数列是高中数学的重要内容,又是学习高等数学的基础,故而在高考中占有重要地位.高考对本章的考查比较全面,一方面考查等数列、等比数列的基础知识和基本技能;另一方面常和函数、不等式、方程、解析几何、立体几何等相关内容交汇在一起综合,加以导数和向量等新增内容,使数列题更有了施展的舞台.
高考数学递推 高中数列递推公式总结
高考数学递推 高中数列递推公式总结
高考数学递推 高中数列递推公式总结
一.高考大纲对数列要求
近几年高考数学考试大纲没有变化,特别是
04、05、06要求都是一样的,对于《数列》一章的考试内容及考试要求为:(1)理解数列的概念,了解数列通项公式的意义了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项;
(2)理解等数列的概念,掌握等数列的通项公式与前n项和公式,并能解决简单的实际问题;
(3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题.”
二.05各地高考试卷数列小题考查情况
(一).
2005年全国各地高考数学卷有关数列选择题、填空题
(1)分值的全国卷二(文),两道题(一个选择题、一个填空题
)共9分:
(2)分值的上海卷一个填空题4分,广东卷一个选择题5分;
(3) 全国理卷二(理)一个选择题5分 ,天津卷(理)一个填空题 4分,福建卷(理)一个选择题 5分,湖南卷一个选择题
5分,湖北卷(理)一个填空题4分;江苏卷一个选择题5分.
高考中数列占有重要地位,并且以选择题、填空题的形式出现的机会比较多。重点考查通项公式、求和公式
三.高考命题的回顾与展望
高考对数列这一章的考查比较全面,等数列,等比数列的考查每年都不会遗漏。考查的重点是等、等比数列的定义、通项公式、前几项和公式、等(比)中项及等比等数列的性质的灵活运用,这一部分主要考查学生的运算能力,逻辑思维能力以及分析问题和解决问题的能力,其中考查思维能力是支柱,运算能力是主体,应用是归宿。在选择题、填空题中突出了“小、巧、活”的三大特点,在解答题中以中等难度以上的综合题为主,涉及函数、方程、不等式等重要内容,试题中往往体现了函数与方程,等价转化,分类讨论等重要的数学思想,以及待定系数法、配方法、换元法、消元法等基本数学方法。
我本是6楼的,楼上如泰山压顶,受不了了,(摘引也得挑个适当的呀)
1.3.1利用导数判断函数的单调性下来清静一下....
------------------------------------------
迭代就是逐级代入
多用于已知递推公式,求出通项公式
如已知an=f(an-1),()
则可将an-1=f(an-2)代入()式得到an=g(an-2),(')
再将an-2=f(an-3)代入(')式,得到an=u(an-3)
.......
在每步迭代中归纳总结规律,直接得到通项公式an=F(n)
注意,该法所得结论不需验证,与归纳推理不一样(但要用到归纳),它就是实实在在的证明.
------------------------
已知an=an-1+d
则an=an-1+d=(an-2+d)+d=an-2+2d+=an-3+3d=...=a1+(n-1)d
通过有限次代入,找到规律,完成证明
(不懂再问)
此外,还有迭代函数等用到迭代,这已上升到竞赛难度!!!
建议你买本<<之路--竞赛辅导>>--高中数学,里面有详细介绍与应用.高考迭代主要用于数列
人教A版
必修一
章
1.1与的表示方法
1.1.1的概念
1.1.2的表示方法
第二章
2.1函数
2.1.1函数
2.1.2函数的表示方法
2.1.3函数的单调性
2.1.4函数的奇偶性
2.1.5用计算机作函数图像(选学)
2.2一次函数和二次函数
2.2.1一次函数的性质与图像
2.2.2二次函数的性质与图像
2.3函数的应用(1)
2.4函数与方程
2.4.1函数的零点
2.4.2求函数零点近似解的一种计算方法----二分法
第三章基本初等函数(1)
3.1指数与指数函数
3.1.1实数指数幂及其运算
3.2对数与对数函数
3.2.1对数及其运算
3.2.2对数函数
3.2.3指数函数与对数函数的关系
3.3幂函数
3.4函数的应用(2)
必修二
章立体几何初步
1.1空间几何体
1.1.1构成空间几何体的基本元素
1.1.2棱柱 棱锥 棱台的结构特征
1.1.3圆柱 圆锥 圆台 和 球
1.1.4投影与直观图
1.1.5三视图
1.1.6棱柱 棱锥 棱台和球的表面积
1.1.7柱 锥 台和球的体积
1.2点 线 面之间的位置关系
1.2.1平面的基本性质与推论
1.2.2空间中的平行关系
1.2.3空间中的垂直关系
第二章 平面解析几何初步
2.1平面直角坐标系中的基本公式
2.1.1数轴上的基本公式
2.1.2平面直角坐标系中的基本公式
2.2直线的方程
2.2.1直线方程的概念与直线的斜率
2.2.2直线方程的集中形式
2.2.3两条直线的位置关系
2.2.4点到直线的距离
2.3圆的方程
2.3.1圆的标准方程
2.3.2圆的一般方程
2.3.3直线与圆的位置关系
2.3.4圆与圆的位置关系
2.4空间直角坐标系
2.4.1空间直角坐标系
2.4.2空间两点距离公式
必修三
章 算法初步
1.1算法与程序框图
1.1.1算法的概念
1.1.2程序框图
1.1.3算法的三种基本逻辑结构和框图表示
1.2基本算法语句
1.2.1赋值 输入 输出语句
1.2.2条件语句
1.2.3循环语句
1.3古代数学中的算法案例
第二章 统计
2.1随机抽样
2.1.1简单的随机抽样
2.1.3分层抽样
2.1.4数据的收集
2.2用样本估计总体
2.2.1用样本的频率分布估计总体的分布
2.2.2用样本的数字特征估计总体的数字特征
2.3变量的相关性
2.3.1变量间的相互关系
2.3.2两个变量的线性相关
3.1与概率
3.1.1随机现象
3.1.3频率与概率
3.1.4概率的加法公式
3.2古典概型
3.2.1古典概型
3.2.2概率的一般加法公式(选学)
3.3随机数的含义与应用
3.3.1几何概型
3.3.2随机数的含义与应用
3.4概率的应用
必修四
章 基本的初等函数(2)
1.1任意角的概念与弧度制
1.1.1角的概念的推广
1.1.2弧度制和弧度制与角度制的换算
1.2任意角的三角函数
1.2.1三角函数的定义
1.2.2单位圆与三角函数线
1.2.3同角三角函数的基本关系式
1.2.4诱导公式
1.3三角函数的图像与性质
1.3.1正弦函数的图像与性质
1.3.2余弦函数 正切函数的图像与性质
1.3.3已知三角函数值求角
第二章 平面向量
2.1向量的线性运算
2.1.1向量的概念
2.1.2向量的加法
2.1.3向量的减法
2.1.4数乘向量
2.1.5向量共线的条件和轴上向量坐标运算
2.2向量的分解和向量的坐标运算
2.2.1平面向量基本定理
2.2.2向量的正交分解与向量的直角坐标运算
2.2.3用平面向量坐标表示向量共线条件
2.3平面向量的数量积
2.3.1向量数量积的物理背景与定义
2.3.2向量数量积的运算律
2.3.3向量数量积的坐标运算与度量公式
2.4向量的应用
2.4.1向量在几何中的应用
2.4.2向量在物理中的应用
第三章 三角恒等变换
3.1和角公式
3.1.1两角和与的余弦
3.1.2两角和与的正弦
3.1.3两角和与的正切
3.2倍角公式和半角公式
3.2.1倍角公式
3.2.2半角的正弦 余弦和正切
3.3三角函数的积化和与和化积
必修五
章 解三角形
1.1正弦定理和余弦定理
1.1.1正弦定理
1.1.2余弦定理
1.2应用举例
第二章2.3.1椭圆的参数方程 数列
2.1数列
2.1.1数列
2.1.2数列的递推公式(选学)
2.2等数列
2.2.1等数列
2.2.2等数列的前n项和
2.3等比数列
2.3.1等比数列
2.3.2等比数列的前n项和
第三章 不等式
3.1不等关系与不等式
3.1.1不等关系与不等式
3.1.2不等式性质
3.2均值不等式
3.3一元二次不等式及其解法
3.4不等式的实际应用
3.5二元一次不等式(组)与简单的线性规划问题
3.5.1二元一次不等式(组)所表示的平面区域
3.5.2简单线性规划
选修2-1
章 常用逻辑用语
1.1命题与量词
1.1.1命题
1.1.2量词
1.2基本逻辑联结词
1.2.1且 与 或
1.3充分条件 必要条件与命题的四种形式
1.3.1推出与充分条件 必要条件
1.3.2命题的四种形式
第二章 圆锥曲线方程
2.1曲线方程
2.1.1曲线与方程的概念
2.1.2由曲线求它的方程 由方程研究曲线性质
2.2椭圆
2.2.1椭圆的标准方程
2.2.2椭圆的集几何性质
2.3双曲线
2.3.1双曲线的标准方程
2.3.2双曲线的几何性质
2.4抛物线
2.4.1抛物线的标准方程
2.4.2抛物线的几何性质
2.5直线与圆锥曲线
第三章 空间向量与几何体
3.1空间向量及其运算
3.1.1空间向量的线性运算
3.1.2空间向量的基本定理
3.1.3两个向量的数量积
3.1.4空间向量的直角坐标运算
3.2空间向量在立体几何中的应用
3.2.1直线的方向向量与直线的向量方程
3.2.2平面的法向量与平面的向量表示
3.2.3直线与平面的夹角
3.2.4二面角及其度量
3.2.5距离(选学)
选修2-2
章 导数及其应用
1.1导数
1.1.1函数的平均变化率
1.1.2瞬时速度与导数
1.1.3导数的几何
1.2导数的运算
1.2.1常数函数与幂函数的导数
1.2.2导数公式表及数学软件的应用
1.2.3导数的四则运算法则
1.3导数的应用
1.3.2利用导数研究函数的极值
1.3.3导数的实际应用
1.4定积分与微积分的基本定理
1.4.1曲边梯形面积与定积分
1.4.2微积分基本定理
第二章 推理与证明
2.1合情推理与演绎推理
2.1.1合情推理
2.1.2演绎推理
2.2直接证明与间接证明
2.2.1综合法与分析法
2.2.2反证法
2.3数学归纳法
2.3.1数学归纳法
第三章 数系的扩充与复数
3.1数系的扩充与复数的概念
3.1.1实数系
3.1.2复数的概念
3.1.3复数的几何意义
3.2复数的运算
3.2.1复数的加法与减法
3.2.2复数的乘法
3.2.3复数的除法
选修2-3
章 计数原理
1.1基本计数原理
1.2排列与组合
1.2.1排列
1.2.f(-3)=-f(3)2组合
1.3二项式定理
1.3.1二项式定理
1.3.2杨辉三角
第二章 概率
2.1离散型随机变量及其分布列
2.1.1离散型随机变量
2.1.2离散型随机变量的分布列
2.1.3超几何分布
2.2条件概率与实践的性
2.2.1条件概率
2.2.2的性
2.2.3重复试验与二项分布
2.3随机变量的数字特征
2.3.1离散型随机变量的数学期望
2.3.2离散型随机变量的方
2.4正态分布
第三章 统计案例
3.1性检验
3.2回归分析
选修4-4
章 坐标系
1.1直角坐标系 平面上的伸缩变换
1.1.1直角坐标系
1.1.2平面上的伸缩变换
1.2极坐标系
1.2.1平面上点的极坐标
1.2.2极坐标与直角坐标的关系
1.3曲线的极坐标方程
1.4圆的极坐标方程
1.4.1圆心在极轴上且过极点的圆
1.4.2圆心在点(a,∏/2)处且过极点的圆
1.5柱坐标系和球坐标系
1.5.1柱坐标系
1.5.2球坐标系
第二章 参数方程
2.1曲线的参数方程
2.1.1抛射体的运动
2.1.2曲线的参数方程
2.2直线与圆的参数方程
2.2.1直线的参数方程
2.2.2圆的参数方程
2.3圆锥曲线的参数方程
2.3.2双曲线的参数方程
2.3.3抛物线的参数方程
2.4一些常见曲线的参数方程
2.4.1摆线的参数方程
2.4.2圆的渐开线的参数方程
这个,这不一定啊,有的地方用A版有的地方用B版啊,我们就是用的B版,关键是看你在哪里上学了。这个你问一下你要读的高中里有没有认识的人,问他们学的什么版本。不过数学这种东西么,重要的是思想,课本神都大同小异。我在山东上高中,不同省份的教材还不一样呢。你要是想预习的话,其实无所谓啦。
希望我的回答对你有些帮助啊,亲~
A版,高考用A版
你的问题也很抽象。
这种函数主要利用各种函数函数的基本性质。和题目中给出的相关性质,特别是指数函数和对数函数。等等给你函数名称你要知道相关性质,给你一个性质,你要知道他是什么函数,并推出其他性质。对函数性质的熟练性,确定你的解题速度和准确性。
这类题的切入口往往与特殊值有关,然后再对所给的式子进行变形,一般都要进行换元。
买本《五年高考.三年模拟》自己从里面找题,多做几道就会了。
不要有心理障碍,1.2.2值f(-3)=-f(3)=-[f(1)+f(1)+f(1)]=-3f(1)=2非 (否定)抽象函数其实不难
你多做题目就会有思路了。
方法不多,我觉得可以在题干下面钩钩画画,抓住重点,比如解析式。然后试着画图看看。数形结合咯~
做过一道要总结一道。~
2023湖南高考物理试题总体来说难度适中。
2023年湖南高考物理试题考查考生对历史本质的理解,考察考生的逻辑推理能力和运算求解题能力,湖南物理试卷中实验题中的有效数字要求非常严格,答题时对于题中要求取几位有效数字要注意看清楚。
2023年湖南高考物理试题考查考生对历史本质的理解,考察考生的逻辑推理能力和五 法:换元法、配方法、待定系数法、分析法、归纳法.运算求解题能力,再体现开放性的同时,也考查了考生思维的准确性与有序性。
选择合适的方法是把物理问题转化为数学问题的关键之一。只有我们选择了合适解决问题的办法,我们才能顺利而简捷地解决问题。在这个环节,我们是用分析、综合还是反证、递推,是否要用隔离分析等方法。
2023年湖南高考本科分数线预测:
预计2023年湖南物理类本科分数线为415分、历史类本科分数线为455分。
每年的本科分数线的高低,都是受答题情况和试题难度影响的。所以,湖南2023年的本科录取分数线究竟会不会降低,还是要根据高考的具体情况来看。
虽然今年湖南高考的本科分数线,目前还没有明确的消息表明是上升还是下降,但是考生可以根据往年湖南的本科分数线和一些高校的招生及政策推测一下,往年的湖南本科分数线是选用近三年的分数线的平均值来判定,这样也是有一定的意义的。
恩,这种题叫做抽象函数,怎么说呢,通常解题的方法是特指代入法,但是这种题近年来在高考中消弱很多,不是特别重点
令x=y=0 f(0)=f(0)+f(0) 得f(0)=0
令y=-x f(0)=f(x)+f(-x) f(0)=0
得 f(x)=-f(-x)
定义域为R 函数是奇函数
令 x>x0>0 y=-x0
f(x-x0)=f(x(1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用)+f(-x0)
函数是奇函数 f(-x0) =-f(x0)
f(x-x0)=f(x)+f(-x0) =f(x-x0)=f(x)-f(x0)
x>0时,f(x )<0恒成立
而 x-x0>0 f(x-x0)=f(x)-f(x0) <0
函数在(0,正无穷)上是减函数
函数是奇函数 函数是R上的减函数
函数是R上的减函数 在-3处取得值 3处取得最小值
f(2)=f(1)+f(1)=-3 f(3)=f(1)+f(2)=-9/2
f(-3)=9/2
x=-3 值数列求和几多法?通项递推思路开;9/2
x=3 最小值-9/2
y=f(x)的定义域为R,且对任意X,y∈R,,都有f(x+y)=f(x)+f(y),
原型是 y==f(x)==Kx (K≠0)
当x>0时,f(x )<0恒成立 K<0
f(1)=-2/3。 K== --2/3
所以
1 奇函数
2 减函数
3 值 (--2/3 )(--3)==2
最小值 (--2/3 )(3)==--2
⑴∵f(0)=f(0+0)=f(0)+f(0)=2f(0) ∴f(0)=0
f(0)=f(x-x)=f(x)+f(-x)=0 f(x)=-f(-x)
函数是奇函数
⑵x1<x2
f(x2)-f(x1)=f(x2)+f(-x1)=f(x2-x1)<0
∴f(x2)<f(x1)
函数是减函数
⑶∵函数是减函数
∴函数在[-3,3]的闭区间上的值和最小值
最小值f(3)=3f(1)=-2
一、累法递推式为:an+1=an+f(n)(f(n)可求和)思路::令n=1,2,…,n-1可得a2-a1=f(1)a3-a2=f(2)a4-a3=f(3)……an-an-1=f(n-1)将这个式子累加起来可得an-a1=f(1)+f(2)+…+f(n-1)∵f(n)可求和∴an=a1+f(1)+f(2)+ …+f(n-1)当然我们还要验证当n=1时,a1是否满足上式例1、已知数列{a}中,a1=1,an+1=an+2,求an 令n=1,2,…,n-1可得a2-a1=2a3-a2=22a4-a3=23……an-an-1=2n-1将这个式子累加起来可得an-a1=f(1)+f(2)+…+f(n-1)∵f(n)可求和∴an=a1+f(1)+f(2)+…+f(n-1)当n=1时,a1适合上式故an=2n-1
二、累商法递推式为:an+1=f(n)an(f(n)要可求积)思路:令n=1,2, …,n-1可得a2/a1=f(1)a3/a2=f(2)a4/a3=f(3)……an/an-1=f(n-1)将这个式子相乘可得an/a1=f(1)f(2) …f(n-1)∵f(n)可求积∴an=a1f(1)f(2) …f(n-1)当然我们还要验证当n=1时,a1是否适合上式例2、在数列{an}中,a1=2,an+1=(n+1)an/n,求an 令n=1,2, …,n-1可得a2/a1=f(1)a3/a2=f(2)a4/a3=f(3)……an/an-1=f(n-1)将这个式子相乘后可得an/a1=2/1×3/24×/3×…×n/(n-1)即an=2n当n=1时,an也适合上式∴an=2n
三,构造法1、递推关系式为an+1=pan+q (p,q为常数)思路:设递推式可化为an+1+x=p(an+x),得an+1=pan+(p-1)x,解得x=q/(p-1)故可将递推式化为an+1+x=p(an+x)构造数列{bn},bn=an+q/(p-1)bn+1=pbn即bn+1/bn=p,{bn}为等比数列.故可求出bn=f(n)再将bn=an+q/(p-1)代入即可得an例3、(06重庆)数列{an}中,对于n>1(n?N)有an=2an-1+3,求an设递推式可化为an+x=2(an-1+x),得an=2an-1+x,解得x=3故可将递推式化为an+3=2(an-1+3)构造数列{bn},bn=an+3bn=2bn-1即bn/bn-1=2,{bn}为等比数列且公比为3bn=bn-1·3,bn=an+3bn=4×3n-1an+3=4×3n-1,an=4×3n-1-12、递推式为an+1=pan+qn(p,q为常数)思路:在an+1=pan+qn两边同时除以qn+1得an+1/qn+1=p/qan/qn+i/q构造数列{bn},bn=an/qn可得bn+1=p/qbn+1/q故可利用上类型的解法得到bn=f(n)再将代入上式即可得an例4、数列{an}中,a1+5/6,an+1=(1/3)an+(1/2)n,求an 在an+1=(1/3)an+(1/2)n两边同时除以(1/2)n+1得2n+1an+1=(2/3)×2nan+1构造数列{bn},bn=2nan可得bn+1=(2/3)bn+1故可利用上类型解法解得bn=3-2×(2/3)n2nan=3-2×(2/3)nan=3×(1/2)n-2×(1/3)n3、递推式为:an+2=pan+1+qan(p,q为常数)思路:设an+2=pan+1+qan变形为an+2-xan+1=y(an+1-xan)也就是an+2=(x+y)an+1-(xy)an,则可得到x+y=p,xy= -q解得x,y,于是{bn}就是公比为y的等比数列(其中bn=an+1-xan)这样就转化为前面讲过的类型了.例5、已知数列{an}中,a1=1,a2=2,an+2=(2/3)·an+1+(1/3)·an,求an设an+2=(2/3)an+1+(1/3)an可以变形为an+2-xan+1=y(an+1-xan)也就是an+2=(x+y)an+1-(xy)an,则可得到x+y=2/3,xy= -1/3可取x=1,y= -1/3构造数列{bn},bn=an+1-an故数列{bn}是公比为-1/3的等比数列即bn=b1(-1/3)n-1b1=a2-a1=2-1=1bn=(-1/3)n-1an+1-an=(-1/3)n-1故我们可以利用上一类型的解法求得an=1+3/4×[1-(-1/3)n-1](n?N)
四、利用sn和n、an的关系求an1、利用sn和n的关系求an思路:当n=1时,an=sn当n≥2 时, an=sn-sn-1例6、已知数列前项和s=n2+1,求{an}的通项公式.当n=1时,an=sn=2当n≥2 时, an=sn-sn-1=n+1-[(n-1)2+1]=2n-1而n=1时,a1=2不适合上式∴当n=1时,an=2当n≥2 时, an=2n-12、利用sn和an的关系求an思路:利用an=sn-sn-1可以得到递推关系式,这样我们就可以利用前面讲过的方法求解例7、在数列{an}中,已知sn=3+2an,求an即an=sn-sn-1=3+2an-(3+2an-1)an=2an-1∴{an}是以2为公比的等比数列∴an=a1·2n-1= -3×2n-1五、用不完全归纳法猜想,用数学归纳法证明.思2.1.2系统抽样路:由已知条件先求出数列前几项,由此归纳猜想出an,再用数学归纳法证明例8、(2002全国高考)已知数列{an}中,an+1=a2n-nan+1,a1=2,求an由已知可a1=2,a2=3,a3=4,a4=5,a5=6由此猜想an=n+1,下用数学归纳法证明:当n=1时,左边=2,右边=2,左边=右边即当n=1时命题成立设当n=k时,命题成立,即ak=k+1则 ak+1=a2k-kak+1=(k+1)2-k(k+1)+1=k2+2k+1-k2-2k+1=k+2=(k+1)+1∴当n=k+1时,命题也成立.综合(1),(2),对于任意正整数有an=n+1成立即an=n+1
2
:函数与方程思想
(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法(2)方程思想是解决各类计算问题的基本思想,是运算能力的基础
高考把函数与方程思想作为七种重要思想方法重点来考查
第二:数形结合思想:
(1)数学研究的对象是数量关系和空间形式,即数与形两个方面
(2)在一维空间,实数与数轴上的点建立一一对应关系
在二维空间,实数对与坐标平面上的点建立一一对应关系
数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化
第三:分类与整合思想
(1)分类是自然科学乃至科学研究中的基本逻辑方法
(2)从具体出发,选取适当的分类标准
(3)划分只是手段,分类研究才是目的
(4) 有分有合,先分后合,是分类整合思想的本质属性
(5) 含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性
第四:化归与转化思想
(3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化
第五: 特殊与一般思想
(1)通过对个例认识与研究,形成对事物的认识
(2)由浅入深,由现象到本质、由局部到整体、由实践到理论
(3)由特殊到一般,再由一般到特殊的反复认识过程
(4) 构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程
(5) 高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向
第六:有限与无限的思想:
(2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向
(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用
(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查
第七:或然与必然的思想:
(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性
(2)偶然中找必然,再用必然规律解决偶然
(3)等可能性的概率、互斥有一个发生的概率、相互同时发生的概率、重复试验、随机的分布列、数学期望是考查的重点
:函数与方程思想
(2)方程思想是解决各类计算问题的基本思想,是运算能力的基础
高考把函数与方程思想作为七种重要思想方法重点来考查
第二:数形结合思想:
(1)数学研究的对象是数量关系和空间形式,即数与形两个方面
(2)在一维空间,实数与数轴上的点建立一一对应关系
在二维空间,实数对与坐标平面上的点建立一一对应关系
数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化
第三:分类与整合思想
(1)分类是自然科学乃至科学研究中的基本逻辑方法
(2)从具体出发,选取适当的分类标准
(3)划分只是手段,分类研究才是目的
(4) 有分有合,先分后合,是分类整合思想的本质属性
(5) 含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性
第四:化归与转化思想
(3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化
第五: 特殊与一般思想
(1)通过对个例认识与研究,形成对事物的认识
(2)由浅入深,由现象到本质、由局部到整体、由实践到理论
(3)由特殊到一般,再由一般到特殊的反复认识过程
(4) 构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程
(5) 高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向
第六:有限与无限的思想:
(2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向
(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用
(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查
第七:或然与必然的思想:
(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性
(2)偶然中找必然,再用必然规律解决偶然
(3)等可能性的概率、互斥有一个发生的概率、相互同时发生的概率、重复试验、随机的分布列、数学期望是考查的重点
:函数与方程思想
(2)方程思想是解决各类计算问题的基本思想,是运算能力的基础
高考把函数与方程思想作为七种重要思想方法重点来考查
第二:数形结合思想:
(1)数学研究的对象是数量关系和空间形式,即数与形两个方面
(2)在一维空间,实数与数轴上的点建立一一对应关系
在二维空间,实数对与坐标平面上的点建立一一对应关系
数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化
第三:分类与整合思想
(1)分类是自然科学乃至科学研究中的基本逻辑方法
(2)从具体出发,选取适当的分类标准
(3)划分只是手段,分类研究才是目的
(4) 有分有合,先分后合,是分类整合思想的本质属性
(5) 含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性
第四:化归与转化思想
(3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化
第五: 特殊与一般思想
(1)通过对个例认识与研究,形成对事物的认识
(2)由浅入深,由现象到本质、由局部到整体、由实践到理论
(3)由特殊到一般,再由一般到特殊的反复认识过程
(4) 构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程
(5) 高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向
第六:有限与无限的思想:
(2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向
(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用
(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查
第七:或然与必然的思想:
(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性
(2)偶然中找必然,再用必然规律解决偶然
(3)等可能性的概率、互斥有一个发生的概率、相互同时发生的概率、重复试验、随机的分布列、数学期望是考查的重点
一.数学思想方法总论
高中数学一线牵,代数几何两珠连;
三个基本记心间,四种能力非等闲.
常规五法天天练,策略六项时时变,
精研数学七思想,诱思导学乐无边.
二 珠:代数、几何珠联璧合(注重知识交汇)
三 基:方法(熟) 知识(牢) 技能(巧)
四能力:概念运算(准确)、逻辑推理(严谨)、
空间想象(丰富)、分解问题(灵活)
六策略:以简驭繁,正难则反,以退为进,化异为同,移花接木,以静思动.
七思想:函数方程最重要,分类整合常用到,
数形结合千般好,化归转化离不了;
有限自将无限描,或然终被必然表,
特殊一般多辨证,知识交汇步步高.
二.数学知识方法分论:
与逻辑
逻辑互表里,子交并补归全集.
对错难知开语句,是非分明即命题;
纵横交错原否逆,充分必要四关系.
真非时非真,或真且运算奇.
函数与数列
数列函数子母胎,等等比自成排.
变量分离无好坏,函数复合有内外.
三角函数
三角定义比值生,弧度互化实数融;
同角三类善诱导,和倍半巧变通.
解前若能三平衡,解后便有一脉承;
角值计算大化小,弦切相逢异化同.
方程与不等式
函数方程不等根,常使参数范围生;
一正二定三相等,均值定理最值成.
参数不定比大小,两式不同三法证;
等与不等无,变量分离方有恒.
解析几何
联立方程解交点,设而不求巧判别;
韦达定理表弦长,斜率转化过中点.
选参建模求轨迹,曲线对称找距离;
动点相关归定义,动中求静助解析.
立体几何
多点共线两面交,多线共面一法巧;
空间三垂优弦大,球面两点劣弧小.
线线关系线面找,面面成角线线表;
等积转化连射影,能割善补架通桥.
排列与组合
分步则乘分类加,欲邻需捆欲隔插;
有序则排无序组,正难则反排除它.
元素重复连乘法,特元特位你先拿;
平均分组阶乘除,多元少位我当家.
二项式定理
二项乘方知多少,万里源头通项找;
展开三定项指系,组合系数杨辉角.
整除证明底变妙,二项求和特值巧;
两端对称谁?主峰一览众山小.
概率与统计
概率统计同根生,随机发生等可能;
互斥一枝秀,相互同时争.
样本总体抽样审,重复二项分;
随机变量分布列,期望方论伪真.
基本数学思想包括:符号与变元表示的思想,思想,对应思想,公理化与结构思想,数形结合思想,化归思想,函数与方程的思想,整体思想,极限思想,抽样统计思想等。
特值法 逆向思维法
在中学数学教材和高考园地里,使用的数学归纳法一般都是以下列形式出现的:
3.1.2与基本空间“1对”;设“n对”,那么“n+1也对”.
应该指出,上述形式是数学归纳法的基本形式,但不是的形式.
第二数学归纳法可以概括为
详细地说,它分为以下三步:
(1)奠基:证明n=1时命题成立;
(2)归纳设:设n≤k时命题成立;(区别在此步)
(3)归纳递推:由归纳设推出n=k+1时命题也成立.
显然,第二数学归纳法与数学归纳法基本形式的区别在于归纳设.
版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。