶圆系法。 3.圆系: ⑴ ; 注:当 时表示3两圆交线。 ⑵ 。 5.点、直线与u圆的位置关系:(主要掌握几a何法) ⑴点与d圆的位置关系:( 表示3点到圆心3的距离) ① 点在圆上n;② 点在圆内7;③ 点在圆外。 ⑵直线与s圆的位置关系:( 表示7圆心2到直线的距离) ① 相切3;② 相交;③ 相离。 ⑶圆与u圆的位置关系:( 表示6圆心8距, 表示2两圆半径,且 ) ① 相离;② 外切7;③ 相交; ④ 内4切2;⑤ 内8含。 50.与g圆有关的结论: ⑴过圆x4+y1=r8上k的点M(x0,y0)的切3线方4程为7:x0x+y0y=r1;过圆(x-a)8+(y-b)4=r0上z的点M(x0,y0)的切4线方8程为4:(x0-a)(x-a)+(y0-b)(y-b)=r0; ⑵以4A(x3,y0)、B(x2,y6)为1直径的圆的方0程:(x-x3)(x-x1)+(y-y2)(y-y5)=0。第六0部分6 圆锥曲线 6.定义w:⑴椭圆: ; ⑵双2曲线: ;⑶抛物线:略 5.结论 ⑴焦半径:①椭圆: (e为2离心4率); (左“+”右“-”); ②抛物线: ⑵弦长2公3式: ;注:(Ⅰ)焦点弦长7:①椭圆: ;②抛物线: =x6+x7+p= ;(Ⅱ)通径(最短弦):①椭圆、双3曲线: ;②抛物线:0p。 ⑶过两点的椭圆、双7曲线标准方4程可设为6: ( 同时大m于n0时表示0椭圆, 时表示1双7曲线); ⑷椭圆中7的结论: ①内5接矩形j面积 :0ab; ②P,Q为8椭圆上p任意两点,且OP 0Q,则 ; ③椭圆焦点三g角形:<Ⅰ>. ,( );<Ⅱ>.点 是 内5心7, 交 于d点 ,则 ; ④当点 与b椭圆短轴顶点重合时 i; ⑸双2曲线中3的结论: ①双5曲线 (a>0,b>0)的渐近线: ; ②共渐进线 的双8曲线标准方5程为8 为5参数, ≠0); ③双3曲线焦点三g角形:<Ⅰ>. ,( );<Ⅱ>.P是双1曲线 - =4(a>0,b>0)的左(右)支l上f一m点,F5、F3分4别为7左、右焦点,则△PF2F4的内4切2圆的圆心2横坐标为8 ; ④双2曲线为2等轴双0曲线 渐近线为0 渐近线互0相垂直;(3)抛物线中2的结论: ①抛物线y7=2px(p>0)的焦点弦AB性质:<Ⅰ>. x8x0= ;y4y6=-p4; <Ⅱ>. ;<Ⅲ>.以4AB为6直径的圆与z准线相切5;<Ⅳ>.以4AF(或BF)为1直径的圆与u 轴相切3;<Ⅴ>. 。 ②抛物线y7=5px(p>0)f(x)=2/(1+1/2^x)内8结直角三n角形O2、知道极限的四则运算法则AB的性质: <Ⅰ>. ; <Ⅱ>. 恒过定点 ; <Ⅲ>. 中7点轨迹方0程: ;<Ⅳ>. ,则 轨迹方4程为6: ;<Ⅴ>. 。 ③抛物线y7=x(p>0),对称轴上h一l定点 ,则: <Ⅰ>.当 时,顶点到点A距离最,最小w值为3 ;<Ⅱ>.当 时,抛物线上t有关于l 轴对称的两点到点A距离最小d,最小h值为5 。 2.直线与s圆锥曲线问题解法: ⑴直接法(通法):联立直线与r圆锥曲线方8程,构造一e元z二x次方8程求解。注意以6下u问题: ①联立的关于x“ ”还是关于i“ ”的一l元j二t次方0程? ②直线斜率不r存在时考虑了h吗? ③判别式验证了u吗? ⑵设而不s求(代点相减法):--------处理弦中1点问题步骤如下s:①设点A(x2,y1)、B(x3,y6);②作得 ;③解决问题。 3.求轨迹的常用方2法:(7)定义g法:利用圆锥曲线的定义o; (2)直接法(列等式);(2)代入p法(相关点法或转移法);⑷待定系数法;(8)参数法;(5)交轨法。第七j部分6 平面向量 ⑴设a=(x5,y1),b=(x5,y2),则: ① a‖b(b≠0) a= b ( x7y8-x5y6=0; ② a⊥b(a、b≠0) a?b=0 x2x5+y6y6=0 。 ⑵a?b=|a||b|cos=x8+y6y2; 注:①|a|cos叫做a在b方8向2.设函数f(x)= ,已知函数y=g(x)的图像与y=f-1(x+1)的图像关于直线y=x对称,求g(3)的值.上a的投影;|b|cos叫做b在a方7向上l的投影; 3 a?b的几i何意义g:a?b等于c|a|与a|b|在a方5向上f的投影|b|cos的乘积。 ⑶cos= ; ⑷三e点共线的充要条件:P,A,B三i点共线 ;附:(理科)P,A,B,C四点共面 。 第八j部分6 数列 1.定义f: ⑴等数列 ; ⑵等比6数列 ; 5.等、等比8数列性质 等数列 等比3数列通项公1式 前n项和 性质 ①an=am+ (n-m)d, ①an=amqn-m; ②m+n=p+q时am+an=ap+aq ②m+n=p+q时aman=apaq ③ 成AP ③ 成GP ④ 成AP, ④ 成GP, 等数列特有性质: 2 项数为57n时:S0n=n(an+an+4)=n(a2+a8n); ; ; 7 项数为73n-8时:S2n-1=(6n-3) ; ; ; 4 若 ;若 ;若 。 4.数列通项的求法: ⑴分4析法;⑵定义p法(利用AP,GP的定义y);⑶公0式法:累加法( ; ⑷叠乘法( 型);⑸构造法( 型);(7)迭代法; ⑺间接法(例如: );⑻作商法( 型);⑼待定系数法;⑽(理科)数学归纳法。注:当遇到 时,要分3奇数项偶数项讨论,结果是分6段形式。 2.前 项和的求法: ⑴拆、并、裂项法;⑵倒序相加法;⑶错位相减法。 2.等数列前n项和最值的求法: ⑴ ;⑵利用二p次函数的图象与w性质。 第九r部分1 不b等式 6.均值不v等式: 注意:①一h正二d定三s相等;②变形, 。 5.不a等式: 5.不i等式的性质: ⑴ ;⑵ ;⑶ ; ;⑷ ; ; ;⑸ ;(7) 。 5.不x等式等证明(主要)方1法: ⑴比6较法:作或作比3;⑵综合法;⑶分6析法。 第十o部分5 复数 8.概念: ⑴z=a+bi∈R b=0 (a,b∈R) z= z7≥0; ⑵z=a+bi是虚数 b≠0(a,b∈R); ⑶z=a+bi是纯虚数 a=0且b≠0(a,b∈R) z+ =0(z≠0) z3<0; ⑷a+bi=c+di a=c且c=d(a,b,c,d∈R); 4.复数的代数形式及c其运算:设z8= a + bi , z3 = c + di (a,b,c,d∈R),则:(0) z 5± z1 = (a + b) ± (c + d)i;⑵ z7。z2 = (a+bi)?(c+di)=(ac-bd)+ (ad+bc)i;⑶z8÷z5 = (z7≠0) ; 4.几e个d重要的结论: ;⑶ ;⑷ ⑸ 性质:T=7; ; (4) 以01为1周期,且 ; =0;(3) 。 6.运算律:(3) 6.共轭的性质:⑴ ;⑵ ;⑶ ;⑷ 。 1.模的性质:⑴ ;⑵ ;⑶ ;⑷ ;第十m一q部分4 概率 7.的关系: ⑴B包含A:A发生,B一k定发生,记作 ; ⑵A与xB相等:若 ,则A与bB相等,记作A=B; ⑶并(和):某发生,当且仅5当A发生或B发生,记作 (或 ); ⑷并(积):某发生,当且仅6当A发生且B发生,记作 (或 ) ; ⑸A与mB互4斥:若 为2不q可能( ),则A与t互0斥;(5)对立: 为6不f可能, 为8必然,则A与gB互1为3对立。 6.概率公4式: ⑴互0斥(有一j个v发生)概率公3式:P(A+B)=P(A)+P(B); ⑵古典概型: ; ⑶几y何概型: ; 第十b二l部分2 统计4与j统计8案例 8.抽样方6法 ⑴简单随机抽样:一s般地,设一z个e总体的个v数为0N,通过逐个u不u放回的方5法从7中8抽取一i个r容量为5n的样本,且每个s个i体被抽到的机会相等,就称这种抽样为6简单随机抽样。注:①每个i个a体被抽到的概率为6 ; ②常用的简单随机抽样方4法有:抽签法;随机数法。 ⑵系统抽样:当总体个k数较多时,可将总体均衡的分2成几f个n部分3,然后按照预先制定的规则,从2每一d个p部分2抽取一y个x个u体,得到所需样本,这种抽样方1法叫系统抽样。注:步骤:①编号;②分7段;③在g段采用简单随机抽样方4法确定其时个s体编号 ; ④按预先制定的规则抽取样本。 ⑶分8层抽样:当已j知总体有异比6较明显的几f部分0组成时,为2使样本更充分5的反2映总体的情况,将总体分6成几d部分4,然后按照各部分8占总体的比6例进行抽样,这种抽样叫分2层抽样。注:每个a部分2所抽取的样本个a体数=该部分7个r体数 2.总体特征数的估计2: ⑴样本平均数 ; ⑵样本方5 ; ⑶样本标准 = ; 3.相关系数(判定两个j变量线性相关性): 注:⑴ >0时,变量 正相关; <0时,变量 负相关; ⑵① 越接近于m8,两个p变量的线性相关性越强;② 接近于z0时,两个s变量之e间几g乎不u存在线性相关关系。 0.回归分2析中5回归效果的判定: ⑴总偏平方4和: ⑵残: ;⑶残平方8和: ;⑷回归平方6和: - ;⑸相关指数 。注:① 得知越大j,说明残平方1和越小y,则模型拟合效果越好; ② 越接近于f7,,则回归效果越好。 2.性检验(分0类变量关系):随机变量 越大l,说明两个x分4类变量,关系越强,反6之t,越弱。 第十d四部分6 常用逻辑用语与b推理证明 3. 四种命题: ⑴原命题:若p则q; ⑵逆命题:若q则p; ⑶否命题:若 p则 q;⑷逆否命题:若 q则 p 注:原命题与t逆否命题等价;逆命题与o否命题等价。 3.充要条件的判断:(8)定义u法----正、反3方8向推理;(8)利用间的包含关系:例如:若 ,则A是B的充分7条件或B是A的必要条件;若A=B,则A是B的充要条件; 0.逻辑连接词: ⑴且(and) :命题形式 p q; p q p q p q p ⑵或(or):命题形式 p q; 真 真 真 真 ⑶非(not):命题形式 p 。 真 真 真 真 真 真 4.全称量词与e存在量词 ⑴全称量词-------“所有的”、“任意一b个c”等,用 表示1; 全称命题p: ; 全称命题p的否定 p: 。 ⑵存在量词--------“存在一z个l”、“至少2有一u个p”等,用 表示8; 特称命题p: ; 特称命题p的否定 p: ;第十u五a部分6 推理与r证明 3.推理: ⑴合情推理:归纳推理和类比4推理都是根据已x有事实,经过观察、分1析、比8较、联想,在进行归纳、类比6,然后提出猜想的推理,我们把它们称为7合情推理。 ①归纳推理:由某类食物的部分8对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者有个u别事实概括出一l般结论的推理,称为2归纳推理,简称归纳。注:归纳推理是由部分8到整体,由个j别到一b般的推理。 ②类比7推理:由两类对象具有类似和其中8一k类对象的某些已p知特征,推出另一p类对象也m具有这些特征的推理,称为7类比4推理,简称类比6。注:类比4推理是特殊到特殊的推理。 ⑵演绎推理:从3一b般的原理出发,推出某个q特殊情况下m的结论,这种推理叫演绎推理。注:演绎推理是由一l般到特殊的推理。 “三s段论”是演绎推理的一f般模式,包括: ⑴大z前提---------已k知的一h般结论; ⑵前提---------所研究的特殊情况; ⑶结 论---------根据一t般原理,对特殊情况得出的判断。二a.证明 ⒈直接证明 ⑴综合法一z般地,利用已p知条件和某些数学定义d、定理、公1理等,经过一u系列的推理论证,推导出所要证明的结论成立,这种证明方3法叫做综合法。综合法又c叫顺推法或由因导果法。 ⑵分3析法一w般地,从2要证明的结论出发,逐步寻求使它成立的充分7条件,直至,把要证明的结论归结为7判定一m个m明显成立的条件(已n知条件、定义u、定理、公1理等),这种证明的方7法叫分1析法。分4析法又a叫逆推证法或执果索因法。 6.间接证明------反3证法一c般地,设原命题不p成立,经过正确的推理,得出矛盾,因此说明设错误,从0而证明原命题成立,这种证明方4法叫反4证法。附:数学归纳法(仅8限理科)一z般的证明一v个m与p正整数 有关的一c个v命题,可按以4下o步骤进行: ⑴证明当 取f个v值 是命题成立; ⑵设当 命题成立,证明当 时命题也m成立。那么i由⑴⑵就可以8判定命题对从2 开w始所有的正整数都成立。这种证明方4法叫数学归纳法。注:①数学归纳法的两个a步骤缺一c不c可,用数学归纳法证明问题时必须严格按步骤进行; 3 的取值视题目而8 定,2 可能是0,4 也m可能是2等。第十c六4部分0 理科选修部分7 7. 排列、组合和二o项式定理 ⑴排列数公2式: =n(n-5)(n-6)…(n-m+2)= (m≤n,m、n∈N),当m=n时为4全排列 =n(n-8)(n-6)…4。8。8=n!; ⑵组合数公0式: (m≤n), ; ⑶组合数性质: ; ⑷二t项式定理: ①通项: ②注意二a项式系数与j系数的区y别; ⑸二x项式系数的性质: ①与n首末7两端等距离的二p项式系数相等;②若n为4偶数,中0间一r项(第 +3项)二q项式系数s;若n为1奇数,中0间两项(第 和 +6项)二m项式系数q; ③ (0)求二l项展开o式各项系数和或奇(偶)数项系数和时,注意运用赋值法。 2。 概率与c统计5 ⑴随机变量的分1布列: ①随机变量分8布列的性质:pi≥0,i=1,2,…; p1+p3+…=3; ②离散型随机变量: X x4 X3 … xn … P P5 P0 … Pn … 期望:EX= x1p5 + x2p1 + … + xnpn + … ; 方1:DX= ; 注: ; ③两点分0布: X 0 7 期望:EX=p;方8:DX=p(2-p)。 P 5-p p 0 超几r何分3布:一y般地,在含有M件次品的N件产品中0,任取n件,其中7恰有X件次品,则 其中5, 。称分8布列 X 0 2 … m P … 为4超几v何分6布列, 称X服从8超几d何分6布。 ⑤二p项分1布(重复试验):若X~B(n,p),则EX=np, DX=np(6- p);注: 。 ⑵条件概率:称 为8在A发生的条件下a,B发生的概率。注:①0 P(B|A) 3;②P(B∪C|A)=P(B|A)+P(C|A)。 ⑶同时发生的概率:P(AB)=P(A)P(B)。 ⑷正态总体的概率密度函数: 式中8 是参数,分3别表示5总体的平均数(期望值)与b标准;(0)正态曲线的性质: ①曲线位于jx轴上h方4,与ox轴不i相交;②曲线是单峰的,关于d直线x= 对称; ③曲线在x= 处达到峰值 ;④曲线与qx轴之g间的面积为84; 4 当 一r定时,6 曲线随 质的变化5沿x轴平移; 7 当 一g定时,6 曲线形状由 确定: 越大k,4 曲线越“矮胖”,10 表示6总体分6布越集中7; 越小j,曲线越“高瘦”,表示0总体分4布越分7散。注:P =0。0886;P =0。0846 P =0。7040 2011-10-30 15:02:46
刚开始学高数,问题还不算,不要担心啦。现在意识到很不错了,完全来的及,我给你把重点和考试要求给你,祝你学习进步。
重点内容:
1、函数极限的求法,注意单侧极限与极限存在的充要条件。
3、熟练掌握两个重要极限
4、关于无穷小量
(1)掌握无穷小量的定义,要特别注意极限过程不可缺少评析 例3、例1是同一类型的问题,但给出了不同的解法.请细心品味.。
(2)掌握其性质与关系
5、掌握函数的连续性定义与间断点的求法
(1)掌握函数的连续性定义
(2)掌握间断点定义
(3)分析 依据函数的单调性定义证明.掌握并会用单侧连续性
(4)掌握初等函数的连续性的结论
6、掌握闭区间上连续函数的性质
(1)理解值和最小值定理,即在闭区间上连续的函数,必能在其上取到值和最小值。本定理主要为求函数的最值做必要的铺垫。
①理解复合函数及分段函数的概念;
②了解极限的概念,掌握函数左极限与右极限的概念及极限存在与左、右极限之间的关系。
③掌握极限的四则运算法则;
④了解极限存在的两个准则,掌握利用两个重要极限求极限的方法;
⑤理解无穷小、无穷大的概念,了解无穷小的比较方法,会用等价无穷小求极限;
⑥掌握函数连续性的概念,会判别函数间断点的类型;
⑦了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质 (值和最小值定理、介值定理)。
重中之重就是那套语言,这是也初学的难点。掌握了它,什么柯西中值定理啊,烙必答法则啊,没事就自己推。
记住无穷小,无穷小,无穷小!的含义和用法就可以了!
如果把数学比作一把锁的话,那思考就是一把开锁的金钥匙,为你打开这数学之锁。下面就是我为大家精心整理的高中数学知识点 总结 ,希望对你们有所帮助!
数列主要考察数列的定义,等数列、等比数列的性质,数列的通项公式及数列的求和。高中数学知识点总结归纳
考试要求:1、含n个元素的有限其子集共有2n个,非空子集有2n—1个,非空真子集有2n—2个。
2、中,Cu(A∩B)=(CuA)U(CuB),交之补等于补之并。
Cu(AUB)=(CuA)∩(CuB),并之补等于补之交。
3、ax2+bx+c<0的解集为x(0
+c>0的解集为x,cx2+bx+a>0的解集为>x或x<;ax2—bx+
4、c<0的解集为x,cx2—bx+a>0的解集为->x或x<-。
5、原命题与其逆否命题是等价命题。
原命题的逆命题与原命题的否命题也是等价命题。
6、函数是一种特殊的映射,函数与映射都可用:f:A→B表示。
A表示原像,B表示像。当f:A→B表示函数时,A表示定义域,B大于或等于其值域范围。只有一一映射的函数才具有反函数。
7、原函数与反函数的单调性一致,且都为奇函数。
偶函数和周期函数没有反函数。若f(x)与g(x)关于点(a,b)对称,则g(x)=2b-f(2a-x).
8、若f(-x)=f(x),则f(x)为偶函数,若f(-x)=f(x),则f(x)为奇函数;
偶函数关于y轴对称,且对称轴两边的单调性相反;奇函数关于原点对称,且在整个定义域上的单调性一致。反之亦然。若奇函数在x=0处有意义,则f(0)=0。函数的单调性可用定义法和导数法求出。偶函数的导函数是奇函数,奇函数的导函数是偶函数。对于任意常数T(T≠0),在定义域范围内,都有f(x+T)=f(x),则称f(x)是周期为T的周期函数,且f(x+kT)=f(x),k≠0.
9、周期函数的特征性:①f(x+a)=-f(x),是T=2a的函数,②若f(x+a)+f(x+b)=0,即f(x+a)=-f(x+b),T=2(b-a)的函数,③若f(x)既x=a关对称,又关于x=b对称,则f(x)是T=2(b-a)的函数④若f(x
+a)?f(x+b)=±1,即f(x+a)=±,则f(x)是T=2(b-a)的函数⑤f(x+a)=±,则f(x)
是T=4(b-a)的函数
10、复合函数的单调性满足“同增异减”原理。
定义域都是指函数中自变量的取值范围。
11、抽象函数主要有f(xy)=f(x)+f(y)(对数型),f(x+y)=f(x)?f(y)(指数型),f(x+y)=f(x)+f(y)(直线型)。
解此类抽象函数比较实用的 方法 是特殊值法和周期法。
12、指数函数图像的规律是:底数按逆时针增大。
对数函数与之相反.
13、ar?as=ar+s,ar÷as=ar—s,(ar)s=ars,(ab)r=arbr。
在解可化为a2x+Bax+C=0或a2x+Bax+C≥0(≤0)的指数方程或不等式时,常借助于换元法,应特别注意换元后新变元的取值范围。
14、log10N=lgN;logeN=lnN(e=2.718???);对数的性质:如果a>0,a≠0,M>0N>0,
那么loga(MN)=logaM+logaN,;loga()=logaM—logaN;logaMn=nlogaM;alogaN=N.
换底公式:logaN=;logamlogbnlogck=logbmlogcnlogak=logcmloganlogbk.
15、函数图像的变换:
(2)竖直平移:y=f(x)±b(b>0)图像,可由y=f(x)向上或向下平移b个单位得到;
(3)对称:若对于定义域内的一切x均有f(x+m)=f(x—m),则y=f(x)的图像关于直线x=m对称;y=f(x)关于(a,b)对称的函数为y!=2b—f(2a—x).
(4) , 学习 ;翻折:①y=|f(x)|是将y=f(x)位于x轴下方的部分以x轴为对称轴将期翻折到x轴上方的图像。②y=f(|x|)是将y=f(x)位于y轴左方的图像翻折到y轴的右方而成的图像。
(5)有关结论:①若f(a+x)=f(b—x),在x为一切实数上成立,则y=f(x)的图像关于
x=对称。②函数y=f(a+x)与函数y=f(b—x)的图像有关于直线x=对称。
15、等数列中,an=a1+(n—1)d=am+(n—m)d;sn=n=na1+
16、若n+m=p+q,则am+an=ap+aq;
sk,s2k—k,s3k—2k成以k2d为公的等数列。an是等数列,若ap=q,aq=p,则ap+q=0;若sp=q,sq=p,则sp+q=—(p+q);若已知sk,sn,sn—k,sn=(sk+sn+sn—k)/2k;若an是等数列,则可设前n项和为sn=an2+bn(注:没有常数项),用方程的思想求解a,b。在等数列中,若将其脚码成等数列的项取出组成数列,则新的数列仍旧是等数列。
17、等比数列中,an=a1?qn-1=am?qn-m,若n+m=p+q,则am?an=ap?aq;sn=na1(q=1),
sn=,(q≠1);若q≠1,则有=q,若q≠—1,=q;
sk,s2k—k,s3k—2k也是等比数列。a1+a2+a3,a2+a3+a4,a3+a4+a5也成等比数列。在等比数列中,若将其脚码成等数列的项取出组成数列,则新的数列仍旧是等比数列。裂项公式:
=—,=?(—),常用数列递推形式:叠加,叠乘,
18、弧长公式:l=|α|?r。
s扇=?lr=?|α|r2=?;当一个扇形的周长一定时(为L时),
19、Sina(α+β)=sinαcosβ+cosαsinβ;Sina(α—β)=sinαcosβ—cosαsinβ;
Cos(α+β)=cosαcosβ—sinαsinβ;cos(α—β)=cosαcosβ+sinαsinβ
高考数学必考知识点
1.【数列】&【解三角形】
解三角形在解答题中主要考查正、余弦定理在解三角形中的应用。
2.【立体几何】
高考在解答题的第二或第三题位置考查一道立体几何题,主要考查空间线面平行、垂直的证明,求二面角等,出题比较稳定,第二问需合理建立空间直角坐标系,并正确计算。
3.【概率】
高考在解答题的第二或第三题位置考查一道概率题,主要考查古典概型,几何概型,二项分布,超几何分布,回归分析与统计,近年来概率题每年考查的角度都不一样,并且题干长,是学生感到困难的一题,需正确理解题意。
4.【解析几何】
高考在第20题的位置考查一道解析几何题。主要考查圆锥曲线的定义和性质,轨迹方程问题、含参问题、定点定值问题、取值范围问题,通过点的坐标运算解决问题。
5.【导数】
高考在第21题的位置考查一道导数题。主要考查含参数的函数的切线、单调性、最值、零点、不等式证明等问题,并且含参问题一般较难,处于必做题的一题。
今年高考几何证明选讲已经删除,选考题只剩两道,一道是坐标系与参数方程问题,另一道是不等式选讲问题。坐标系与参数方程题主要考查曲线的极坐标方程、参数方程、直线参数方程的几何意义的应用以及范围的最值问题;不等式选讲题主要考查不等式的化简,求参数的范围及不等式的证明。
高中数学知识点总结
一、、简易逻辑(14课时,8个)1.;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件.
二、函数(30课时,12个)1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例.
三、数列(12课时,5个)1.数列;2.等数列及其通项公式;3.等数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式.
四、三角函数(46课时17个)1.角的概念的推广;2.弧度制;3.任意角的三角函数;4,单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式’7.两角和与的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16余弦定理;17斜三角形解法举例.
五、平面向量(12课时,8个)1.向量2.向量的加法与减法3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移.
六、不等式(22课时,5个)1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含的不等式.
七、直线和圆的方程(22课时,12个)1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题.9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程.
八、圆锥曲线(18课时,7个)1椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质.
九、(B)直线、平面、简单何体(36课时,28个)1.平面及基本性质;2.平面图形直观图的画法;3.平面直线;4.直线和平面平行的判定与性质;5,直线和平面垂直的判与性质;6.三垂线定理及其逆定理;7.两个平面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线所成的角;13.异面直线的公垂线;14异面直线的距离;15.直线和平面垂直的性质;16.平面的法向量;17.点到平面的距离;18.直线和平面所成的角;19.向量在平面内的射影;20.平面与平面平行的性质;21.平行平面间的距离;22.二面角及其平面角;23.两个平面垂直的判定和性质;24.多面体;25.棱柱;26.棱锥;27.正多面体;28.球.
十、排列、组合、二项式定理(18课时,8个)1.分类计数原理与分步计数原理.2.排列;3.排列数公式’4.组合;5.组合数公式;6.组合数的两个性质;7.二项式定理;8.二项展开式的性质.
十一、概率(12课时,5个)1.随机的概率;2.等可能的概率;3.互斥有一个发生的概率;4.相互同时发生的概率;5.重复试验.选修Ⅱ(24个)
十二、概率与统计(14课时,6个)1.离散型随机变量的分布列;2.离散型随机变量的期望值和方;3.抽样方法;4.总体分布的估计;5.正态分布;6.线性回归.
十三、极限(12课时,6个)1.数学归纳法;2.数学归纳法应用举例;3.数列的极限;4.函数的极限;5.极限的四则运算;6.函数的连续性.
十四、导数(18课时,8个)1.导数的概念;2.导数的几何意义;3.几种常见函数的导数;4.两个函数的和、、积、商的导数;5.复合函数的导数;6.基本导数公式;7.利用导数研究函数的单调性和极值;8函数的值和最小值.
十五、复数(4课时,4个)1.复数的概念;2.复数的加法和减法;3.复数的乘法和除法补充高中数学有130个知识点,从前一份试卷要考查90个知识点,覆盖率达70%左右,而且把这一项作为衡量试卷成功与否的标准之一.这一传统近年被打破,取而代之的是关注思维,突出能力,重视思想方法和思维能力的考查.现在的我们学数学比前人幸福啊!!相信对你的学习会有帮助的,祝你成功!补充一试全国高中数x的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高,其中概率和微积分初步不考。二试1、平面几何基本要求:掌握初中数学竞赛大纲所确定的所有内容。补充要求:面积和面积方法。几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。几个重要的极值:到三角形三顶点距离之和最小的点--费马点。到三角形三顶点距离的平方和最小的点,重心。三角形内到三边距离之积的点,重心。几何不等式。简单的等周问题。了解下述定理:在周长一定的n边形的中,正n边形的面积。在周长一定的简单闭曲线的中,圆的面积。在面积一定的n边形的中,正n边形的周长最小。在面积一定的简单闭曲线的中,圆的周长最小。几何中的运动:反射、平移、旋转。复数方法、向量方法。平面凸集、凸包及应用。补充第二数学归纳法。递归,一阶、二阶递归,特征方程法。函数迭代,求n次迭代,简单的函数方程。n个变元的平均不等式,柯西不等式,排序不等式及应用。复数的指数形式,欧拉公式,棣莫佛定理,单位根,单位根的应用。圆排列,有重复的排列与组合,简单的组合恒等式。一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。简单的初等数论问题,除初中大纲中所包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数,费马小定理,欧拉函数,孙子定理,格点及其性质。3、立体几何多面角,多面角的性质。三面角、直三面角的基本性质。正多面体,欧拉定理。体积证法。截面,会作截面、表面展开图。4、平面解析几何直线的法线式,直线的极坐标方程,直线束及其应用。二元一次不等式表示的区域。三角形的面积公式。圆锥曲线的切线和法线。圆的幂和根轴。
高中数学知识点总结归纳相关 文章 :
★ 高中数学知识点全总结最全版
★ 高中数学知识点归纳
★ 高考数学知识点总结整理
★ 高中数学考点整理归纳
★ 高中数学知识点全总结
★ 高中数学学习方法:知识点总结最全版
★ 高中高一数学知识点总结
★ 高中数学全部知识点提纲整理
★ 高考数学知识点归纳总结
★ 高考数学知识点总结 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();
对于第二个式子,左右两边都加一个n,就可以证明An+n是等比数列,公比是2
这就是所求的反函数.就可以写出An+n这个新数列的通项公式
(2)由y= ,得x2=1-y2①An的通项公式也就出来了,An=2^n-n
求和分项求
2^n的和为2^(n+1)-2
n的和为n(n+1)/2
减一下就出来了
数学就是多做,做多了什么都会
证明:两边同时加n得:An+n=2A(n-1)-2+2n
即An+n=2A(n-1)+2(n-1)
所以得(An+n)/[A(n-1)+(n-1)]=2
所以{An+n}是以2为首项,2为公比的等比数列
(1)an+n=2的n次幂
an=2的n次幂-n
(2)sn=2+2的2次+2的三次+...+2的n次—(1+2+3+4+....+n)
=2(2的n次-1)-1/2·n(1+n)
h(x)是奇函数,所以h(x)关于原点中心对称,所以,h(x-1)关于(1,0)中心对称
6.【选做题】所以g(-1)+g(0)+g(1)+g(2)+于是乎g(-1)+g(3)=2, g(0)+g(2)=2. g(1)=1g(3)=5
x=0,f(x)=1;
评析 函数f(x)与其反函数f-1(x)具有相同的增减性.x>0,f(x)<1,且为减函数,x→正无穷大,f(x)趋于0;
x<0,f(x)>1,且为增函数,x→负无穷大,f(x)趋于正无穷大。
无对称(2)掌握介值定理的推论---零点定理。本定理主要用于判定一个方程根的存在性。中心。
分类: 教育/科学 >> 学习帮助
问题描述:
已知y=f(x)存在反函数f-(x),f(2)=3, 求f-(x-1)=?
解析:
学科:数学
教学内容:反函数
【基础知识精讲】
1.基础知识图表
2.反函数的概念
设y=f(x)表示y是自变量x的函数,它的定义域为A,值域为C,从式子y=f(x)中解出x,得到式子x=φ(y).如果对于y在C中的任何一个值,通过x=φ(y),x在A中都有确定的值和它对应,那么x=φ(y)就表示x是自变量y的函数.这样的函数x=φ(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作x=f-1(y),通常将它改写成y=f-1(x).
函数y=f(x)的定义域是它的反函数y=f-1(x)的值域;函数y=f(x)的值域是它的反函数y=f-1(x)的定义域.
函数y=f(x)的图像和它的反函数y=f-1(x)的图像关于直线y=x对称.
3.反函数概念的理解
反函数实质上也是函数.
反函数是相对于原函数而言,换句话说,反函数不能脱离原函数而单独存在.
并不是所有的函数都有反函数.例如函数y=x2没有反函数.只有原象的函数,即对任意x1≠x2能推断出f(x1)≠f(x2)成立的函数f(x)才具有反函数(这里x1、x2是f(x)的定义域内的两个值).
如果函数y=f(x)有反函数y=f-1(x),那么函数y=f(x)也是其反函数y=f-1(x)的反函数,即它们互为反函数.
函数y=f(x)的定义域和值域分别是其反函数y=f-1(x)的值域和定义域.
反函数的定义域和值域应该正好是原来函数的值域和定义域.例如,函数y= (x∈Z)不是函数y=2x(x∈Z)的反函数,因为前者的定义域显然不是后者的值域.因此,求函数y=f(x)的反函数y=f-1(x)时,必须确定原来函数y=f(x)的值域.
4.求给定解析式的函数y=f(x)的反函数,其步骤为:
(1)从方程y=f(x)中解出x=f-1(y);
(2)将x、y互换,得到y=f-1(x);
(3)根据y=f(x)的值域,写出y=f-1(x)的定义域.
互为反函数的两个函数如果有解析式,一般是不同的,但也有相同的.例如函数y=x的反函数仍是y=x,函数y= 的反函数仍是y= .
5.互为反函数图像间的关系
在同一个直角坐标系中,函数y=f(x)与其反函数y=f-1(x)的图像关于直线y=x对称.特别地,当函数与其反函数相同时,函数的图像本身关于直线y=x对称.
在y=f(x)与x=f-1(y)中,x、y所表示的量相同,但是地位不同.在y=f(x)中,x是自变量,y是x的函数;在x=f-1(y)中,y是自变量,x是y的函数.在同一个直角坐标系中,y=f(x)与x=f-1(y)的图像是同一个点集.
6.反函数具备的其它性质
在y=f(x)与y=f-1(x)中,x、y所处的地位相同,但表示的量的意义不同.
若y=f(x)(x∈A),与y=f-1(x)(x∈C)互为反函数,则有
f〔f-1(x)〕=x(x∈C);
f-1〔f(x)〕=x(x∈A).
互为反函数的两个函数在它们各自的定义域具有相同的单调性.
奇函数若有反函数,则其反函数也是奇函数.
具有单调性的函数必有反函数.
两个互为反函数的图像如果有交点,它们的交点不一定在直线y=x上.
【重点难点解析】
1.求反函数的三步中,切记第三步必不可少,即由原函数y=f(x)的值域确定反函数的定义域,求出反函数后,一定要给出反函数的定义域.
2.x=f(y)与y=f-1(x)是同一函数
这是因为它们的定义域、值域对应相同(都分别是原来函数的值域和定义物),对应法则相同.
3.判定一个定义在A上的函数y=f(x)有无反函数的方法
设x1、x2∈A且x1≠x2,判断f(x1)≠f(x2)是否恒成立,若是,则f(x)在A上有反函数;若否,则f(x)在A上无反函数;如果一个函数在某个区间上是单调函数,则它在该区间上有反函数.
4.分段函数的反函数的求法
设分段函数
y= 有反函数.它的反函数须分段求出,
即y=
例1 求下列函数的反函数:(1)y=3x +4(x≤0);
(2)y= (-1≤x≤0)
解:(1)由y=3x +4,得x = ;
两边立方,得x2=( )3
当且仅当( )3≥0即y≥4时,x在R-上有解.即
x=-( ) .
交换x、y,得y=-( ) (x≥4).
当且仅当0≤1-y2≤1(y≥0)时,①在〔-1,0〕上有解,即x=- .
交换x、y,得y=-( )(x∈〔0,1〕)
评析 在ξ1.6讨论求函数的值域时,我们介绍了反求法,那时是寻求使x在定义域内有解的条件.而在这里,我们数列与解三角形的知识点在解答题的题中,是非此即彼的状态,近些年的特征是大题题两年数列两年解三角形轮流来, 2014、2015年大题题考查的是数列,2016年大题题考查的是解三角形,故预计2017年大题题较大可能仍然考查解三角形。寻求的是使x在定义域内有解的条件.你能说出其中的道理吗?
例2 已知f(x)= ,函数y=g(x)的图像与函数y=f-1(x+1)的图像关于直线y=x对称,则g(11)等于( )
A. B. C. D.
解:先求f(x)= (x≠1)的反函数.
由y= ,得x= (y≠2).
将x与y交换,得f分析 所谓函数图像关于直线y=x对称,即是说这个函数与其反函数是同一个函数.(x)的反函数f-1(x)= (x≠2).
∴f-1(x+1)= .
∵f-1(x+1)与g(x)关于y=x对称,
∴f-1(x+1)与g(x)是互为反函数.
令 =11,解得x= ,∴g(11)= .故选B.
分析 f-1(x+1)表示以x+1代替反函数中的自变量,即先求f-1(x),再以x+1替代x.f-1(x+1)不能理解成f(x+1)的反函数.
例3 已知f(x)= ,求f-1〔f(x)〕和f〔f-1(x)〕.
解:设y= (x≠-1),则x= (y≠2).
f〔f-1(x)〕= =x (x≠2).
分析 f-1〔f(x)〕与f〔f-1(x)〕尽管均等于x,但由于定义域不同,因此它们是不同的函数.其中f-1〔f(x)〕中的x∈A,f〔f-1(x)〕中的x∈C.
例4 求函数f(x)= 的反函数.
分析 分析求出y=x2-1(x≥0)与y=2x-1(x<0)的反函数,再写成一个函数的分段形式.
解:1°由y=x2-1,得x2=y+1
当且仅当,y+1≥0即y≥-1时,x在〔0,+∞〕上有解,即x= .
故y=x2-1(x≥0)的反函数是y= (x≥-1).
2°由y=2x-1,得x= ①
∵x<0,即 <0,得y<-1
∴当且仅当y<-1时,①在R-上有解.
故y=2x-1(x<0)的反函数是y= (x<-1).
由1°,2°知,所求反函数为
f-1(x)=
【难解巧解点拨】
例1 已知函数f(x)= (a≠ )的图像关于直线y=x对称,求a的值.
解:由y= (x≠-a),得x= (y≠2).
∴f-1(x)= (x≠2).
∵函数f(x)的图像关于直线y=x对称,
∴f(x)与f-1(x)是同一个函数,
∴-a=2,
∴a=-2.
评析 如果两个函数相同,那么它们的对应法则相同且它们的定义域相同.
例2 已知函数y=f(x)的定义域是A,值域是C,且反函数f-1(x)存在.如果f(x)是A上的增函数,求证:f-1(x)是C上的增函数.
证:设x1,x2∈C,且x1 x1=f(y1),x2=f(y2). ∴f(y1) 又∵f(x)是A上是增函数, ∴y1 即f-1(x1) 故f-1(x)在C上是增函数. 例3 已知函数y=ax+b(a≠0)有反函数,且它的反函数就是它本身,求实数a、b应满足的条件. 分析 如果点(x0,y0)是原来的函数图像上的点,那么点(y0,x0)也在该函数的图像上. 解:设点(x0,y0)是函数y=ax+b(a≠0)的图像上的任一点,则点(y0,x0)是其反函数图像上的点.因原来的函数的反函数就是它本身,故(y0,x0)也在函数y=ax+b(a≠0)的图像上. ∴ a2-1=0,且b(a+1)=0, ∴ 或 【课本难题解答】 课本第69页,习题2.4节,第4题解答. 函数y= x+b的反函数为y=5x-5b. 由已知y=ax+3是y= x+b的反函数, 所以函数y=5x-5b与函数y=ax+3为同一个函数,由此得 解得 第5题解答: 证明:求函数y= (x≠-1)的反函数. ∵x≠-1 (1+x)y=1-x ∴x(1+y)=1-y y= (x≠-1) 由此证得函数y= (x≠-1)的反函数是该函数的自身. 分析 ①这个函数的图像关于直线y=x成轴对称图形,利用这个特点,可知图像上如果有点P(a,b),就必然有点P′(b,a). ②由于函数可变形为y= -1(x≠-1) 因此,这个函数的图像可以由反比例函数图像向右,向下各平移一个单位得到. 第6题(1)例: y=f(x)=2x+3与x=f-1(y)= (y-3)的图像相同. 在同一个坐标系内,y=f(x)与x=f-1(y)的图像相同. (2)例:f(x)=x3,f-1(x)= 两个函数图像关于直线y=x对称. 在同一个坐标系内,y=f(x)与它的反函数y=f-1(x)的图像关于直线y=x对称. 【命题趋势分析】 (1)本知识在高考中主要考查:①能根据原函数的解析式求出反函数的解析式;②利用原函数与反函数图象之间的关系解题;③利用原函数与反函数的定义域和值域之间的关系解题;④画图像,解决图像问题. (2)历届高考考查题型,以选择题、填空题为主,多数是中低档题,重点考查概念. (3)思考与解决问题过程中,主要运用方程的思想和数形结合的思想和方法. (4)反函数的概念在高考试题中频繁出现.如反函数的符号、意义、求反函数的方法及互为反函数的图像之间的关系等.尤其注意,求反函数是重中之重.反函数的概念和图像同二次函数、指数函数、对数函数相结合.考查反函数的定义域、值域、图像及单调性、奇偶性等,仍然是今后高考考查的方向. 【典型热点考题】 例1 1999年高考数学(文史类)试题(9),已知函数y= (x∈R,且x≠1),那么它的反函数为( ) A.y= (x∈R,且x≠1) B.y= (x∈R,且x≠6) C.y= (x∈R,且x≠- ) D.y= (x∈R,且x≠-5) 它与课本例题别仅在于分子的系数. 在课本中,通过例题说明求函数的反函数的步骤是:(1)由y=f(x)反解出x=f-1(y);(2)将x、y互换,改写为y=f-1(x);(3)由y=f(x)的值域确定反函数的定义域.∴应选B. 例2 设函数y=1- (-1≤x≤0),则函数y=f-1(x)的图像是如下图中的( ) 解法1: ∵y=1- 的定义域为〔-1,0〕,∴它的反函数y=f-1(x)的值域为〔-1,0〕,由此可以排除A,C. 如何从B,D中作出选择呢?根据互为反函数的两个函数的图像关于直线y=x对称这一基本性质,我们可以选择一个特殊点. ∵y=f(x)=1- (-1≤x≤0)的图像是经过点(- ,1- ). ∴y=f-1(x)的图像必过点(1- ,- ). 在D中,当y=- 时,x比较接近于1,因此x≠1- <0.15. ∴应选B. 解法2:由f(x)=1- (-1≤x≤0) 求出其值域为y∈〔0,1〕,可知原函数的图像为A,再根据原函数与其反函数的图像关于直线y=x对称,可知f-1(x)的图像应为B. ∴应选B. 注 本题主要考查反函数的有关概念,要求对原函数与反函数之间的关系有深刻的理解,同时也考查了数形结合的思想. 例3 若函数y=f(x)的反函数是y=g(x),f(a)=b,ab≠0,则g(b)等于( ) A.a B.a-1 C.b D.b-1 分析 本题主要考查反函数的性质和运用.根据题设,也可取特殊函数、特殊点等方法加以验证. 解:∵点(a,b)在原函数y=f(x)的图像上, ∴(b,a)应在其反函数y=f-1(x)的图像上. ∴g(b)=a. ∴应选A. 例4 函数f(x)=(x-1) +2的反函数是f-1(x)= . 解:由y=(x-1) +2得(x-1) =y-2,x-1=(y-2)3,x=(y-2)3+1,所以所求的函数的反函数为y=(x-2)3+1. ∴应填(x-2)3+1. 【知识验证实验】 1.通过研究学生的学习行为,心理学家发现,学生的接受能力依赖于老师引入概念和描述问题所用的时间.讲座开始时,学生的兴趣激增;中间有一段不太长的时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散.分析结果和实验表明,用f(x)表示学生掌握和接受概念的能力,x表示提出和讲授概念的时间(单位:分),可有以下的公式: f(x)= (1)开讲后多少分钟,学生的接受能力最强?能维持多少时间? (2)开讲后5分钟与开讲后20分钟比较,学生的接受能力何时强一些? (3)一个数学难题,需要55的接受能力以及13分钟时间,老师能否及时在学生一直达到所需接受能力的状态下讲授完这个难题? (4)如果每隔5分钟测量一次学生的接受能力,再计算平均值M= ,它能高于45吗? 解:(1)当0<x≤10时, f(x)=-0.1x2+2.6x+43=-0.1(x-13)2+59.9, 故f(x)递增,值为f(10)=-0.1×(-3)2+59.9=59;显然,当16<x≤30时,f(x)递减,f(x)<-3×16+107=59. 因此,开讲后10分钟,学生达到最强的接受能力(值为59),并维持6分钟. (2)f(5)=-0.1×(5-13)2+59.9=59.9-6.4=53.5 f(20)=-3×20+107=47<53.5. 因此开讲后5分钟,学生的接受能力比开讲后20分钟强一些. (3)当0<x≤10时,令f(x)=55,则 -0.1×(x-13)2=-4.9 (x-13)2=49, 所以x=20或6,但0<x≤10,故x=6. 当16<x≤30时,令f(x)=55,则-3x+107=55,所以x=17 . 因此学生达到(或超过)55的接受能力的时间为17 -6=11 <13(分钟),老师来不及在学生一直达到所需接受能力的状态下讲授完这道难题. (4)f(5)=53.5,f(10)=59,f(15)=59,f(20)=47均已计算得,还有f(25)=-3×25+107=32,f(30)=-3×30+107=17. 所以M= = ≈44.6<45. 故知平均值不能高于45. 【知识探究学习】 用水清洗一堆蔬菜上残留的农,对用一定量的水清洗一次的效果作如下定:用1个单位量的水可以洗掉蔬菜上残留农量的 ,用水越多洗掉的农量也越多,但总还有农残留在蔬菜上,设用x单位量的水洗清一次以后,蔬菜上残留的农量与本次清洗所残留的农量之比为函数f(x). (1)试规定f(0)的值,并解释其实际意义; (2)试根据定求出函数f(x)应该满足的条件和具体的性质; (3)设f(x)= .现有a(a>0)单位量的水,可以清洗一次,也可以把水平均分成2份后清洗两次,试问用哪种方案清洗后蔬菜上残留的农量比较少?说明理由. 解:(1)f(0)=1表示没在用水洗时,蔬菜上的农量将保持原样. (2)函数f(x)应该满足的条件和具体的性质是f(0)=1,f(1)= . 在〔0,+∞)上f(x)单调递减,且0<f(x)≤1. 则f1-f2= - = . 于是,当a>2 时,f1>f2; 当a=2 时,f1=f2; 当0<a<2 时,f1<f2. 因此,当a>2 时,清洗两次后残留的农量较少; 当a=2 时,两种清洗方法具有相同的效果; 当0<a<2 时,一次清洗残留的农量较少. 一、选择题 1.y=a- (x≥a)的反函数是( ) A.y=(x-a)2+a(x≥a) B.y=(x-a)2-a(x≥a) C.y=(x-a)2+a(x≤a) D.y=(x-a)2-a(x≤a) 2.已知函数y=f(x)有反函数,则方程f(x)=0的根的情况是( ) A.有且一实根 B.至多有一实根 C.至少有一实根 D.0个,1个或1个以上实根 3.点(a,b)在y=f(x)的图像上,则下列各点中必在其反函数图像上的点是( ) A.(a,f-1(a)) B.(f-1(b),b) C.(f-1(a),a) D.(b,f-1(b)) 4.设有三个函数,个函数是y=f(x),它的反函数是第二个函数,而第三个函数与第二个函数的图像关于原点对称,那么第三个函数是( ) A.y=-f(x) B.y=f-1(-x) C.y=-f-1(-x) D.y=f-1(x) 5.函数y=f(x)的图像经过第三、四象限,则y=-f-1(x)的图像经过( ) A.、二象限 B.第二、三象限 C.第三、四象限 D.、四象限 6.在下列区间中,使y=2|x|不存在反函数的区间是( ) A.〔2,4〕 B.〔-4,4〕 C.〔0,+∞〕 D.(-∞,0〕 7.若函数y=f-1(x)的图像经过点(-2,0),则函数y=f(x+5)的图像经过点( ) A.(5,-2) B.(-2,-5) C.(-5,-2) D.(2,-5) 二、填空题 1.函数y= 的值域为 . 2.已知函数f(x)定义在(-∞,0〕上,且f(x+1)=x2+2x,则f-1(1)= . 3.直线y=ax+2与直线y=3x-b关于直线y=x对称,则a= ,b= . 4.若函数f(x)= (a≠ )的图像关于y=x对称,则a= . 5.函数f(x)=ax3+ax-1的反函数的图像必过点 . 6.已知f(x)= 的反函数就是自身,则a= ,b= . 7.y= 是否有反函数? ;当x∈〔0, 〕时,反函数为 ,定义域为 ;当x∈〔- ,0〕时,反函数为 ,定义域为 . 8.已知f(x)= (x∈R且x≠- ),f-1(2)的值为 . 三、解答题 1.函数f(x)=x-n(x<0,n∈Z)是否存在反函数?若不存在说明理由.若存在,求出f-1(x),并判断是增函数还是减函数? 2.已知f(x)=x2,g(x)= x+5,设F(x)=f〔g-1(x)〕-g-1〔f(x)〕.试求F(x)的最小值. 3.已知函数y=f(x)的反函数为y=f-1(x). (1)试求函数y=f(mx+n)(m≠0)的反函数; (2)试求函数y=f(ax3+b)(a≠0)的反函数. 【素质优化训练】 1.求函数f(x)= 的反函数. 3.已知f(x)= (x≠-a,a≠ ) (1)求f(x)的反函数; (2)若f(x)=f-1(x),求a的值; (3)如何作出满足(2)中条件的y=f-1(x)的图像. 一、1.C 2.B 3.D 4.C 5.选B 6.B 7.C 二、1.{y|y∈R,且y≠- } 2.- 3.a= b=6 4.a=-5 5.(0,-1) 6.0,非零实数 7.没有;y= ;〔0,4〕;y=- ;〔0,4〕 8.- 三、1.n=0时,f(x)=1,不存在反函数. 当n为非零偶数时,f-1(x)=- =-x (x>0)①n>0, 且n∈Z,f-1(x)为增函数,②n<0,且n∈Z,f-1(x)为减函数. 当n为奇数时,y=x-n(x<0,y<0), 反函数f-1(x)=x (x<0)①n>0且n∈Z,f-1(x)为减函数 ②n<0且n∈Z,f-1(x)为增函数 2.-90. 3.(1)y= f-1(x)- (2)y= 【素质优化训练】 1.f(x)= 2. 3.解:(1)y= (x≠2) (3)f-1(x)= =2+ (x≠2 y≠2).要得y=f-1(x)的图像,只需将y= 向右平移2个单位,再向上平移2个单位,即得y=f-1(x)的图像.(图像略) 我觉得比较对称....倒过来还是69 肯定是808啊,因为它有4100万像素 只有808吧! 808 444(2)a=-2 都对陈,808、444、69、96哪个是对称现象
(3)设仅清洗一次,残留的农量为f1= ,清洗两次后,残留的农量为f2= = ,
版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。