一、导数及其应用历年考点分析
2016高考导数题 2016年高考数学导数题
2016高考导数题 2016年高考数学导数题
2016高考导数题 2016年高考数学导数题
2012年下半年高中,在选择题的第1题h(1)=1+a-3/2>=0==>a>=1/2考查了导数与函数的单调性;
2013年上半年高中,在选择题的第5题考查了导数与函数的单调性;
2013年下半年高中,在选择题的第5题考查了导数与函数的单调性;
2014年上半年高中,在选择题的第1题考查了函数切线方程;
2014年下半年高中,在选择题的第1题考查了导数与函数的单调性;
2015年上半年高中,在选择题的第4题考查了导数与函数的单调性;
从这几套试题可以分析出,数学统考导数及其应用的考点主要是导数的定义、导数与函数单调性、最值和函数的切线方程这几大考点。
二、导数及其应用试题及详细解析
高考数学导数解题技巧
21函数与导数压轴题。1.通过选择题和填空题,全面考查函数的基本概念,性质和图象。
2.在解答题的考查中,与函数有关的试题常常是以综合题的形式出现。
3.从数学具有高度抽象性的特点出发,没有忽视对抽象函数的考查。
4.一些省市对先加分 然后告诉你函数应用题的考查是与导数的应用结合起来考查的。
5.涌现了一些函数新题型。
7.多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题。
高考数学导数中档题是拿分点
1.单调性问题
研究函数的单调性问题是导数的一个主要应用,解决单调性、参数的范围等问题,需要解导函数不等式,这类问题常常涉及解含参数的不等式或含参数的不等式的恒成立、能成立、恰成立的求解。由于函数的表达式常常含有参数,所以在研究函数的单调性时要注意对参数的分类讨论和函数的定义域。
2.极值问题
还要注意的是, 函数在x=x0有极值,必须是x=x0是方程f'(x)=0的根,但不是二重根(或2k重根),此外,在确定极值点时,要注意,由f'(x)=0所求的驻点是否在函数的定义域内。
3.切线问题
曲线y=f(x)在x=x0处的切线方程为y-f(x0)=f'(x0)(x-x0),切线与曲线的综合,可以出现多种变化,在解题时,要抓住切线方程的建立,切线与曲线的位置关系展开推理,发展 理性思维 。关于切线方程问题有下列几点要注意:
(2) 和曲线只有一个公共点的直线不一定是切线,反之,切线不一定和曲线只有一个公共点,因此,切线不一定在曲线的同侧,也可能有的切线穿过曲线;
高考数学压轴题综合性比较强,一道题就会涉及很多的知识点,基本都是为那些学霸们准备的。但是,有时间就去试一试,能拿一分就多拿一分。下面是我整理的高考压轴题型以及压轴题的解题技巧。
立体几何题,证明题注意各种证明类型的方法(判定定理、性质定理),注意引辅助线,一般都是对角线、中点、成比例的点、等腰等边三角形中点等等,理科其实证明不出来直接用向量法也是可以的。计算题主要是体积,注意将字母换位(等体积法);
1 高考数学最难的压轴题——圆锥曲线
圆锥曲线题,问求曲线方程,注意方法(定义法、待定系数法、直接求轨迹法、反求法、参数方程法等等)。一定检查下问算的数对不,要不如果算错了第二问做出来了也白算了。
第二步也是最关键的就是用联立,关键是怎么用联立,即如何将题里的条件转化成你刚才联立完的x1+x2和x1x2,然后将结果代入即可,通常涉及的题型有弦长问题(代入弦长公式)、定比分点问题(根据比例关系建立三点坐标之间的一个关系式(横坐标或纵坐标),再根据根与系数的关系建立圆锥曲线上的两点坐标的两个关系式,从这三个关系式入手解决)、点对称问题(利用两点关于直线对称的两个条件,即这两点的连线与对称轴垂直和这两点的中点在对称轴上)、定点问题(直线y=kx+b过定点即找出k与b的关系。
1 高考数学最难的压轴题——导数
高考导数压轴题考察的是一种综合能力,其考察内容方法远远高于课本,其涉及基本概念主要是:切线,单调性,非单调,极值,极值点,最值,恒成立,任意,存在等。
1.一般题目中会有少量文字描述,从我们的心理学角度来讲,一般拿到试卷以后,心情比较紧张,此时不要急于下手解题,可以先对试题多少、分布、难易程度从头到尾浏览一遍,做题要先易后难,做到心中有数,一般简单的题目占全卷60%,这是很重要的一部分分数,见到简单题要细心解题,尽量使用数学语言,而且要更加严谨以振奋精神,养成良好的审题习惯鼓舞信心。所以就会涉及文字的简单翻译。
2.题目中最核心的描述为各类式子:主要为普通类型:一般涉及三次函数,指对数,分式函数,函数,个别情况会涉及三角函数,特殊类型:主要含有x1,x2,f(x1),f(x2)类型。
解题思路:文字翻译处理一般较简单,核心为式子运2. 高中数学六种解题技巧与五种数学答题思路算变形处理,对于特定式子主要通过模板解决,重点是导数压轴题中一般式子运算变形处理策略,同时会涉及一些复杂拓展图形的认识和快速作图能力。
1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑3a^2>=3曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念.
难度是比平时的模考还要难,在很多的考生采访当中没有几个人说不难的,而且大多数的人都是没有算出,看来今年高考数学的难度是很大的。2.熟记基本导数公式;掌握两个函数和、、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数.
我认为高考导数比较难。高考数学导数是我们高考的必考内容,而且考点占比很多,想要都吃透并没有那么容易,但是题型无论怎么变,其实都万变不离其宗,都是有它固定的解题模板的。
(1)求切线方程时,要注意直线在某点相切还是切线过某点,因此在求切线方程时,除明确指出某点是切点之外,一定要设出切点,再求切线方程;掌握到一类题型的解题规律,其实很重要,为什么说导数比较难呢,因为它常常和函数的知识联系到一起,也总是一起去考,所以,导数题型的综合能力就比较强。
正常情况没有人会让你用求根公式。。考这个没意义。可以根据以下查看自己所不会的;
研究函数的单调性问题是导数的一个主要应用,解决单调性、参数的范围等问题,需要解导函数不等式,这类问题常常涉及解含参数的不等式或含参数的不等式的恒成立、能成立、恰成立的求解。由于函数的表达式常常含有参数,所以在研究函数的单调性时要注意对参数的分类讨论和函数的定义域。
2、分离参数构造法
分离参数是指对已知恒成立的不等式在能够判断出参数系数正负的情况下,根据不等式的性质将参数分离出来,得到一个一端是参数,另一端是变量的不等式,只要研究变量不等式的最值就可以解决问题。
3、利用导数研究切线问题
4、导数在函数极值中的应用
利用导数的知识来求函数极值是高中数学问题比较常见的类型。利用导数求函数极值的一般步骤是:(1)首先根据求导法则求出函数的导数;(2)令函数的导数等于0,从而解出导函数的零点;(3)从导函数的零点个数来分区间讨论,得到函数的单调区间;(4)根据极值点的定义来判断函数的极值点,再求出函数的极值。
我就把我以前回答别人的给粘过来了。。。
拿市为例,一半高考导数放在倒数第三题的位置,分值大约在13分左右
所以导数的题不会太难。
x这种7. 高二数学:学习方法 导数如何学求导会就可以了。
首先,考试时候的导数问题中,求导后多为分式形式,分母一般会恒>0,分子一般会是二次函数
正常的话,这个二次函数是个二次项系数含参的函数。
之后则可以开始分类讨论了。
分类讨论点1:讨论二次项系数是否等于0
当然如果出题人很善良也许正好就不存在了
这2013年上半年高中,在简答题的第9题考查了函数的切线方程;里也要适当参考问的,出题人会你的思维
分类讨论点3:如果△>0,那么可以考虑因式分解
导数的题要注意计算,例如根为1/(a+1)和1/(a-1)这种,讨论a在(0,1)上和a在(1,+无穷)上,两根大小问题,很多人都会错恩。
洛必达(2)分析条件与目标的联系。每个数学问题都是由若干条件与目标组成的。解题者在阅读题目的基础上,需要找一找从条件到目标缺少些什么?或从条件顺推,或从目标分析,或画出关联的草图并把条件与目标标在图上,找出它们的内在联系,以顺利实现解题的目标。(3)确定解题思路。一个题目的条件与目标之间存在着一系列必然的联系,这些联系是由条件通向目标的桥梁。用哪些联系解题,需要根据这些联系所遵循的数学原理确定。解题的实质就是分析这些联系与哪个数学原理相匹配。法则,这个属于高数范围了,在高三讲是为了拓展学生视野,能更好得理解导数,这个在我们高三的时候是不会考的,作为高三的学生了解就好了,钻研就不必,有些浪费时间了。
a^2>=3-2a^21高中数学导数难题解题技巧
例如开口向上,△<=0则在该区间上单调递增利用导数来求函数的最值的一般步骤是:(1)先根据求导公式对函数求出函数的导数;(2)解出令函数的导数等于0的自变量;(3)从导数性质得出函数的单调区间;(4)通过定义域从单调区间中求出函数最值。
a<=1-√32.导数在函数极值中的应用
利用导数的知识来求函数极值是高中数学问题比较常见的类型。利用导数求函数极值的一般步骤是:(1)首先根据求导法则求出函数的导数;(2)令函数的导数等于0,从而解出导函数的零点;(3)从导函数的零点个数来分区间讨论,得到函数的单调区间;(4)根据极值点的定义来判断函数的极值点,再求出函数的极值。
2高中数学解题中导数的妙用
导数知识在函数解题中的妙用
函数知识是高中数学的重点内容,其中包括极值、图像、奇偶性、单调性等方面的分析,具有代表性的题型就是极值的计算和单调性的分析,按照普通的解题过程是通过图像来分析,可是对于较难的函数来说,制作图像不仅浪费时间,而且极容易出错,而在函数解题中应用导数简直就是手到擒来。
例如:函数f(x)=x3+3x2+9x+a,分析f(x)的单调性。这是高中数学中常见的三次函数,在对这道题目进行单调性分析时,很多学生根据思维定式会采用常规的手法画图去分析单调区间,但由于未知数a的存在而遇到困难。如果考虑用导数的相关知识解决这一问题,解:f’(x)=-3x2+6x+9,令f’(x)>0,那么解得x<-1或者x>3,也就是说函数在(-∞,-1),(3,+∞)这个单调区间上单调递减,这样就能非常容易的判断函数的单调性。
导数知识在方程求根解题中的妙用
导数知识在方程求根中的应用属于一项重点内容,在平时的数学练习中以及高考的考察中均曾以不同的难度形式出现过。导数知识能针对方程求根,根据导函数的求解能判断原函数的根的个数。在解这一类问题的时候,教师要善于学生利用导函数与X轴的交点个数来判断方程根的个数。
例如,某一证明问题:方程x-sinx=0,只有一个根x=0。在分析这一问题时实际上就是利用函数的单调性质和特殊值来确定f(x)=0。其证明过程需首先利用到导数知识,令f(x)=x-sinx,定义域为R,求导f(x)=1-cosx>0,再利用函数单调性及数形结合思想,求得x=0是次方程的根。此内容的应用就是最为典型的导数知识在方程求根中的应用。
3高中数学的解题技巧
学会审题,才会解题
很多考生对审题重视不够,往往要做的题目都没有看清楚就急于下笔,审好题是做题的关键,审题一一定要逐字逐句的看清楚,通过审题发现题目有无易漏、易错点,只有仔细审题才能从题目中获取更多的信息,只有挖掘题目中的隐含条件、启发解题思路,提醒常见解题误区和自己易出现的错误,才能提高解题能力。只有认真的审题,谨慎的态度,才能准确地揣摩出题者的意图,发现更多的信息,从而快速找到解题方向。
考前保持头脑清醒,要摒弃杂念,不断进行积极的心理暗示,创设宽松的氛围,创设数学情境,进而酝酿数学思维,静能生慧,满怀信心的进行针对性的自我安慰,以平稳自信、积极主动的心态准备应考。这就要求我们要善于观察。
先做简单题,后做难题
如果顺序做题既耗费时间又拿不到分,会做的题又被耽误了。所以先做简单题,多年的 经验 告诉我们,当你解题不顺利时,更要冷静,静下心来,沉住气,根据自己的实际情况,果断跳过自己不会做的题目,把简单的都做完,如果我们能把这部分的分数拿到,就已经打了胜仗,再集中精力做比较难的题,有了胜利的信心,面对住偏难的题更要有耐心,不要着急,可以先放弃,但也要注意认真对待每一道题,不能走马观花,要相信自己。到应有的分数。还有善于把难题转换成简单的题目的能力。
4高中数学的解题技巧
审题是正确解题的关键,是对题目进行分析、综合、寻求解题思路和 方法 的过程,审题过程包括明确条件与目标、分析条件与目标的联系、确定解题思路与方法三部分。(1)条件的分析,一是找出题目中明确告诉的已知条件,二是发现题目的隐含条件并加以揭示。目标的分析,主要是明确要求什么或要证明什么;把复杂的目标转化为简单的目标;把抽象目标转化为具体的目标;把不易把握的目标转化为可把握的目标。
类型题掌握,提升发散性
学习的过程也是知识的积累过程,所以,不论是哪一学科,都不能期待能一朝实现学校目标,而数学亦是如此。所以,在日常解答某些类型数学题的时候,对其题型加以掌握,这是提高学生解题能力,培养学生解题技巧的重要途径之一,并且效果良好。
但是有一点我们必须铭记,类型习题的整理和记忆是指对其解题思路的记忆,并不是对其解答过程的记忆。如一位学生只是对这道题的解题过程加以记录,不去分析,不去思考其解答方式的亮点,那么即使他整理再多的习题,也无法取得应有的效果,只会将学习停留在表面。
高中数学导数难题解题技巧相关 文章 :
1. 高中数学解题技巧冲刺得分题
3. 高二数学不好怎么办?遇到困难怎么办
4. 高中数学导数练习题及
5. 高中数学导数测试题及
6. 高二数学学习方法指导与学习方法总结
8. 高中数学大题的解题技巧及解题思想
9. 高中数学解答题8个答题模板与做大题的方法
10. 高考数学答题技巧
1.求三角函数的值:这是最基本的三角函数问题,通常需要知道角度或者弧度才能求解。例如,给定一个角度,求其正弦、余弦或正切值。 2.解三角方程:这类题目通常涉及到两个或更多的三角函数,需要通过代数方法求解。例如,给定一个角度和它的正弦、余弦值,求解这个角度的正切值。
3.三角函数的性质:这类题目主要考察对三角函数基本性质的理解,例如周期性、奇偶性、单调性等。 4.三角函数的图像:这类题目需要根据给定的条件画出三角函数的图像,或者根据图像求解三角函数的值。
5.三角函数的应用:这类题目通常涉及到实际生活中的问题,例如物理、工程、建筑等领域。例如,求解一个物体在重力作用下的位移。 6求函数y=f(x)的极值时,要特别注意f'(x0)=0只是函数在x=x0有极值的必要条件,只有当f'(x0)=0且在 _ 0 时,f'(x0)异号,才是函数y=f(x)有极值的充要条件,此外,当函数在x=x0处没有导数时, 在 x=x0处也可能有极值,例如函数 f(x)=|x|在x=0时没有导数,但是,在x=0处,函数f(x)=|x|有极小值。.三角函数的复合:这类题目涉及到多个三角函数的复合,例如求sin(x+y)的值。
7.三角函数的反函数:这类题目要求求解反三角函数,例如求arcsin(x)的值。 8.三角函数的导数和积分:这类题目涉及到微积分的知识,例如求sin(x)的导数或积分。
9.三角函数的级数展开:这类题目要求将三角函数展开为泰勒级数或其他类型的级数。 10.三角函数的特殊值:这类题目要求求解三角函数在某些特定点的值,例如sin(π/2)、cos(0)等。
我就把我以前回答别人的给粘过来了。。。
拿市为例,一半高考导数放在倒数第三题的位置,分值大约在13分左右1 高考数学最难的压轴题——立体几何
所以导数的题不会太难。
x这种求导会就可以了。
首先,考试时候的导数问题中,求导后多为分式形式,分母一般会恒>0,分子一般会是二次函数
正常的话,这个二次函数是个二次项系数含参的函数。
(3) 两条曲线的公切线有两种可能,一种是有公共切点,这类公切线的特点是在切点的函数值相等,导数值相等;另一种是没有公共切点,这类公切线的特点是分别求出两条曲线的各自切线,这两条切线重合。之后则可以开始分类讨论了。
分类讨论点1:讨论二次项系数是否等于0
当然如果出题人很善良也许正好就不存在了
这里也要适当参考问的,出题人会你的思维
分类讨论点3:如果△>0,那么可以考虑因式分解
导数的题要注意计算,例如根为1/(a+1)和1/(a-1)这种,讨论a在(0,1)上和a在(1,+无穷)上,两根大小问题,很多人都会错恩。
版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。