数与代数知识点归纳如下:
数与代数知识点整理小学 数与代数知识梳理
数与代数知识点整理小学 数与代数知识梳理
数与代数知识点整理小学 数与代数知识梳理
数与代数知识点整理小学 数与代数知识梳理
1、找一个数的因数,一对一对有序地找,就不会重复和遗漏。一个数小的因数是1,的因数是它本身。一个数因数的个数是有限的。1的因数只有1个,就是1。
2、一个数(0除外)乘大于1的数,积比原来的数大。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、一元一次方程式:含有一个未知数,并且未知数的次数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
数与代数知识点
与数有关的公式:1、被除数÷除数=商 2、乘数×乘数=积 3、被减数-减数= 4、加数+加数=和
知识点一:整数
1、整数的范围
整数包括自然数和负整数,或者说整数由正整数、零、负整数组成。
(1)自然数
自然数的意义:我们在数物体的时候,用来表示物体的个数0,1,2,3,4,5,…..叫做自然数。自然数的个数是无限的,没有的自然数。
“0”的含义:“0”表示一个物体也没有,在计数中起占位作用,表示该数位上没有计数单位。“0”还可以表示起点、分界点等。“0”是小的自然数。
(2)正数
正数的定义 以前学过的8、16、200……..这样的数叫做正数。
正数的写法和读法 正数前面也可以加“+”号,例如:+8读作:正八。“+”号一般可以省略不写。
(3)负数
负数的定义 像-1、-5、-132……这样的数叫做负数。“一”叫负号。
负数的写法和读法 负数前面加“一”号,例如:-15读作:负十五。数字越大的负数反而越小。
“0”既不是正数,也不是负数。
(4)整数与自然数的联系及区别
自然数全是整数,整数不全是自然数,还包括负整数。
知识点二:百分数
1、百分数的意义
(1)分母是100的分数叫做百分数。
(2)表示一个数是另一个数的百分之几的数叫做百分数。百分数又叫百分比或百分率。
百分数应用题知识点归纳:
1、 求常见的百分率 如:达标率、及格率、成活率、发芽率、出勤率等 。
求百分率就是求一个数是另一个数的百分之几
2、 求一个数比另一个数多(或少)百分之几 实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。
求甲比乙多百分之几 (甲-乙)÷乙
求乙比甲少百分之几 (甲-乙)÷甲
3、 求一个数的百分之几是多少 一个数(单位“1”) ×百分率
4、 已知一个数的百分之几是多少,求这个数 部分量÷百分率=一个数(单位“1”)
5、 折扣 几折就是十分之几也就是百分之几十。
6、 利率 存入银行的钱叫做本金。
取款时银行多支付的钱叫做利息。
利息与本金的比值叫做利率。
利息=本金×利率×时间
百分数通常不写成分数形式,而采用符号“%”来表示,叫做百分号。
知识点二 :小数
1、小数的意义
把整数“1”平均分成10份,100份,1000份……这样的1份或几份是十分之几,百分之几,千分之几…….可以用小数来表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几…….
2、小数大小的比较
比较两个小数的大小,先看它们的整数部分,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就在;十分位上的数也相同的,百分位上的数大的那个数就大……
3、数的改写与求近似数
数的改写与省略这个数某一位后面的尾数写成近似数的方法
为了读写方便,常把较大的数简写成用“万”或“亿”作单位的数。如:2365500=236.55万(改写用“万”作单位的数)。有时还可以根据需要,省略这个数某一的尾数,写成近似数。如:2365500≈237万(省略万位后面的尾数),有时还要求保留一位小数的近似数。如:7.62983≈7.6(保留一位小数)。
取近似数时,常用“四舍五入法”或“进一法”、“去尾法”把一个数某一位后面的尾数省略。
知识点三 :分数
1、分数的意义 把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
2、分数单位 把单位“1”平均分成若干份,表示其中一份的分数,叫做分数单位。
3、分数的分类
(1)真分数 分子比分母小的分数叫做真分数。
(2)分数 分子比分母大或者与分母相等的分数叫做分数。
4、分数的基本性质 分数的分子一分母同时乘或除以一个相同的数(0除外),分数的大小不变,这叫做分数的基本性质。
5、分数与除法的关系 (1)分数的分子相当于除法的被除数,分数的分母相当于除法的除数,分数线相当于除法的除号。(2)在除法中,除数不能为0,在分数中分母也不能为0,除数、分母为0没有意义。
6、约分 把一个分数化成同它相等,且分子、分母都比较小的分数的过程,叫做约分。
7、简分数 分子、分母是互质数的分数叫做简分数。
8、通分 把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
9、分数大小的比较 分母相同的两个分数,分子大的分数比较大;分子相同的两个分数,分母小的分数比较大。
10、分数化小数 根据分数与除法的关系,把分数转化为除法算式,然后计算,就可以得到小数。
11、小数化为分数 原来有几位小数,就在1的的后面写上几个0。
12、分数的基本性质与小数基本性质的关系
分数的基本性质与小数的基本性质是一致的。小数的末尾添上“0”
或者去掉“0”,就相当于把相应的分数的分子、分母同时扩大(或缩小)到原来的10倍(或 )、100倍(或 )、1000倍(或 )……
小学数学数与代数包括四个方面:整数、小数、分数、百分数
一:整数
1、自然数
2、正数
3、负数
知识点二:小数
1、小数的意义
2、小数大小的比较
3、数的改写与求近似数
知识点三:分数
1、分数的意义
2、分数单位
3、分数的分类
4、分数的基本性质
5、分数与除法的关系
6、约分
7、简分数
8、通分
9、分数大小的比较
10、分数化小数
11、小数化为分数
12、分数的基本性质与小数基本性质的关系
知识点四 :百分数
1、 求常见的百分率
2、 求一个数比另一个数多(或少)百分之几
3、 求一个数的百分之几是多少
4、 已知一个数的百分之几是多少,求这个数
5、 折扣
6、 利率
扩展资料
《小学数学课程标准》中关于数与代数部分的部分要求:
1、数感主要表现在:理解数的意义;能用多种方法来表示数;能在具体的情境中把握数的相对大小关系;能用数来表达和交流信息;能为解决问题而选择适当的算法;能估计运算的结果,并对结果的合理性作出解释。
2、符号感主要表现在:能从具体情境中抽象出数量关系和变化规律,并用符号来表示;理解符号所代表的数量关系和变化规律;会进行符号间的转换;能选择适当的程序和方法解决用符号所表达的问题。
3、经历从日常生活中抽象出数的过程,认识万以 内的数、小数、简单的 分数和常见的量。
4、"数与代数"的内容主要包括数与式、方程与不等式、函数,它们都是研究数量关系和变化规律的数学模型,可以帮助人们从数量关系的角度更准确、清晰地认识、描述和把握现实世界。
参考资料来源:
2、第二单元《比较》。通过比较具体数量多少的数学活动,获得对“>、<、=”等符号的意义的理解,并会用这些符号表示10以内的数的大小;经历比高矮、比轻重、比长短等实践作或数学思考活动,体验“比”的方法的多样性与合理性;并在描述或倾听各自思考过程的交流中,体会学会有条理的表示自己思想和学会倾听的重要性。
3、第三单元《加减法〈一〉》。经历从实际问题抽象10以内的加减算式,并加以解释和应用的过程,体会加减法的含义,初步感受加减法与生活的密切联系;能正确口算10以内的加减法,掌握10以内数的分解与合成的技能;通过整理加、减法算式,并探索其间规律性的活动,培养与发展数感。
4、第七单元《加减法〈二〉》。经历表示11——20的数的具体作及其概括过程,初步体会用十进制记数的位值原理,会数、读、写20日内数,掌握它们的顺序,会比较它们的大小,结合解决问题的活动,进行简单的、有条理的思考;经历与同伴交流各自算法的过程,体会算法的多样性,学会20以内的进位和退位,逐步的熟练口算20以内的加减法,并能解决简单的问题,感受加减法与日常生活的密切联系,感受数学思考过程的合理性。
5、第八单元《认识钟表》。结合日常作息时间,学会认读钟面上表示整时、半时的时刻,了解记时的书写方法,并会用“快几时了”或“刚过几时”等词语描述时间,经历简单而熟悉的作活动,体验时间的长短,培养珍惜时间的态度和合理安排时间的良好习惯。
掌握万以内的数位顺序,会读、写万以内的数。
知道万以内数的组成。
会比较万以内数的大小,能用符号和词语描述万以内数的大小。
理解并认识万以内的近似数。
会口算百以内的两位数加、减两位数。
会口算整百、整千数加、减法。
会计算几百几十加、减几百几十,能结合实际进行估算。
知道除法的含义和除法各部分名称以及乘法与除法的关系。
熟练进行用乘法口诀求商。
会从生活中发现和提出数学问题,能用所学知识(两步计算)加以解决。
知道小括号的作用,会使用小括号。
会探索给定图形或数的排列中的简单规律。
有发现和欣赏数学美、运用数学去创造美的意识。
初步形成观察、分析和推理能力。
认识质量单位克和千克。
初步建立1克和1千克的质量观念,知道1千克=1000克。
建立质量观念,培养学生估算物体质量的意识。
版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。