什么是记忆合金?
形状记忆材料 形状记忆材料有哪些
形状记忆材料 形状记忆材料有哪些
形状记忆合金在较低的温度下变形,加热后可恢复变形前的形状,这种只在加热过程中存在的形状记忆现象称为单程记忆效应。
4.电阻特性:研究表明,对于初始组织为马氏体的 Ni-Ti合金 ,在拉伸过程中电阻于应变之间呈线性关系;对于初始组织为奥氏体或奥氏体、马氏体两者混合的 Ni-Ti合金 ,当发生应力诱发马氏体相变后,曲线的斜率降低,相变前后电阻-应变关系保持线性关系。某些合金加热时恢复高温相形状,冷却时又能恢复低温相形状,称为双程记忆效应。
3、全程记忆效应
加热时恢复高温相形状,冷却时变为形状相同而取向相反的低温相形状,称为全程记忆效应。
形状记忆如何发挥作用?
容易理解形状记忆的方式是记住发生在材料内部(即原子和分子的纳米尺度)的变化也许和外部看起来发生的完全不同。
形状记忆合金在奥氏体和马氏体两种结晶态之间转变。在低温时,它们呈现相对柔软、塑性和容易成形的马氏体;在(相对)高温时,它们变成更硬和更难以变形的奥氏体。设你有一个形状记忆电线,你可以相对容易地把它变成新的形状。它的内部是马氏体,这就是它容易变形的原因。无论你怎么弯曲电线,它都保持新的形状;就像任何普通的电线,它看起来像在进行普通的塑性形变。见证奇迹的时刻!对电线微微加热(高于相变温度),其内部变成奥氏体,在热能作用下内部原子重新排列然后电线恢复到原来形状。冷却下来,电线重新恢复成马氏体,仍然恢复成原来形状。如果整个过程中材料的温度高于相变温度,你可以使其变形,但是当你释放你施加的应力,它立刻恢复到原来的形状。
当施加应力(压力)而不是加热时,超弹性和形状记忆表现相似。通常,组成合金的是奥氏体的韧性形式。设对形状记忆施加应力(就是弯曲它们),奥氏体转换成马氏体后非常容易变形。放开镜框后马氏体变回了奥氏体,所以回到原始的形状。
Arne Olander在上世纪30年代发—镉合金中存在形状记忆效应,但是在上世纪60年代美国军械实验室开发出钛镍合金之后,形状记忆合金(也叫作SMAs,金属肌肉,记忆金属,智能金属)开始真正推广使用。几十年后,形状记忆金属已经是所有医学和健康相关设备领域平常的选择,包括从牙科植入物到外科工具,从胸罩内线到框(以Flexon品牌出售)。与塑料、金属或传统合金不同,形状记忆合金兼具坚固和柔韧的优点,易于消毒并耐腐蚀。由于轻质、坚韧并能在高温下工作的特性,形状记忆合金也广泛应用于航空航天部件,例如火箭和空间探测器。
形状记忆合金听起来高大上,但是它们也有缺点:形状记忆合金比普通不锈钢更易达到疲劳强度(多次重复变形后断裂),而且比传统的钢或铝合金的制造成本更高。上世纪90年代,材料学家开始开发与形状记忆合金相似且具有形状记忆效应的形状记忆聚合物(SMPs)。正如普通塑料改变了世界,形状记忆聚合物很可能在未来几年拓宽它的应用领域,因为SMPs比金属基合金更轻、更便宜和更柔韧。和SMPs密切相关的是SCPs(形状改变聚合物),当它们受热(或以其他方式被能量),其逐渐改变形状;然而当冷却的时候,其恢复形状。虽然自愈合材料(一种损伤后自我治愈的材料)也可以在多种不同的方式下工作,它们与SMPs非常相似。例如,可以设想一下,一个塑料机身可以吸收射入的的动能后转换成内能,并用内能激活形状记忆效应使聚合物恢复到原来形状,迅速愈合和密封。
1、什么是形状记忆?
2、形状记忆合金用途
更早广泛使用的是航天设备,比如航天天线,科学家就用形状记忆合金做成天线,然后折叠成一个小球。带上月球上之后,经过太阳加热,折叠的因具有"记忆"功能而自然展开。听着是不是很神奇?也因此它也被誉为"神奇的功能材料"。如今还被广泛地运用于所有医学和健康相关设备领域,包括从牙齿矫形丝到外科工具,从胸罩内线到心脑血管支架。
记忆合金开发迄今不过半个世纪,已有几十种。记忆合金作为一种随着科学技术而不断发展的新型材料,是21世纪极具潜力的新型智能材料之一。相信随着科技的创新,记忆合金将逐渐走入日常商品化,在我们的生活中大放异彩。
除了腔内支架方面的 应用以外, 在骨外科治疗领域,形状记忆合金同样有不凡的表现。传统的骨伤手术器械包括接骨钢板、螺钉、螺母、钢形状记忆聚合物的技术并不是完全完善的,它也存在一些不足之处。首先,形状记忆聚合物的制备这术和材料性能比较乏味,有待进一步改进。丝等,手术时医生要进行钻孔、楔入、捆扎等复杂作,对患者的机体不可避免要造为损伤。这种手术有时要进行四、五个小时,病人的长时间麻醉对手术伤口的愈合也十分不利。这种手术效果也不理想,用机械、刚性办法固定的器械在人体内容易发生弯曲、断裂、形状记忆合金不仅单次“记忆”能力几乎可达百分之百,即恢复到和原来一模一样的形状,更可贵之处在于这种“记忆”本领即使重复500万次以上也不会产生丝毫疲劳断裂。因此,形状记忆合金享有“忘本”、“百折不挠”等美誉,被比作一个人应具有的变节、坚贞不屈的精神和气节。松动和腐蚀,有些患者要接受两次甚至多次手术。
与传统的不锈钢器械相比,应用形状记忆合金制成的记忆合金骨科内固定器械,可以使骨科手术开始告别钻孔、楔入、捆扎等复杂工序。手术时,医生先用低温(0~5摄氏度)消毒盐水冷却记忆合金器械,然后根据需要改变其抱合部位的形状,安装于患者骨伤部位。待患者体温将其 “ 加热 ” 到设定的温度时,器械的变形部分便恢复到原来设计的形状,从而将伤骨紧紧抱合,起到固定与支撑的作用。这种新技术与传统的骨伤内固定术相比,大大降低了手术的难度,并可使手术时间缩短三分之二。由于材料自身的记忆功能十分稳定,良好的 “ 抱合力 ” 使病人手术的愈合期也大大缩短。
应该加热以后再淬火。同时也应该在加热大部分合金和陶瓷记忆材料是通过马氏体相变而呈现形状记忆效应的。马氏体相变具有可逆性,将马氏体向高温相(奥氏体)的转变称为逆转变。形状记忆效应是热弹性马氏体相变产生的低温相在加热时向高温相进行可逆转变的结果。具体原理可以参考《新型功能材料》 贡长生 张克立主编 化学工业出版社出版的过程中固定好形状。也可以套在模具上固定。然后在加热中就会保持模具上的形状。放在冷水中淬火,这样就制作而成了。
形状记忆纤维不仅可用于加工智能服装,也可应用在医学领域。比如将形状记忆温度设置在人体体温附近,那么用这种纤维制成的丝线,就可作为手术缝合线或医疗植入物。由于该材料具有记忆功能,它能以一个松散线团的形式切入伤口,当其被加热到体温时,材为什么材料也会有记忆2料“记忆”起事先设计好研究表明,很多合金材料有SME,但是只有较大形状回复力的, 才具有利用价值。这种金属的优点,就是做成成品后有很好的弹性,常温下难以变形。形状记忆合金可以恢复形状,能反复变形500万次,还不会产生疲劳断裂,因此有很多神奇的用途。的形状和大小,便会收缩拉紧伤口,待伤口愈合好后,材料自行分解,然后无害地为人体所吸收。
《尼尔:机械纪元》形状记忆合金是不少支线和武器升级要用到的材料,玩家们都感觉材料不够用,这个材料在哪出?下面就带来玩家“kenkh”提供的材料获得方法介绍,一起来看看吧。
形状记忆效应早是1932年由Olander在研究Au-Cd合金时发现的。1963年,美国武器实验室布勒(Buehler)等发现了钛镍合金具有形状记忆效应。1964年Cu-Al-Ni也被发现有这种效应。70年代以后,科学家又在304奥氏体不锈钢和Fe-18.5Mn中发现了这种效应。形状记忆材料 是集感知和驱动于一体的特殊材料,( Shape Memory Alloy 简称SMA)是指具有一定初始形状的合金在低温下经塑性变形并固定成另一种形状后,通过加热到某一临界温度以上又可恢复成初始形状的一类合金。
1969年美国Raychem公司生产Ti-Ni-Fe记忆合金管接头用于F14上的液压管路系统连接,这是SMA次成功应用。1970年,美国将 镍钛记忆合金丝 制成宇宙飞船用天线。前在1969年开始对形状记忆合金进行了系统研究。德国于1971年开始探索形状记忆效应的机制及应用,1976年声称有成功的产品问世。日本在70年代也积极开展这方面的研究工作。20世纪70年代,各国相继开发出了Ni-Ti基、Cu-Al-Ni基和Cu-Zn-Al基形状记忆合金。80年代开发出了Fe-Mn-Si基、不锈钢基等铁基形状记忆合金。从20世纪90年代至今,高温形状记忆合金、宽滞后以及合金薄膜等已成为研究热点。美国、日本等对形状记忆合金的研究和应用开大已较为成熟,同时也较早地实现了形状记忆合金的产业化。1.形状记忆效应: 形状记忆合金 经适当的热处理后具有恢复形状的能力,这种能力被称为形状记忆效应( Shape memory effect 简称SME)。形状记忆效应按恢复情况分为单程形状记忆效应、双程形状记忆效应和全程形状五.形状记忆合金的应用记忆效应。
2.超弹性效应:形状记忆合金受到外力时发生形变,去除外力后就恢复原状,这种现象称为超弹性。形状以及合金在发生超弹性形变时,诱发了马氏体相变,去除外力后,又发生马氏体逆相变。
3.阻尼特性:形状记忆合金由于马氏体相变的自协调和马氏体中形成的各种界面及界面运动,而具有很好的阻尼特性。
三.形状记忆合金的研究进展
我国从上世纪70年代末才开始对形状记忆合金展开研究,起步较晚,但起点较高,在材料冶金学方面,特别是实用形状记忆合金的炼制水平已得到学术界的认可,在应用开发上也有一些的成果。 佩尔科技 作为国内 镍钛 的先驱者,专业从事 镍钛材料 的研究与生产,由数名材料学博士与硕士组成的工程团队,一直以将高端 镍钛材料 推向世界为目标,不断学习创新,提高技术,逐渐缩短了形状记忆合金产业化和工程应用方面与国外的距。
四.形状记忆合金的分类
到目前为止,被开发出来的形状记忆合金主要是Ti-Ni基、Cu基与Fe基三种。在这三大类中,根据不同的要求和工作环境,分别在基体中加入和调整一些合金元素的量,使得每一个大类中都有一系列合金被开发出来,应用在各行各业,已满足各种不同的特殊需求。
由于形状记忆合金除具有独特的形状记忆功能外还具有超弹性、高阻尼、耐磨损和抗腐蚀等优点,所以在机械、建筑、航空航天、汽车以及医疗等许多领域中得到广泛的应用。
1.机械工程。早应用是在管接头和紧固件上。在机械零件的连接、管道的连接,飞机的空中加油的接口处,用形 状记忆合金加 工成内径比欲连接管的外径小4%的套管,然后在液氮温度下将套管扩径约8%,装配时将这种套管从液氮取出,把欲连接的管子从两端插入。当温度升高至常温时,利用电加热改变温度,接口处以及合金形变,套管套管收缩即形成紧固密封,使接扣精密滴水(油)不漏,远胜于焊接,特别适合用于航空、航天、核工业及船舰和海底输油管道等。在一些施工不便的部位,用记忆合金制成销钉,装入孔内加热,其尾端自动分开卷曲实现紧固。利用记忆合金的 感温驱动 双重功能,制作机器人、机械手,体型微小,结构紧凑。
六.形状记忆合金的发展趋势
1.高温形状记忆合金。 NiTi 和CuZnAl合金都只能在100℃以下使用。但在相当多的情况下,如防火装置,汽车发动机的记忆合金元件的工作温度均超过100℃。在核反应堆工程中,记忆合金热动元件的动作温度高达600℃,因而研制高温 形状记忆合金 就成为一个主要发展方向。高温用形状记忆合金在 热驱动器 、继电器及核工业等高温领域具有非常广阔的应用前景。
2.磁性形状记忆合金。磁性形状记忆合金可以在磁场的作用下输出较大应变,同时将记忆合金的工作频率从温控状态的1Hz左右(TiNi记忆合金薄膜的热驱动工作频率可达100Hz),提高到磁控状态下的300Hz以上。利用磁 驱动记忆合金 的这些功能特性,制成的传感和驱动元件在石油、电子和航天等工业领域有着重要的应用前景。
除以上所述外,正在研究的还有宽滞后形状记忆合金、 窄滞后形状记忆合金 、形状记忆合金薄膜、高屈服限形状记忆合金、低应力滞后形状记忆合金和低温拟弹性形状记忆合金等。
意义不同,特性不同。
1、形状记忆合金是通过热弹性与马氏体相变及形状记忆合金是目前形状记忆材料中形状记忆性能的材料。迄今为止,人们发现具有形状记忆效应的合金有50多种。在航空航天领域内的应用有很多成功的范例。人造卫星上庞大的天线可以用记忆合金制作。发射人造卫星之前,将抛物面天线折叠起来装进卫星体内,火箭升空把人造卫星送到预定轨道后,只需加温,折叠的因具有“记忆”功能而自然展开,恢复抛物面形状。其逆变而具有形状记忆效应的由两种以上金属元素所构成的材料。形状形状记忆合金在临床记忆聚合物 顾名思义,就是具有两种形态的聚合物。
2、形状记忆聚合物具有质轻价廉、便于制造加工、优异的力学性能、良好的生物相容性和生物可降解性等特点,形状记忆合金具有独特的形状记忆效应、相变伪弹性等特性。
形状记忆合金(Shape Memory Alloys,简称SMA)是一种能够在温度和应力作用下发生相变的新型功能材料,具有独特的形状记忆效应、相变伪弹性等特性,广泛应用于航空航天、医疗器械、机械电上世纪30年代发—镉合金中存在形状记忆效应,直到上世纪60年代美国开发出钛镍合金之后,才开始真正推广使用。首先是为大众熟知的“记忆合金”,事实上它是一种以钛和镍为主的合金,所以也叫镍钛合金,90年代才开始慢慢应用到上面。器等领域。
形状记忆合金是一种特殊的合金,存在一个记忆温度,在记忆温度以下可以任意加工,当温度回到记忆温度时,可以恢复到加工前的形状,在未来,它将是工程主要材料之一比如说钛,在加热后,会恢复到加工前的形状 形状记忆合金是一种特殊的合金,存在一个记忆温度,在记忆温度以下可以任意加工,当温度回到记忆温度是,可以恢复到加工前的形状 形状记忆合金的研究、发现至今为止已有十几种记忆合金体系。包括Au-Cd、Ag-Cd、Cu-Zn、Cu-Zn-Al、Cu-Zn-Sn、Cu-Zn-Si、Cu-Sn、Cu-Zn-Ga、In-Ti、Au-Cu-Zn、NiAl、Fe-Pt、Ti-Ni、Ti-Ni-Pd、Ti-Nb、U-Nb和Fe-Mn-Si等版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。