青海高考数学基础题题型 青海高考数学卷

招生计划 2025-01-04 10:18:48

高考数学基础题占多少分 数学分值分布

(3)新课标《数理统计》、《数学统计》、《数学计算》、《数学分析技术基础》、《数学应用数学》、《数学计算软件基础》

有很多的同学是非常想知道,高考数学基础题占多少分,高考数学分值分布,我整理了相关信息,希望会对大家有所帮助!

青海高考数学基础题题型 青海高考数学卷青海高考数学基础题题型 青海高考数学卷


青海高考数学基础题题型 青海高考数学卷


青海高考数学基础题题型 青海高考数学卷


高考数学基础题占试卷的比例

基础题占的比例是70%,20%是中等的,10%是难的。

其实文科、理科是有一些异的。不过一般来说,都是7:2:1,基础题百分之七十,中档题百分之二十,难题百分之十,但是高考每年都是不一样的,比如说它会一年简单,一年难,所以最终会在百分之十左右。所以,尽量不要去管什么难题,将基础题和中档题复习好,一定会有个不错的成绩。

数学试卷分布情况

试卷内容及分配比例:(1)、简易逻辑10分、(2)数列19分、(3)三角函2.仔细审题数19分、(4)立体几何18分、(5)圆锥曲线18分、(6)概率与统计18分、(7)导数18分、(8)算法5分、(9)线性规划5分、(10)不等式5分、(11)向量5分、(12)复数5分、(13)三视图5分

试题难度及分配比例:(1)较易试题、(2)中等试题、(3)较难试题

试题题型及分配比例:(1)选择题40分、(2)填空题30分、(3)解答题80分

高考抓基础题的方法

做题训练

大家都知道利用做题来提高做题速度,但是却没有好好的规划。到了这个阶段,做难题意义已经不大。应该配合这阶段的冲刺,同时训练做题速度。

这里我建议同学们无论是出于冲刺角度还是做题速度训练角度,都用简单题和中等题来训练。并且顺序是从选择题开始,然后是简单、中等的解答题,而后是填空题,有时间了才去练习所谓的“一题”。

通过做题来养成正确的考试习惯

刚开始训练时,做题时要讲究 一 看二想三动四回顾。先看清题意,再思考题干和题肢之间的关联,然后才动手,总结。当你习惯了这些步骤后,就能快速答题了。切忌没有形成相对固定的解题思维之前,一拿到题就闷头做。当你掌握一定的思维和技巧,总结出相对固定的解题思维时,才能一拿到题,就开始动手。

青海高考考什么

青海高考考语文、数学、综合、外语;其中“文科综合”包括、历史、地理3门科目;“理科综合”内含物理、化学、生物3门科目。

2023年青海高考报名人数为5.11万(统考考生),2022年青海高考报名人数为6.06万,2021年青海高考报名人数为4.8万。全省共设34个考区,51个考点,1765个考场。招生和考点学校正在全力以赴开展试卷分发、考务培训、预案演练、设备检测等各项临考前准备工作。

普通高等学校招生全国统一考试。要求各省(区、市)考试科目名称与全国统考科目名称相同的必须与全国统考时间安排一致。参加考试的对象一般是全日制普通高中毕业生和具有同等学历的中华公民。

招生分理工农医(含体育)、文史(含外语和艺术)两大类。普通高等学校根据考生成绩,按照招生章程和扩招,德智体美劳全面衡量,择优录取。2015年,1、设计难度大。多选题涉及的知识点广泛、组合多样,需要命题人员在题目设计上投入更多的时间和精力。高考逐步取消体育特长生、奥林匹克竞赛等6项加分项目。

2016年,严禁宣传“高考状元”、“高考升学率”,加强对中学高考标语的管理,坚决杜绝任何关于高考的炒作。2017年4月7日、残联关于印发《残疾人参加普通高等学校招生全国统一考试管理规定》的通知。

考试注意事项:

1、开考信号发出后才能开始答题。

2、在考场内须保持安静,不得吸烟、不得以数学学科能力为基础。喧哗,自觉遵守考试纪律。

3、考试中,不准交头接耳、左顾右盼、打手势、做暗号,不准偷看、抄袭或有意让他人抄袭,不准传抄或交换试卷、草稿纸,不得自行传递文具、用品等。

4、考生提问须先举手,得到允许后,可提问有关试卷字迹不清、卷面缺损、污染等问题。

【高考数学对称问题知识总结】 高考数学知识点总结

★ 高三数学教师教学工作总结

对称问题是高中数学的重要内容之一,在高考数学试题中常出现一些构思新颖解法灵活的对称问题,为使对称问题的知识系统化。下面我给大家带来高考数学对称问题知识,希望对你有帮助。

6.题目来源和质量保证

一、点关于已知点或已知直线对称点问题

1、设点P(x,y)关于点(a,b)对称点为P′(x′,y′),

x′=2a-x

由中点坐标公式可得:y′=2b-y

2、点P(x,y)关于直线L:Ax+By+C=O的对称点为

x′=x-(Ax+By+C)

P′(x′,y′)则

y′=y-(AX+BY+C)

事实上:∵PP′⊥L及PP′的中点在直线L上,可得:Ax′+By′=-Ax-By-2C

解此方程组可得结论。

(-)=-1(B≠0)

特别地,点P(x,y)关于

1、x轴和y轴的对称点分别为(x,-y)和(-x,y)

2、直线x=a和y=a的对标点分别为(2a-x,y)和(x,2a-y)

3、直线y=x和y=-x的对称点分别为(y,x)和(-y,-x)

例1光线从A(3,4)发出后经过直线x-2y=0反射,再经过y轴反射,反射光线经过点B(1,5),求射入y轴后的反射线所在的直线方程。

解:如图,由公式可求得A关于直线x-2y=0的对称点

A′(5,0),B关于y轴对称点B′为(-1,5),直线A′B′的方程为5x+6y-25=0

`C(0,)

`直线BC的方程为:5x-6y+25=0

二、曲线关于已知点或已知直线的对称曲线问题

1、曲线F(x,y)=0关于点(a,b)的对称曲线的方程是F(2a-x,2b-y)=0

2、曲线F(x,y)=0关于直线Ax+By+C=0对称的曲线方程是F(x-(Ax+By+C),y-(Ax+By+C))=0

(1)x轴和y轴对称的曲线方程分别是F(x,-y)和F(-x,y)=0

(2)关于直线x=a和y=a对称的曲线方程分别是F(2a-x,y)=0和F(x,2a-y)=0

(3)关于直线y=x和y=-x对称的曲线方程分别是F(y,x)=0和F(-y,-x)=0

例2(全国高考试题)设曲线C的方程是y=x3-x。将C沿x轴y轴正向分别平行移动t,s单位长度后得曲线C1:

1)写出曲线C1的方程

2)证明曲线C与C1关于点A(,)对称。

(1)解知C1的方程为y=(x-t)3-(x-t)+s

(2)证明在曲线C上任取一点B(a,b),设B1(a1,b1)是B关于A的对称点,由a=t-a1,b=s-b1,代入C的方程得:

s-b1=(t-a1)3-(t-a1)

`b1=(a1-t)3-(a1-t)+s

`B1(a1,b1)满足C1的方程

`B1在曲线C1上,反之易证在曲线C1上的点关于点A的对称点在曲线C上

`曲线C和C1关于a对称

我们用前面的结论来证:点P(x,y)关于A的对称点为P1(t-x,s-y),为了求得C关于A的对称曲线我们将其坐标代入C的方程,得:s-y=(t-x)3-(t-x)

`y=(x-t)3-(x-t)+s

此即为C1的方程,`C关于A的对称曲线即为C1。

三、曲线本身的对称问题

曲线F(x,y)=0为(中心或轴)对称曲线的充要条件是曲线F(x,y)=0上任意一点P(x,y)(关于对称中心或对称轴)的对称点的坐标替换曲线方程中相应的坐标后方程不变。

例如抛物线y2=-8x上任一点p(x,y)与x轴即y=0的对称点p′(x,-y),其坐标也满足方程y2=-8x,`y2=-8x关于x轴对称。

例3方程xy2-x2y=2x所表示的曲线:

A、关于y轴对称B、关于直线x+y=0对称

C、关于原点对称D、关于直线x-y=0对称

解:在方程中以-x换x,同时以-y换y得

(-x)(-y)2-(-x)2(-y)=-2x,即xy2-x2y=2x方程不变

`曲线关于原点对称。

函数图象本身关于直线和点的对称问题我们有如下几个重要结论:

1、函数f(x)定义线为R,a为常数,若对任意x∈R,均有f(a+x)=f(a-x),则y=f(x)的图象关于x=a对称。

这是因为a+x和a-x这两点分别列于a的左右两边并关于a对称,且其函数值相等,说明这两点关于直线x=a对称,由x的任意性可得结论。

例如对于f(x)若t∈R均有f(2+t)=f(2-t)则f(x)图象关于x=2对称。若将条件改为f(1+t)=f(3-t)或f(t)=f(4-t)结论又如何呢?式中令t=1+m则得f(2+m)=f(2-m);第二式中令t=2+m,也得f(2+m)=f(2-m),所以仍有同样结论即关于x=2对称,由此我们得出以下的更一般的结论:

2、函数f(x)定义域为R,a、b为常数,若对任意x∈R均有f(a+x)=f(b-x),则其图象关于直线x=对称。

我们再来探讨以下问题:若将条件改为f(2+t)=-f(2-t)结论又如何呢?试想如果2改成0的话得f(t)=-f(t)这是奇函数,图象关于(0,0)成中心对称,现在是f(2+t)=-f(2-t)造成了平移,由此我们猜想,图象关于M(2,0)成中心对称。如图,取点A(2+t,f(2+t))其关于M(2,0)的对称点为A′(2-x,-f(2+x))

∵-f(2+X)=f(2-x)`A′的坐标为(2-x,f(2-x))显然在图象上

`图象关于M(2,0)成中心对称。

若将条件改为f(x)=-f(4-x)结论一样,推广至一般可得以下重要结论:

3、f(X)定义域为R,a、b为常数,若对任意x∈R均有f(a+x)=-f(b-x),则其图象关于点M(,0)成中心对称。

高考数学得分技巧

在三门主科中,只有数学最容易拉开距离,也最为同学、家长所关心。由于高考的特殊性,有些同学在考试开始的前5分钟就已乱了方寸,导致谁都不希望的结果。

1.做好前面5个小题。不要小看这几个小题,对稳定情绪,鼓舞士气有很大作用。有些同学就是由于前面个别小题做得不顺,影响整个考试情绪。而一旦前面发挥得好,会感到一路顺手,所向披靡。

2.认真审题。由于前面题目简单,想抓紧时间做完,以便腾出时间做后面的难题,结果把题目看错了,非常可惜。如2000年上海卷第1题就有不少同学犯这种低级错误。

3.确实遇到暂时不会做的题目,可以放一放,但很多同学做不到。担心前面就有不会做,后面肯定更难,从而心慌手抖,头脑一片空白。

要知道难易对大家都一样,你不会别人可能也不会。遇到暂时不会做的题目要敢于“合理放弃”,必要时你可以抬头看看,周围的人还在做这道难题,让他们浪费时间吧,我去做会做的题目。这种心理暗示会减少你的压力,等会做的做完了,状态很好,势如破竹,再回过来,有时一看就会了,这就能使你出色发挥。

4.对多数同学而言,两题的一问是“用不着”做的,如果前面不细心失误而把时间放攻难题上是得不偿失,犯了策略性错误。

5.心理素质不太好的同学,不一定要先看整个试卷,因为遇到难题会紧张。

高考数学复习方法

1.强化“三基”,夯实基础

所谓“三基”就是指基础知识、基本技能和基本的数学思想方法,从近几年的高考数学试题可见“出活题、考基础、考能力”仍是命题的主导思想。因而在复习时应注意加强“三基”题型的训练,不要急于求成,好高骛远,抓了高深的,丢了基本的。

考生要深化对“三基”的理解、掌握和运用,高考试题改革的重点是:从“知识立意”向“能力立意”转变,考试大纲提出的数学学科能力要求是:能力是指思维能力、运算能力、空间想象能力以及实践能力和创新意识。

新课标提出的数学学科的能力为:数学地提出问题、分析问题和解决问题的能力,数学探究能力,数学建模能力,数学交流能力,数学实践能力,数学思维能力。

考生复习基础知识要抓住本学科内各部分内容之间的联系与综合进行重新组合,对所学知识的认识形成一个较为完整的结构,达到“牵一发而动全身”的境界。

要注重基本数学思想方法在日常训练中的渗透,逐步提高学生的思维能力。

夯实解题基本功。高考复习的一个基本点是夯实解题基本功,而对这个问题的一个片面做法是,只抓解题的知识因素,其实,解题的效益取决于多种因素,其中最基本的有:解题的知识因素、能力因素、经验因素、非智力因素。学生在答卷中除了知识性错误之外,还有逻辑性错误和策略性错误和心理性错误。

数学高考历来重视运算能力,运算要熟练、准确,运算要简捷、迅速,运算要与推理相结合,要合理,并且在复习中要有意识地养成书写规范,表达准确的良好习惯。

2. 全面复习,系统整理知识,查漏补缺,优化知识结构

这是阶段复习中应该重点解决的问题。考生在这一过程应牢牢抓住以下几点:①概念的准确理解和实质性理解;②基本技能、基本方法的熟练和初步应用;③公式、定理的正逆推导运用,抓好相互的联系、变形和巧用。

经过全面复习这一阶段的努力,应使达到以下要求:①按大纲要求理解或掌握概念;②能理解或完成课本中的定理证明;③能熟练解答课本上的例题、习题;④能简要说出各单元题目类型及主要解法;⑤形成系统知识的合理结构和解题步骤的规范化。

这一阶段的直接效益是会考得优,其根本目的是为数学素质的提高准备物质基础。认真做好全面复习,才谈得上灵活性和综合性,才能适应高考踩分点多、覆盖面广的特点。

这一阶段复习的基本方法是从大到小、先粗后细,把教学中分割讲授的知识单点、知识片断组织合成知识链、知识体系、知识结构,使之各科内容综合化;基础知识体系化;基本方法类型化;解题步骤规范化。这当中,辅以图线、表格、口诀等已被证明是有益的,“习题化”的复习技术亦被证明是成功的,如,基本内容填空,基本概念判断,基本公式串联,基本运算选择。

课本上每章的习题往往是为巩固本章内容而设置的,所用知识相对比较单一。复习中考生对知识交汇点的问题应适当加强训练,实际上就是训练学生的分析问题解决问题的能力。

要形成有效的知识网络。知识网络就是知识之间的基本联系,它反映知识发生的过程,知识所要回答的基本问题。构建知识网络的过程是一个把厚书(课本)读薄的过程;同时通过综合复习,还应该把薄书读厚,这个厚,应该比课本更充实,在课本的基础上加入一些更宏观的认识,更个性化的理解,更具作性的解题经验。

综合性的问题往往是可以分解为几个简单的问题来解决的,这几个简单问题有机的结合在一起。要解决这类考题,关键在于弄清题意,将之分解,找到突破口。由于课程内容的变化,使知识的交汇点出现了新动向,如从概率统计中产生应用型试题,从导数应用中与函数性质的联袂,从解析几何中产生与平面向量的联系、立体几何、三角函数、数列内容中渗透相关知识的综合考查(如三角与向量的结合、数列与不等式结合、概率与数列内容的结合)等。

猜你感兴趣:

1.高考数学知识点有多少

2.高考数学不等式知识点总结

3.高考数学答题规律和思路汇总

4.高考数学重点知识点汇总

5.高考数学不等式知识点归纳

6.高考数学答题模板总结

青海高考卷子是什么卷

第六,空间向量与立体几何

青海高考卷子是全国乙卷,相关内容如下:

运用满足题设条件的某些特殊数值、特殊位置、特殊关系、特殊图形、特殊数列、特殊函数等对各选择进行检验或推理,利用问题在某一特殊情况下不真,则它在一般情况下也不真的原理,由此判明选项真伪的方法。用特例法解选择题时,特例取得愈简单、愈特殊愈好。

青海高考卷子是指在青海省进行的高中学业水平考试所使用的考卷。以下是对青海高考卷子的详细描述:

青海省按照高考制度进行高中学业水平考试,而高考卷子则根据不同科目的考查要求和内容设计。主要包括语文、数学、外语、物理、化学、生物、地理、历史和等科目。

2.考试内容和难度

青海高考卷子的内容根据的课程标准和考试大纲确定,涵盖了相关学科的知识点和能力要求。卷子的难度会根据年度情况进行调整,以确保公平性和科学性。

3.试题形式和命题方式

青海高考卷子的试题形式多样,包括选择题、填空题、计算题、解答题等。命题方式也有选择题的单选和多选题,以及主观题的开放性和创造性命题。

4.省级特色和考查重点

青海高考卷子可能会突出省级特色和考查重点,例如注重生态环保、地方历史文化、少数民族文化等方面的考查。这些特点和重点旨在与地方实际情况相结合,体现多样化的评价和发展理念。

5.题量和答题时间

青海高考卷子的题量和答题时间是根据各科目考查内容和难度来确定的。一般来说,每个科目都有一定数量的试题,以全面考察学生的知识掌握程度和解题能力。答题时间则根据试卷难度和题量适当安排,旨在充分考察学生的应试能力和时间管理能力。

青海高考卷子的题目来源多样,从教材内容、经典案例、实际问题等方面选取。命题过程中,会经过严格的审核和评审,确保题目的准确性、合理性和科学性。同时,还会进行试题质量评估和试卷复核,以确保试卷的质量和公平性。

7.评卷和成绩公布

青海高考卷子的评卷工作经过严格的程序和专业的评委组织进行。评卷过程采用主观题的人工评阅和客观题的计算机扫描评分相结合的方式。评卷结束后,会对成绩进行统计和分析,并按照一定的成绩比例进行排名和公布。

8.高考成绩的影响

青海高考卷子的分数将影响学生的高考成绩和录取结果。高考成绩是学生进入高等教育阶段的重要依据,也是选拔人才的重要指标之一。因此,学生需要认真备考,合理安排时间,提高答题技巧和应试能力,以取得的成绩。

总结:青海高考卷子的题量和答题时间根据各科目的考查内容和难度而定,题目的来源多样且质量有保证。

评卷工作经过严格程序和专业评委组织进行,并按照一定比例进行排名和公布。高考成绩将对学生的录取结果和高等教育进程产生重要影响,因此学生需充分准备,提高答题技巧和应试能力,争取获得优异成绩。

2021新高考数学大题必考题型有哪些

数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识在各自发展过程中的纵向联系和各部分知识之间的横向联系,要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的框架结构.对数学基础知识的考查,要求既全面又要突出重点,对于支撑学科知识体系的重点内容,要占有较大的 比例,构成数学试卷的主体,注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面.要从学科的整体高度和思维价值的高度考虑问题,在知识网络交汇点设计试题,使对数学基础知识的考查达到必要的深度。数学思想和方法是数学知识在更高层次上的抽象和概括,蕴涵在数学知识发生、发展和应用的过程中,能够迁移并广泛用于相关学科和生活.因此,对数学思想和方法的考查必然要与数学知识的考查结合进行,通过对数学知识的考查,反映考生对数学思想和方法理解和掌握的程度.考查时要从学科整体意义和思想价值立意,要有明确的目的,加强针对性,注重通性通法,淡化特殊技巧,有效地检测考生对中学数学知识中所蕴涵的数学思想和方法的掌握程度。

从主干知识所占比重来看,新高考数学试卷与原来保持一致,主干知识的考察在60分,占整个填选题的75%,这也启示我们高中数学主干知识的稳定性与重要性,在以后的备考中要引起高度的重视。

2021年高考数学选考题是第22题坐标系与参数方程10分(选修4-4),第23题不等式选讲10分(选修4-5),二选一,。“新高考”数学试卷结构

大题,单项选择题,共8小题,每小题5分,共40分;

第二大题,多项选择题,共4小题,每小题5分,部分选对得3分,有选错得0分,共20分;

第三大题,填空题,共4小题,每小题5分,共20分;

第四大题,解答题,共6小题,均为必考题,涉及的内容是高中数学的六大主干知识:三角函数,数列,统计与概率,立体几何,函数与导数,解析几何。每小题12分,共60分。

怎么学好数学

对于那些压轴题12、16、20、21来讲,首先不能怂,就全国卷目前 命题趋势来看,16题偏于简单,12题难度在增大,所以在有时间的情况下,可以先适度钻研16题,12题没时间没思路可以懵,毕竟是选择题,还是有概率蒙对的。

全国卷高考文科数学必考哪些题型

求已知曲线F(x,y)=0关于已知点或已知直线的对称曲线方程时,只须将曲线F(x,y)=O上任意一点(x,y)关于已知点或已知直线的对称点的坐标替换方程F(x,y)=0中相应的作称即得,由此我们得出以下结论。

全国卷高考文科数学考试试卷结构

一、试卷结构

全卷分为第Ⅰ卷和第Ⅱ卷两部分。

第Ⅰ卷为12个选择题,全部为必考内容.第Ⅱ卷为非选择题,分为必考和选考两部分.必考部分题由4个填空题和5个解答题组成;选考部分由选修系列4的“几何证明选讲”、“坐标系与参数方程”、“不等式选讲”各命制1个解答题,考生从3题中任选1题作答,若多做,则按所做的1.知道(了解、模仿):要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它,这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等.题给分。

1.试题类型

试题分为选择题、填空题和解答题三种题型.选择题是四选一型的单项选择题;填空题只要求直接填写结果,不必写出计算或推证过程;解答题包括计算题、证明题,解答题要写出文字说明、演算步骤或推证过程.三种题型分数的百分比约为:选择题40%左右,填空题10%左右,解答题50%左右。

2.难度控制

试题按其难度分为容易题、中等难度题和难题.难度在0.7以上的试题为容易题,难度为0.4—0.7的试题是中等难度题,难度在0.4以下的试题界定为难题.三种难度的试题应控制合适的分值比例,试卷总体难度适中.

二.全国卷高考文科数学考核目标与要求

(一)知识要求

知识是指《普通高中数学课程标准(实验)》所规定的必修课程、选修课程系列1和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算,处理数据、绘制图表等基本技能.

对知识的要求由低到高分为三个层次,依次是知道(了解、模仿)、理解(作)、掌握(运用、迁移),且高一级的层次要求包括低一级的层次要求.

3.掌握(运用、迁移):要求能够对所列的知识内容能够推导证明,利用所学知识对问题能够进行分析、研究、讨论,并且加以解决,这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等。

1.空间想像能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质。

2.抽象概括能力:对具体的、生动的实例,在抽象概括的过程中,发现研究对象的本质;从给定的大量信息材料中,概括出一些结论,并能应用于解决问题或作出新的判断。

3.推理论证能力:根据已知的事实和已获得的正确数学命题,论证某一数学命题真实性的初步的推理能力.推理包括合情推理和演绎推理,论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法.一般运用合情推理进行猜想,再运用演绎推理进行证明。

4.运算求解能力:会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算。

5.数据处理能力:会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息,并作出判断.数据处理要依据统计或统计案例中的方法对数据进行整理、分析,并解决给定的实际问题。

6.应用意识:能综合应用所学数学知识、 思想和方法解决问题,包括解决在相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题,建立数学模型;应用相关的数学方法解决问题并加以验证,并能用数学语言正确地表达和说明.应用的主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决。、

7.创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行的思考、探索和研究,提出解决问题的思路,创造性地解决问题.创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强。

(三)个性品质要求

个性品质是指考生个体的情感、态度和价值观.要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义,要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神。

(四)考查要求

数学是一门思维的科学,是培养理性思维的重要载体,通过空间想象、直觉猜想、归纳抽象、符号表达、运算推理、演绎证明和模式构建等诸方面,对客观事物中的数量关系和数学模式作出思考和判断,形成和发展理性思维,构成数学能力的主题.对能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料.对知识的考查侧重于理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度以及进一步学习的潜能。

创新意识和创造能力是理想思维的高层次表现.在数学的学习和研究过程中,知识的迁移、组合、融会的程度越高,展示能力的区域就越宽泛,显现出的创造意识也就越强.命题时要注意试题的多样性,涉及考查数学主体内容,体现数学素质的题目,反映数、形运动变化的题目,研究型、探索型或开放型的题目,让考生思考,自主探索,发挥主观能动性,探究问题的本质,寻求合适的解题工具,梳理解题程序,为考生展现创新意识、发挥创造能力创设广阔的空间。

,函数与导数

主要考点:利用函数单调性比较大小、分段函数、函数周期性、函数奇偶性、函数单调性、函数零点和利用导数求值。

第二,平面向量与三角函数、三角变换及其应用

这一部分是高考的重点但不是难点,主要出一些基础题或中档题。主要考向量的运算、应用等题型。

第三,数列及其应用

这部分是高考的重点而且是难点,主要出一些综合题。主要考求数列通项、数列求或一些相关应用题型。

第四,不等式

主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。主要考不等式的解法、不等式的证明、不等式的应用等题型。

第五,概率和统计

这部分和我们的生活联系比较大,属应用题,主要出一些基础题或中档题,难度不是很大。主要考线性回归、抽样方法、二项分布等题型。

空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。主要考察对定理的熟悉程度、运用程度。主要考空间向量及其运算和空间向量的应用等题型。

第七,解析几何

几何是高考的难点,运算量大,一般含参数。高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。主要考直线方程、圆的方程、圆锥曲线和对称性问题等题型。

针对数学一定要全面、系统的复习基础知识,正确理解概念、定理和公式。尤其是公式一定要准确记忆,以不变应万变。

必考题有:选择题,填空题,解答题 。学校发的总复习的书上会有的。

一、选择题

二、填空题

三、解答题

选择题

填空题

解答题

学校发的总复习的书上会有的

选择题

填空题

解答题

去看你们省份往年的高考题目

高考数学选做题是什么题型

2.理解(作):要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识作正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题作比较、判别、讨论,具备利用所学知识解决简单问题的能力,这一层次所涉及的主要行为动词有:描述,说明,表达、表示,推测、想象,比较、判别、判断,初步应用等。

高考数学选做题是最容易出错的题型。

20题圆锥曲线类型考的不是难度,而是你是否认真。其实圆锥曲线并不难,该理解的关键点和题型搞清楚了它其实并没有太大的变化,所以这个地方题目去刷真题即可。(所有的好题都值得做三遍,什么是好题,你既然110以上了,应该有这个基本判断。)遍做正常做,做完对;第二遍隔天或者隔两天做效果,重新快速把昨天的好的题目过一遍,要针对关键步骤进行梳理,第二遍的想法和遍的想法有什么区别,距在哪里,可以丰富思路,改变思考习惯,对于压力很大的考场有很大帮助。第三遍是7天以后,时隔7天,豁然开朗,不信你试试。好的学生在这一点上做的很好,拿到题目的时候他们并不是短时间内想出来这个题目怎么解,而是想起来类似很明朗的思路,按照这个思路去做题,然后一步步套进去,演算,就得出结果了。

高考数学的选做题呢,它就是数学卷子的面的一道题目,数学有两本选修的教材,面的一道题就会从这两本教材里面选知识点各出一道题出来,不需要两道题目都写,你只需要挑一个你擅长的或者说有把握拿更多分的题目去做。

选修教材两本都学,这样考试还可以有选择一道相对简单的。

选做题和其他题一样,给分都有给分标准。既然是选做题,肯定要选做,不要浪费了高考时间,后面的题做不完就不好了。高考试卷也会在题目中讲,选做题全做的话只按前几题得分。每个学校对选做题侧重不同,老师一般会挑能容易得分的选修课讲,如果都选做题都会做,只能说明考生很,不会增加考分。

不等式选讲主要考点有解含有不等式,柯西不等式,不等式证明,恒成立(能成交)问题等。

高考数学内容

一、可将高考数学的内容划分为6部分:

1.函敌:概念、图像性质、具体的初等函数、导数及其应用。

2代数:数列、不等式、三角基本变换。

3.立体几何:线与线、线与面、面与面的平行和垂直关系二三视图。

4.解析几何:在高考数学试卷中,每一道题目都有分值,考生需要针对每一道题目认真作答,确保自己的是正确的。同时,在作答过程中需要注意计算的准确性和简便性,对于需要解答的题目要使用正确的公式和方法。直线方程、圆锥曲线的性质、轨迹方程、坐标法等。

5.概率统计:古典概型、离故型随机变量分布等。

6.工具类:、逻辑知识推理证明方法、向量,算法等(蕴含在问题中)。

二、高考特点坐标系与参数方程主要考点有参数方程、极坐标方程与普通方程的互相转化,直线参数方程及其应用,圆、椭圆参数方程、极坐标方程及其应用。:

1、重视基础(从命题角度):

考查内容是基础的,相当部分试囤考查要求是基本的,考查基本概念、性质、法则,定理、公式。

解决问题的所用方法是常规的(通性、通法),无须技巧。

设计综合性的较难试题作适当铺垫,使大多数考生能上手。

高考数学试卷设计了部分与课本例题、习题相近的基础题,从题型、形式(呈现的),考生不陌生。

2、重视能力:

高考命题确立以能力立意命题为指导思想。

以思维能力为枝心。

全面考查学生的应具备的各种能力。

2023高考数学有多选吗

高考数学对称问题知识

2023年高考数学没有多选题。

一、历史回顾

1、多选题是高考数学中的一个比较新的类型,最早在2014年试点,随后逐步扩大应用范围。在实际应用过程中,多选题由于其设计难度较大、涉及知识点较多等因素,考生普遍反映难度较大。

2、因此,在2018年之后,多数省份均取消了多选题,使高考数学题型更趋向于传统的选择题和填空题。

二、命题趋势

1、从高考数学的历史发展来看,命题趋势与考试形态的变化有着密切的关系。可以预见的是,随着教学改革的不断深化和信息技术的迅速发展,未来高考数学可能会有更多的新题型出现。

2、但是从目前的趋势来看,传统的选择题和填空题仍然是未来相当长时间内的主要题型。

三、考生备考

尽管多选题在高考中的应用受到了限制,但是考生在日常备考中仍然需要充分掌握数学的各种知识点。此外,考生还需要注重解题技巧和实践能力的培养,熟练掌握各种考试技巧和方法,从而在高考中取得更好的成绩。

四、高考数学题型发展趋势

1、趋向于应用题。近年来,高考数学试题中出现了越来越多的应用题,这也是提出的“强化考查能力和素质”目标的体现。

2、应用题除了考查数学知识点外,还需要考生具备一定的实际问题解决能力,这也是高考数能力是指空间想像能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识。学题型发展的一个重要趋势。

3、趋向于综合性考查。高考数学试卷中,题型不再像以前那样单一,而是越来越注重综合性考查,既考察数学知识点,又考察数学能力和思维方式。从这个趋势看,考生应注重提高自己的数学素养,全面提升自己的综合能力。

五、多选题的特点和难点

2、考查能力全面。多选题不仅考察学生对所学知识点的掌握程度,还测试学生的逻辑思维和分析问题的能力。

3、解题技巧需要掌握。由于多选题项数较多,选项之间的异较小,考生容易挑选错误的。因此,解决多选题必须要注意分析各个选项的不同之处,运用异法进行判断。

4、总之,高考数学虽然取消了多选题,但是对于考生来说,仍然需要掌握各种数学知识点和解题技巧。只有全面提升自己的数学素养,才能够在高考中取得更好的成绩。

版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。