解析函数方法如下:
求函数的解析式高考考点_求函数解析式的几种方法及题型
求函数的解析式高考考点_求函数解析式的几种方法及题型
1、换元法
已知复合函数fg(x)的解析式,求原函数f(x)的解析式,把g(x)看成一个整体t,进行换元,从而求出f(x)的方法
2、配凑法
例已知f( +1)=x+2,求f(x)的解析式
解:f( -1= +2 +1-1= -1,
∴f( +1)= -1( +1≥1),将+1视为自变量x,则有f(x)=x2-1(x≥1)。
3、待定系数法已知函数解析式的类型,可设其解析式的形式,根据已知条件建立关于待定系数的方程,从而求出函数解析式的方法。
4、消去例2. 求函数 的值域。法(方程组法)
5、特殊值法
例:设是定义在R上的函数,且满足f(0)=1,并且对任意的实数x,y,有f(x-y)=f(x)-y(2x-y+1),求f(x)函数解析式分析:要f(0)=1,x,y是任意的实数及f(x-y)=f(x)-y(2x-y+1),得到f(x)函数解析式,只有令x=y;解:令x=y,由f(x-y)=f(x)-y(2x-y+1)得f(0)=f(x)-x(2x-x+1),整理得f(x)=x2+x+1.
6、对称性法
即根据所给函数图象的对称性及函数在某一区间上的解析式,求另一区间上的解析式
7、函数性质法
利用函数的性质如奇偶性、单调性、周期性等求函数解析式的方法
8、反函数法
利但有时整理后面不太方便,我们就常用换元代替整理的过程了.如上面把t+1当作x,则有t=x-1用反函数的定义求反函数的解析式的方法。
9、“即时定义”法
给出一个“即时定义”函数,根据这个定义求函数解析式的方法。
高中数学函数解析式典型题求助
对于任意整数x,y都有,f(x+y)=f(x)+f(y)+2xy,且f(1)=1,求以t为定义域的f(t)的解析式?
分析;只要将括号里的一个数拆成两个相加的数就可以应用f(x+y)=f(x)+f(y)+2xy将其分解,就算出它们的值,如1可以拆成0+1,然后进行分解.然后以前一个算出来的值为后一个做铺垫,如;f(2)=f(1+1)=f(1)+f(1故函数的值域为)+211=4,以此类推,找到规律.
因为f(x+y)=f(x)+f(y)+2xy
所以f(1)=f(0+1)
=f(0)+1=1
所以
f(0)=0=0^2
同理可得;f(2)=f(1+1)=4=2^2,
f(3)=f(1+2)=9=3^2......
f(t)=t^2
函数值域求法十一种
(5)任意一个定义域关于原点对称的函数f(x)总可以表示为一个奇函数与偶函数的和的形式:f(x)=g(x)+h(x),其中g(x)=-[f(x)+f(-x)]为偶函数,h(x)=-[f(x)-f(-x)]为奇函数;在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。确定函数的值域是研究函数不可缺少的重要一环。对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。本文就函数值域求法归纳如下,供参考。
1. 直接观察法
对于一些比较简单的函数,其值域可通过观察得到。
例1. 求函数 的值域。
解:∵
∴显然函数的值域是:
解:∵
故函数的值域是:
2. 配方法
例3. 求函数 的值域。
解:将函数配方得:
∵由二次函数的性质可知:当x=1时, ,当 时,
故函数的值域是:[4,8]
3. 判别式法
例4. 求函数 的值域。
解:原函数化为关于x的一元二次方程
(1)当 时,
解得:
(2)当y=1时, ,而
例5. 求函数 的值域。
解:两边平方整理得: (1)
∵∴
解得:
但此时的函数的定义域由 ,得
由 ,仅保证关于x的方程: 在实数集R有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 求出的范围可能比y的实际范围大,故不能确定此函数的值域为 。
可以采取如下方法进一步确定原函数的值域。
∵代入方程(1)
解得:
即当 时,
原函数的值域为:
注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
4. 反函数法
直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。
例6. 求函数 值域。
解:由原函数式可得:
则其反函数为: ,其定义域为:
5. 函数有界性法
直接求函数的值域困难时,可以利用已学过函数的有界性,反客为主来确定函数的值域。
例7. 求函数 的值域。
解:由原函数式可得:
∵∴
解得:
故所求函数的值域为
例8. 求函数 的值域。
解:由原函数式可得: ,可化为:
即∵
∴即
解得:
6. 函数单调性法
解:令
则 在[2,10]上都是增函数
所以 在[2,10]上是增函数
当x=2时,
当x=10时,
例10. 求函数 的值域。
解:原函数可化为:
令 ,显然 在 上为无上界的增函数
所以 , 在 上也为无上界的增函数
所以当x=1时, 有最小值 ,原函数有值
显然 ,故原函数的值域为
7. 换元法
通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作用。
例11. 求函数 的值域。
解:令 ,
则∵
又 ,由二次函数的性质可知
例12. 求函数 的值域。
解:因
即故可令
∴∵
故所求函数的值域为
例13. 求函数 的值域。
解:原函数可变形为:
可令 ,则有
而此时 有意义。
故所求函数的值域为
例14. 求函数 , 的值域。
解:
令 ,则
由且
可得:
∴当 时, ,当 时,
故所求函数的值域为 。
例15. 求函数 的值域。
解:由 ,可得
故可令
∵当 时,
8. 数形结合法
其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。
例16. 求函数 的值域。
解:原函数可化简得:
上式可以看成数轴上点P(x)到定点A(2), 间的距离之和。
由上图可知,当点P在线段AB上时,
当点P在线段AB的延长线或反向延长线上时,
例17. 求函数 的值域。
解:原函数可变形为:
上式可看成x轴上的点 到两定点 的距离之和,
由图可知当点P为线段与x轴的交点时, ,
故所求函数的值域为
例18. 求函数 的值域。
解:将函数变形为:
上式可看成定点A(3,2)到点P(x,0)的距离与定点 到点 的距离之。
即:
由图可知:(1)当点P在x轴上且不是直线AB与x轴的交点时,如点 ,则构成 ,根据三角形两边之小于第三边,有
即:
(2)当点P恰好为直线AB与x轴的交点时,有
综上所述,可知函数的值域为:
注:由例17,18可知,求两距离之和时,要将函数式变形,使A、B两点在x轴的两侧,而求两距离之时,则要使A,B两点在x轴的同侧。
如:例17的A,B两点坐标分别为:(3,2), ,在x轴的同侧;例18的A,B两点坐标分别为(3,2), ,在x轴的同侧。
9. 不等式法
利用基本不等式 ,求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时需要用到拆项、添项和两边平方等技巧。
例19. 求函数 的值域。
解:原函数变形为:
当且仅当
即当 时 ,等号成立
故原函数的值域为:
例20. 求函数 的值域。
解:
当且仅当 ,即当 时,等号成立。
由 可得:
故原函数的值域为:
10. 一一映射法
原理:因为 在定义域上x与y是一一对应的。故两个变量中,若知道一个变量范围,就可以求另一个变量范围。
例21. 求函数 的值域。
由 得
故 或
解得
11. 多种方法综合运用
例22. 求函数 的值域。
解:令 ,则
综上所述,函数的值域为:
注:先换元,后用不等式法
例23. 求函数 的值域。
解:
令 ,则
∴当 时,
此时 都存在,故函数的值域为
注:此题先用换元法,后用配方法,然后再运用 的有界性。
总之,在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。
许多在职小伙伴都会通过高考提升学历,那么高考数学的必考知识点有哪些呢。以下是由我为大家整理的“高考数学的必考知识点”,仅供参考,欢迎大家阅读。
高考数学必考知识点
一、代数部分
代数历来是考试中的重点,而函数知识又是代数部分的重中之重。要掌握函数的概念,会求常见函数的定义域及函数值,会用待定系数法求函数解析式,会对函数的奇偶性和单调性进行判定。
二、导数复习的重点是
①会求多项式函数几种常见函数的导数。
②利用导数的几何意义求曲线的切线方程,并能以导数为工具求函数的单调区间、极值与值或最小值。
③解简单的实际应用问题,求值或最小值。
三、三角部分
在理解三角函数及有关概念的基础上,要掌握三角函数式的变换,包括同角三角函数之间的基本关系式,三角函数的诱导公式,两角和两角的三角函数公式,以及二倍角的正弦、余弦、正切公式,并用公式进行计算、化简。
四、平面解析几何部分
解析几何是通过坐标系及直线、圆锥曲线的方程,用代数的方法研究几何问题。平面向量一章,在理解向量及相关概念的基础上,要重点掌握向量的运算法则,向量垂直与平行的充要条件。直线一章的复习重点是直线的倾斜角和斜率,直线方程的五种形式,两直线的位置关系。
五、立体几何部分
近年来,考试大纲对这部分的要求明显降低,考查的重点是直线与直线、直线与平面、平面与平面的各种位置关系,和有关棱柱、棱锥与球体的表面积与体积的计算等基础知识。
六、概率与统计初步
排列与组合一章,应注意分类计数原理与分步计数原理的主要区别,应注意排列与组合的主要区别,牢记排列数或组合数计算公式,会解有关排列或组合的简单实际问题。
拓展阅读:高考数学答题技巧
1、单项选择题
从关键点出发,全面分析题目,建议解题时找到关键点和突破口,形成系统的解题思路,逐步简化解题步骤寻求正确。在难以确定正确选项的情况下,还可以采用代入法。
巧用代入法,将选项中的逐个代入考题,从而选择出正确的,认真检查,理性审阅。答题完成后如果时间充足,应该反复检查,认真审查,避免因为疏忽大意而失分。
配方法是求二次函数值域最基本的方法之一。2、填空题
要巧用公式和图形相结合的方式来解题,tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)高考数学科目考试所考察的不仅仅是代数知识,还有一些几何相关的知识,需要灵活地运用各种图形来帮助解题了,也就是把数学公式和图形结合起来。
3、解答题
解题过程要书写清楚,调理清晰,尽量不要留下空白。答题时可以先把能用到的公式和解题步骤清晰的写下来,踩到得分点即获得相应分数。
函数的解析式其实就是找到x和y的关系.
这个关系就是对应法则.它表示用这个法则(规矩)把x变化到什么.
比如:f(t+1)=t^2
f(t+1)=(t+1)^2-2(t+1)+1
通过上面的整理,看到f(就是法则)是把变量变化到平方减去2倍再加1.
f()=^2-2+1
解:∵定义域为f(x)=x^2-2x+1等等
f(x)=(x-1)^2=x^2-2x+1
当甲、乙两种元素相互化合,能生成几种不同的化合物时,则在这些化合物中,与一定量甲元素相化合的乙元素的质量必互成简单的整数比。
抽象函举个例子,对于一道导数题,一般会遵循“求导—极值讨论”的步骤进行,很难从中发掘多种解法,而对于三角函数的大题,也一般考查“正余弦定理”、“三角函数的定义域、值域”,也是一题多解不适用的。而像对于解析几何这类的压轴题而言,一题多解就是很能锻炼我们思维方式。数题3x+4x=34的过程
函数解析式的求法有如下:
比方说,研究直线与圆锥曲线位置关系的题目,直线的不同设法(关于x、y的方程),圆锥曲线的不同表示形式(方程形式、三角函数形式)都会对题目的解答产生不同的影响。这就需要我们碰到这类大题,勤于思考,争取做到“一题多解”。1、待定系数法,(已知函数 类型如:一次、二次函数、反比例函数等):若已知福(行)的结构时,可设出含参数的表达式,再根据已知条件,列方程或方程组,从而求出待定的参数,求得法(行)的表达式,待定系数法是一种重要的数学方法,它只适用于已知所求函数的类型求其解析式。
2、换元法(注意新元的取值范围)已知法(g(x))的表达式,欲求粉(x),我们常设t=g(x),从而求得然后代入法(g(x))的表达式,从而得到法(t)的表达式,即为法(x)的表达式。
3、配凑法(整体代换法)若已知法(g(x))的表达式,欲求粉(x)的表达式,用换元法有困难时(如g(x)不存在反函数)可把g(x)看成一个整体,把右边变为由g(x)组成的式子,再换元求出f(x)的式子。
4、消元法(如自变量互为倒数、已知f(x)为奇函数 且g(x)为偶函数等:若已知以函数为元的方程形式,若能设法构造另一个方程,组成方程组,再解这个方程组,求出函数元,称这个方法为消元法。
5、赋值法(特殊值代入法)在求某些函数的表达式或求某些函数值时,有时把已知条件中的某些变量赋值,使问题简单明了,从而易于求出函数的表达式。
又到了一年一度的高考备考阶段,广大考生们抓紧一切时间想尽一切办法准备着2013年的高考,为帮助广大考生有效备考,我们为大家做了个高中数学知识点整理,帮助广大考生把握高中数学的脉络,让广大考生赢在高考。
x∈(1,3),∴-1知识要点:
一、函数的奇偶性
1.定义:对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=-f(x),那么f(x)为奇函数;
对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=f(x),那么f(x)为偶函数;
(1)函数依据奇偶性分类可分为:奇函数非偶函数,偶函数非奇函数,既奇且偶函数,非奇非偶函数;
(2) f(x),g(x)的定义域为D;
(3)图象特点:奇函数的图象关于原点对称;偶函数的图象关于原点对称;
(4)定义域关于原点对称是函数具有奇偶性的必要不充分条件,奇函数f(x)在原点处有定义,则有f(0)=0;
(6)奇函数在关于原点对称的区间具有相同的单调性,偶函数在关于原点对称的区间具有相反的单调性。
3.判断方法:
(1)定义法
(2)等价形式:f(-x)+f(x)=0,f(x)为奇函数;
f(-x)-f(x)=0,f(x)为偶函数。
4.拓展延伸:
(1)一般地,对于函数y=f(x),定义域内每一个自变量x,都有f(a+x)=2b-f(a-x),则y=f(x)的图象关于点(a,b)成中心对称;
(2)一般地,对于函数y=f(x),定义域内每一个自变量x都有f(a+x)=f(a-x),则它的图象关于x=a成轴对称。
二、周期性:
1.定义:对于函数y=f(x),如果存在一个非零常数T,使得当自变量x取定义域内的每一个值时,都有f(x)=f(x+T)成立,那么就称函数y=f(x)为周期函数。
2.图象特点:
将函数y=f(x)的图象向左(右)平移的整数倍个单位,所得的函数图象与函数y=f(x)的图象重合。
3.函数图象的对称性与周期性的关系:
(1)若对于函数y=f(x)定义域内任意一个x都有f(a+x)=f(a-x)且f(b+x)=f(b-x),(a、b不相等的常数)则函数为周期函数。(周期为:2|a-b|)
(2)若对于函数y=f(x)定义域内任意一个x都有f(a+x)=-f(a-x)且f(b+x)=-f(b-x),(a、b不相等的常数)则函数为周期函数。(周期为:2|a-b|)
(3)若对于函数y=f(x)定义域内任意一个x都有f(a+x)=-f(a-x)且f(b+x)=f(b-x),(a、b不相等的常数)则函数为周期函数。(周期为:4|a-b|)
典型例题
(1)f(x)=(x-1)·■
解:函数的定义域为x∈{x|-1≤x<1}
函数f(x)=(x-1)·■为∴f(x)非奇非偶函数
(2) f(x)=loga(-x+-)
解:x∈R
f(-x)=loga(x+-
=loga-
=-loga(-x+-)=-f(x)
∴f(x)为奇函数
(3)f(x)=x·(-+-)
解:x∈{x∈R|x≠0}
f(-x)-f(x)=-x(-+-)-x(-+-)
=-x(-+-+1)=0
∴f(x)为偶函数
(4)f(x)=-
解:1+cosx+sinx≠0
sin(x+-)≠--,x∈{x|x≠2k-且x≠2k--,k∈R}
定义域不关于原点对称,∴f(x)为非奇非偶函数
说明:
1.判断函数的奇偶性首先要检验定义域是否关于原点对称。特别应注意,求解定义域时,不能化简解析式后再求解。
2.在判断是否有f(-x)=-f(x)或f(-x)=f(x)成立时,必要时可使用等价变形形式:f(-x)±f(x)=0
例2:(1)已知:f(x)是奇函数,且x>0时f(x)=x|x-2|
求x<0的解析式
解:设x0
-,
说明:1.利用函数的奇偶性求解析式,要将自变量x设在所求的范围内。
2.转化带入利用定义构造方程。
(2)定义在R上的奇函数f(x)且满足f(3+x)=f(3-x),若x∈(0,3),f(x)=2x
求:当x∈(-6,-3)时,f(x)的解析式。
解:x∈(-6,-3) -x∈(3,6),6-(-x)∈(0,3)
-∴f(x)=-2x+6
说明:1.合理分解题意是关键。
2.此题还可以应用周期性进行求解。
例3:已知:函数f(x)的定义域为R,且满足f(x+2)=-f(x)
(1)求证:f(x)为周期函数;
(2)若f(x)为奇函数,且当0≤x≤1时,f(x)=-x,求使得f(x)=--的所有x。
(1)解:-
∴f(x)=f(x+4)
f(x)为周期是4的周期函数。
(2)解:x∈[-1,0],-x∈[0,1]
-∴f(x)=-x,x∈[-1,0]
∴f(x)=-x,x∈[-1,1]
-∴f(x)=--(x-2),x∈[1,3]
-x∈[-1,3),f(x)=--,x=-1
∴x=4n-1,n∈Z
高中函数知识点总结,参考以下内容。
一、函数的定义域的常用求法:
1、分式的分母不等于零;
2、偶次方根的被开方数大于等于零;
3、对数的真数大于零;
4、指数函数和对数函数的底数大于零且不等于1;
5、三角函数正切函数y=tanx中xfkIT+TT/2;
6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。
二、函数的解析式的常用求法:
1、定义法;
3、待定系数法;
4、函数方程法;
6、配方法。
三、函=f(0)+f(1)+201数的值域的常用求法:
1、换元法;
2、配方法;
3、判别式法;
4、几何法;
5、不等式法;
6、单调性法;5、参数法;
7、直接法。
四、函数的最值的常用求法:
4、几何法;
5、单调性法。
五、函数单调性的常用结论:
1、若(x),g(x)均为某区间上的增(减)函数,则f(x)+g(x)在这个区间上也为增(减)函数。
2、若(x)为增(减)函数,则-f(x)为减(增)函数。
3、若f(x)与g(x)的单调性相同,则f[g(x)]是增函数;若f(x)与g(x)的单调性不同,则f[g(x]是减函数。
4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。
5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作函数图象。
六、函数奇偶性的常用结论:
1、如果一个奇函数在x=0处有定义,则f(0)=0,如果一个函数y=f(x)既是奇函数又是偶函数,则f(x)=0(反之不成立)。
2、两个奇(偶)函数之和()为奇(偶)函数;之积(商)为偶函数。
3、一个奇函数与一个偶函数的积(商)为奇函数。
4、两个函数y=f(u)和u=g(x)复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。
5、若函数f(x)的定义域关于原点对称,则f(x)可以表示为f(x)=1/2[f(x)+f(-x)]+1/2f(x)+f(-x)],该式的特点是:右端为一个奇函数和一个偶函数的和。
学好高中数学函数的方法:
1、课前预习教材。高中生想要学好数学,可以养成课前预习的好习惯。就是提前把老师第二天要讲的内容预习一下,看看自己哪里能看懂,哪里不懂。这样才能在老师讲课的时候,带着问题有针对性地去听。
2、上课专心听讲。很多高中生数学不好的原因,往往是因为没有认真听课。很多同学都认为老师讲的已经懂了,就不认真听了,但是在自己做题的时候,却往往做不对题。上课专心听讲往往是比课下自己学习要效果更好。
不是任何两个函数都可以复合成一个复合函数,只有当Mx∩Du≠?时,二者才可以构成一个复合函数。下面是我为大家精心数学复合函数知识点 总结 ,希望能够对您有所帮助。
高考数学复合函数知识点归纳
1.复合函数定义域
若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数y=f[g(x)]的定义域是
D={x|x∈A,且g(x)∈B} 综合考虑各部分的x的取值范围,取他们的交集。
求函数的定义域主要应考虑以下几点:
⑴当为整式或奇次根式时,R的值域;
⑵当为偶次根式时,被开方数不小于0(即≥0);
⑶当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0;
⑷当为指数式时,对零指数幂或负整数指数幂,底不为0(如,中)。
⑸当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的自变量的值组成的,即求各部分定义域的交集。
⑹分段函数的定义域是各段上自变量的取值的并集。
⑺由实际问题建立的函数,除了要考虑使解析式有意义外,还要考虑实际意义对自变量的要求
⑻对于含参数字母的函数,求定义域时一般要对字母的取值情况进行分类讨论,并要注意函数的定义域为非空。
⑼对数函数的真数必须大于零,底数大于零且不等于1。
⑽三角函数中的切割函数要注意对角变量的限制。
注:设y=f(u)的最小正周期为T1,μ=φ(x)的最小正周期为T2,则y=f(μ)的最小正周期为T1_2,任一周期可表示为k_1_2(k属于R+)
2.复合函数单调性
依y=f(u),μ=φ(x)的单调性来决定。即“增+增=增;减+减=增;增+减=减;减+增=减”,可以简化为“同增异减”。
⑴求复合函数的定义域;
⑵将复合函数分解为若干个常见函数(一次、二次、幂、指、对函数);
⑶判断每个常见函数的单调性;
⑷将中间变量的取值范围转化为自变量的取值范围;
⑸求出复合函数的单调性。
三角函数诱导公式记忆口诀
“奇变偶不变,符号看象限”。“奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。以cos(π/2+α)=-sinα为例,等式左边cos(π/2+α)中n=1,所以右边符号为sinα,把α看成锐角,所以π/2<(π/2+α)<π,y=cosx在区间(π/2,π)上小于零,所以右边符号为负,所以右边为-sinα。
三角函数诱导公式大全
公式一:设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα(k∈Z)
cos(2kπ+α)=cosα(k∈Z)
tan(2kπ+α)=tanα(k∈Z)
cot(2kπ+α)=cotα(k∈Z)
公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:任意角α与-α的三角函数值之间的关系(利用原函数奇偶性):
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
sin(π/2-α)=cosα
cos(π/2+α)=-sinα
cos(π/2-α)=sinα
tan(π/2+α)=-cotα
tan(π/2-α)=cotα
cot(π/2+α)=-tanα
cot(π/2-α)=tanα
推算公式:3π/2±α与α的三角函数值之间的关系:
sin(3π/2+α)=-cosα
sin(3π/2-α)=-cosα
cos(3π/2+α)=sinα
cos(3π/2-α)=-sinα
tan(3π/2+α)=-cotα
tan(3π/2-α)=cotα
cot(3π/2+α)=-tanα
cot(3π/2-α)=tanα
两角和公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)
二倍角的正弦、余弦和正切公式
sin2α=2sinαcosα
cos2α=cos2(α)-sin2(α)=2cos2(α)-1=1-2sin2(α)
tan2α=2tanα/[1-tan2(α)]
tan[(1/2)α]=(sinα)/(1+cosα)=(1-cosα)/sinα
半角的正弦、余弦和正切公式
sin2(α/2)=(1-cosα)/2
cos2(α/2)=(1+cosα)/2
tan2(α/2)=(1-cosα)/(1+cosα)
tan(α/2)=(1—cosα)/sinα=sinα/1+cosα
公式
sinα=2tan(α/2)/[1+tan2(α/2)]
cosα=[1-tan2(α/2)]/[1+tan2(α/2)]
tanα=[2tan(α/2)]/[1-tan2(α/2)]
三倍角的正弦、余弦和正切公式
sin3α=3sinα-4sin3(α)
cos3α=4cos3(α)-3cosα
tan3α=[3tanα-tan3(α)]/[1-3tan2(α)]
三角函数的和化积公式
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
三角函数的积化和公式
sinα·cosβ=0.5[sin(α+β)+2. 高考数学知识点总结归纳sin(α-β)]
cosα·sinβ=0.5大体就这么解就行了,分析不用写进去[sin(α+β)-sin(α-β)]
cosα·cosβ=0.5[cos(α+β)+cos(α-β)]
sinα·sinβ=-0.5[cos(α+β)-cos(α-β)]
高考数学复合函数知识点归纳相关 文章 :
1. 2020高三数学函数知识点归纳
3. 高考数学必考知识点考点2020大全总结
4. 高考数学易混淆知识点总结精华版
5. 高中数学高考知识点 高中数学高考要点
6. 2017年高考数学函数的单调性必考知识点
7. 高中数学函数知识归纳总结
8. 高考数学必考知识点考点2020
9. 高考数学考点2020总结概括
10. 高考数学知识点口诀
版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。