高考函数奇偶性周期性结论 高中函数奇偶性周期高考真题

教育资讯 2024-11-10 09:50:53

高三数学知识点及公式总结大全

高三数学重要知识点精选总结1

高考函数奇偶性周期性结论 高中函数奇偶性周期高考真题高考函数奇偶性周期性结论 高中函数奇偶性周期高考真题


高考函数奇偶性周期性结论 高中函数奇偶性周期高考真题


高考函数奇偶性周期性结论 高中函数奇偶性周期高考真题


1.课程内容:

必修课程由5个模块组成:

必修1:、函数概念与基本初f(2-x)=等函数(指、对、幂函数)

必修2:立体几何初步、平面解析几何初步。

必修3:算法初步、统计、概率。

必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。

必修5:解三角形、数列、不等式。

以上是每一个高中学生所必须学习的。

上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。

此外,基础内容还增加了向量、算法、概率、统计等内容。

2.重难点及考点:

重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数

难点:函数、圆锥曲线

高考相关考点:

⑴与简易逻辑:的概念与运算、简易逻辑、充要条件

⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用

⑶数列:数列的有关概念等数列等比数列、数列求和、数列的应用

⑷三角函数:有关概念、同角关系与诱导公式、和、、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用

⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用

⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、不等式、不等式的应用

⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系

⑻圆锥曲线方程:椭圆、6.对数函数 在定义域上的图象与对应的指数函数(该对数函数的反函数)的图象关于直线 y=x 轴对称. 恒过定点(1,0).联系解析式,若 a>1 则函数在定义域上单调增;若 0

⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量

⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用

⑾概率与统计:概率、分布列、期望、方、抽样、正态分布

⑿导数:导数的概念、求导、导数的应用

⒀复数:复数的概念与运算

高三数学重要知识点精选总结2

①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).

⑶特殊棱锥的顶点在底面的射影位置:

①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.

②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心.

③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心.

④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.

⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.

⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.

⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;

⑧每个四面体都有内切球,球心

是四面体各个二面角的平分面的交点,到各面的距离等于半径.

[注]:i.各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的等腰三角形不知是否全等)

ii.若一个三角锥,两条对角线互相垂直,则第三对角线必然垂直.

简证:AB⊥CD,AC⊥BD

BC⊥AD.令得,已知则.

iii.空间四边形OABC且四边长相等,则顺次连结各边的中点的四边形一定是矩形.

iv.若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形.

简证:取AC中点,则平面90°易知EFGH为平行四边形

EFGH为长方形.若对角线等,则为正方形.

高三数学重要知识点精选总结3

(1)棱柱:

定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥

定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体

分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

表示:用各顶点字母,如五棱锥

(3)棱台:

分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

表示:用各顶点字母,如五棱台

几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

(4)圆柱:

定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:

定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:

定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

(7)球体:

几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

高三数学重要知识点精选总结4

(1)先看“充分条件和必要条件”

当命题“若p则q”为真时,可表示为p=>q,则我们称p为q的充分条件,q是p的必要条件。这里由p=>q,得出p为q的充分条件是容易理解的。

但为什么说q是p的必要条件呢?

事实上,与“p=>q”等价的逆否命题是“非q=>非p”。它的意思是:若q不成立,则p一定不成立。这就是说,q对于p是必不可少的,因而是必要的。

若有p=>q,同时q=>p,则p既是q的充分条件,又是必要条件。简称为p是q的充要条件。记作p<=>q

回忆一下初中学过的“等价于”这一概念;如果从命题A成立可以推出命题B成立,反过来,从命题B成立也可以推出命题A成立,那么称A等价于B,记作A<=>B。“充要条件”的含义,实际上与“等价于”的含义完全相同。也就是说,如果命题A等价于命题B,那么我们说命题A成立的充要条件是命题B成立;同时有命题B成立的充要条件是命题A成立。

(3)定义与充要条件

数学中,只有A是B的充要条件时,才用A去定义B,因此每个定义中都包含一个充要条件。如“两组对边分别平行的四边形叫做平行四边形”这一定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。

显然,一个定理如果有逆定理,那么定理、逆定理合在一起,可以用一个含有充要条件的语句来表示。

“充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示“充分”。“仅当”表示“必要”。

(4)一般地,定义中的条件都是充要条件,判定定理中的条件都是充分条件,性质定理中的“结论”都可作为必要条件。

高三数学重要知识点精选总结5

1.函数的奇偶性

(1)若f(x)是偶函数,那么f(x)=f(-x);

(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);

(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);

(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;

2.复合函数的有关问题

(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定;

3.函数图像(或方程曲线的对称性)

(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;

(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;

(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;

4.函数的周期性

(1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;

(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;

(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;

(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;

(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;

(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;

5.方程k=f(x)有解k∈D(D为f(x)的值域);

6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

7.(1)(a>0,a≠1,b>0,n∈R+);

(2)logaN=(a>0,a≠1,b>0,b≠1);

(3)logab的符号由口诀“同正异负”记忆;

(4)alogaN=N(a>0,a≠1,N>0);

8.判断对应是否为映射时,抓住两点:

((Ⅱ)f(x)=f(x+10),T=101)A中元素必须都有象且;

(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

9.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

10.对于反函数,应掌握以下一些结论:

(1)定义域上的单调函数必有反函数;

(3)定义域为非单元素集的偶函数不存在反函数;

(4)周期函数不存在反函数;

(5)互为反函数的两个函数具有相同的单调性;

(6)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);

11.处理二次函数的问题勿忘数形结合

二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;

12.依据单调性

13.恒成立问题的处理方法

(1)分离参数法;

(2)转化为一元二次方程的根的分布列不等式(组)求解;

(1)、高三数学必考知识点归纳公式大全

(2)、高三女儿数学只考了108分 老爸的这一做法绝了

(3)、2019扬州高三模拟统考语文数学试题难度点评

(4)、2019年湖北高三2月联考数学理试题及

(5)、高三数学教师教学工作总结

(6)、高三复习班数学班主任工作总结

如何理解函数的奇偶性与周期性?求详解,尽量用通俗易懂的语言…有例题!谢谢!

详解:设原来某一点坐标为(x,y),那么关于原点对称的点就是(-x,-y)。

如果他们在同一函数上,就可以表示为f(x)=y,f(-x)=-y,

那么很容易得到-f(x)=f(-x).就是这样。

偶函数就是即f(x)=f(x+10),T=10x和-x代入的时候y是相等的

奇函数就是第三章:直线与方程。这一章主要讲斜率与直线的位置关系。只要搞清楚直线平行、垂直的斜率表示问题就不大了。需要1、f(x+a)=-f(x)格外注意的是当直线垂直时斜率不存在的情况,这是常考点。另外直线方程的几种形式,记得一般公式会用就行,要求不高。点与点的距离、点与直线的距离、直线与直线的距离,记住公式,直接套用。x和-x代入的时候y是符号相反的

高中数学做题最容易忽视的公式?或一些重要的公式!?

定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分

数学高考基础知识、常见结论详解

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

一、与简易逻辑:

一、理解中的有关概念

(1)中元素的特征: 确定性 , 互异性 , 无序性 。

元素的互异性:如: , ,求 ;

(2)与元素的关系用符号 , 表示。

(3)常用数集的符号表示:自然数集 ;正整数集 、 ;整数集 ;有理数集 、实数集 。

(4)的表示法: 列举法 , 描述法 , 韦恩图 。

注意:区分中元素的形式:如: ; ; ; ; ;

;(5)空集是指不含任何元素的。( 、 和 的区别;0与三者间的关系)

空集是任何的子集,是任何非空的真子集。

注意:条件为 ,在讨论的时候不要遗忘了 的情况。

如: ,如果 ,求 的取值。

二、间的关系及其运算

(1)符号“ ”是表示元素与之间关系的,立体几何中的体现 点与直线(面)的关系 ;

符号“ ”是表示与之间关系的,立体几何中的体现 面与直线(面)的关系 。

(2) ; ;

(3)对于任意 ,则:

① ; ; ;

② ; ;

; ;

③ ; ;

(4)①若 为偶数,则 ;若 为奇数,则 ;

②若 被3除余0,则 ;若 被3除余1,则 ;若 被3除余2,则 ;

三、中元素的个数的计算:

(1)若 中有 个元素,则 的所有不同的子集个数为_________,所有真子集的个数是__________,所有非空真子集的个数是 。

(2) 中元素的个数的计算公式为: ;

(3)韦恩图的运用:

四、 满足条件 , 满足条件 ,

若 ;则 是 的充分非必要条件 ;

若 ;则 是 的必要非充分条件 ;

若 ;则 是 的充要条件 ;

若 ;则 是 的既非充分又非必要条件 ;

五、原命题与逆否命题,否命题与逆命题具有相同的 ;

注意:两个偶函数的乘积是偶函数;“若 ,则 ”在解题中的运用,

如:“ ”是“ ”的 条件。

六、反证法:当证明“若 ,则 ”感到困难时,改证它的等价命题“若 则 ”成立,

步骤:1、设结论反面成立;2、从这个设出发,推理论证,得出矛盾;3、由矛盾判断设不成立,从而肯定结论正确。

矛盾的来源:1、与原命题的条件矛盾;2、导出与设相矛盾的命题;3、导出一个恒命题。

适用与待证命题的结论涉及“不可能”、“不是”、“至少”、“至多”、“”等字眼时。

正面词语 等于 大于 小于 是 都是 至多有一个

否定

正面词语 至少有一个 任意的 所有的 至多有n个 任意两个

否定

二、函数

一、映射与函数:

(1)映射的概念: (2)一一映射:(3)函数的概念:

如:若 , ;问: 到 的映射有 个, 到 的映射有 个; 到 的函数有 个,若 ,则 到 的一一映射有 个。

函数 的图象与直线 交点的个数为 个。

二、函数的三要素: , , 。

相同函数的判断方法:① ;② (两点必须同时具备)

(1)函数解析式的求法:

①定义法(拼凑):②换元法:③待定系数法:④赋值法:

(2)函数定义域的求法:

① ,则 ; ② 则 ;

③ ,则 ; ④如: ,则 ;

⑤含参问题的定义域要分类讨论;

如:已知函数 的定义域是 ,求 的定义域。

⑥对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。如:已知扇形的周长为20,半径为 ,扇形面积为 ,则 ;定义域为 。

(3)函数值域的求法:

①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如: 的形式;

②逆求法(反求法):通过反解,用 来表示 ,再由 的取值范围,通过解不等式,得出 的取值范围;常用来解,型如: ;

④换元法:通过变量代换转化为能求值域的函数,化归思想;

⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;

⑦单调性法:函数为单调函数,可根据函数的单调性求值域。

⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。

求下列函数的值域:① (2种方法);

三、函数的性质:

函数的单调性、奇偶性、周期性

单调性:定义:注意定义是相对与某个具体的区间而言。

判定方法有:定义法(作比较和作商比较)

导数法(适用于多项式函数)

复合函数法和图像法。

应用:比较大小,证明不等式,解不等式。

奇偶性:定义:注意区间是否关于原点对称,比较f(x) 与f(-x)的关系。f(x) -f(-x)=0 f(x) =f(-x) f(x)为偶函数;

f(x)+f(-x)=0 f(x) =-f(-x) f(x)为奇函数。

判别方法:定义法, 图像法 ,复合函数法

应用:把函数值进行转化求解。

周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。

其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期.

应用:求函数值和某个区间上的函数解析式。

四、图形变换:函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律。

常见图像变化规律:(注意平移变化能够用向量的语言解释,和按向量平移联系起来思考)

平移变换 y=f(x)→y=f(x+a),y=f(x)+b

注意:(ⅰ)有系数,要先提取系数。如:把函数y=f(2x)经过 平移得到函数y=f(2x+4)的图象。

(ⅱ)会结合向量的平移,理解按照向量 (m,n)平移的意义。

对称变换 y=f(x)→y=f(-x),关于y轴对称

y=f(x)→y=-f(x) ,关于x轴对称

y=f(x)→y=|f(x)|把y轴右边的图象保留,然后将y轴右边部分关于y轴对称。(注意:它是一个偶函数)

伸缩变换:y=f(x)→y=f(ωx),

y=f(x)→y=Af(ωx+φ)具体参照三角函数的图象变换。

一个重要结论:若f(a-x)=f(a+x),则函数y=f(x)的图像关于直线x=a对称;

如: 的图象如图,作出下列函数图象:

(1) ;(2) ;

(3) ;(4) ;

(5) ;(6) ;

(9) 。

五、反函数:

(1)定义:

(2)函数存在反函数的条件: ;

(3)互为反函数的定义域与值域的关系: ;

(4)求反函数的步骤:①将 看成关于 的方程,解出 ,若有两解,要注意解的选择;②将 互换,得 ;③写出反函数的定义域(即 的值域)。

(6)原函数与反函数具有相同的单调性;

(7)原函数为奇函数,则其反函数仍为奇函数;原函数为偶函数,它一定不存在反函数。

如:求下列函数的反函数: ; ;

七、常用的初等函数:

(1)一元一次函数: ,当 时,是增函数;当 时,是减函数;

(2)一元二次函数:

一般式: ;对称轴方程是 ;顶点为 ;

两点式: ;对称轴方程是 ;与 轴的交点为 ;

顶点式: ;对称轴方程是 ;顶点为 ;

①一元二次函数的单调性:

当 时: 为增函数; 为减函数;当 时: 为增函数; 为减函数;

②二次函数求最值问题:首先要采用配方法,化为 的形式,

Ⅰ、若顶点的横坐标在给定的区间上,则

时:在顶点处取得最小值,值在距离对称轴较远的端点处取得;

时:在顶点处取得值,最小值在距离对称轴较远的端点处取得;

Ⅱ、若顶点的横坐标不在给定的区间上,则

时:最小值在距离对称轴较近的端点处取得,值在距离对称轴较远的端点处取得;

时:值在距离对称轴较近的端点处取得,最小值在距离对称轴较远的端点处取得;

有三个类型题型:

(1)顶点固定,区间也固定。如:

(2)顶点含参数(即顶点变动),区间固定,这时要讨论顶点横坐标何时在区间之内,何时在区间之外。

(3)顶点固定,区间变动,这时要讨论区间中的参数.

③二次方程实数根的分布问题: 设实系数一元二次方程 的两根为 ;则:

根的情况

等价命题 在区间 上有两根 在区间 上有两根 在区间 或 上有一根

充要条件

注意:若在闭区间 讨论方程 有实数解的情况,可先利用在开区间 上实根分布的情况,得出结果,在令 和 检查端点的情况。

(3)反比例函数:

(4)指数函数:

指数运算法则: ; ; 。

指数函数:y= (a>o,a≠1),图象恒过点(0,1),单调性与a的值有关,在解题中,往往要对a分a>1和0

(5)对数函数:

指数运算法则: ; ; ;

对数函数:y= (a>o,a≠1) 图象恒过点(1,0),单调性与a的值有关,在解题中,往往要对a分a>1和0

注意:(1) 与 的图象关系是 ;

(2)比较两个指数或对数的大小的基本方法是构造相应的指数或对数函数,若底数不相同时转化为同底数的指数或对数,还要注意与1比较或与0比较。

(3)已知函数 的定义域为 ,求 的取值范围。

已知函数 的值域为 ,求 的取值范围。

谁给我解释一下高中数学函数的奇偶性周期性。

恒成"等数列 等数列及其通项公式的概念 掌握 ★★ 选择题、填空题、解答题立问题的处理方法:

偶函数关于Y轴对称

全称量词与存在量词 全称量词与存在量词的意义、含有量词命题的否定 掌握 ★★ 选择题、填空题

奇函数关于原点对称

有周期性的函数就是以一样的波形不断重复。

你看看定义,对于一个函数,把x变成-x带入如果函数不变则为偶,相反数则为奇,周期一般是三角函数或者题目自己定义的居多,方法类似,你做多了就自然明白了!

关于高中数学函数的对称性与周期性

② (2种方法);③ (2种方法);

主要还是要数字图形结合理解的基础上,再简单的证明一下。

简单的逻辑联结词 逻辑连词“或、且、非”的含义 了解 ★★ 选择题、填空题

个做图来看就一目了然,你可以这么理解:2-x和2+x,的中间位置就是2,然后又满足f(2-x)=f(x+2).也就是说以2为两边对称的函数值是相同的。

第三个,利用换元,令y=x-2,则原式变为f(y)=f(-y)的图像关于y轴对称,显然是这个意思,上题已经用了这个结论。

这三个都不能推导出周期性的性质,因为f(x)=f(x+k)这种式子才能满足

个说的是一个函数f(x),其中满足f(2-x)=f②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.(2+x),所以才会说有对称轴。而后面是两个函数比较图像。

函数基本性质周期性,单调性,奇偶性可以继续讨论,望采耐

高三数学下册必修一知识点

则方程f(x)=0在闭区间[0,2005]上的根为402个,方程f(x)=0在闭区间[-2005,0]上的根为400个

【 #高三# 导语】高中学习方法其实很简单,但是这个方法要一直保持下去,才能在最终考试时看到成效,如果对某一科目感兴趣或者有天赋异禀,那么学习成绩会有明显提高,若是学习动力比较足或是受到了一些积极的影响或,分数也会大幅度上涨。 考 网高三频道为你准备了《高三数学下册必修一知识点》,希望助你一臂之力!

1.高三数学下册必修一知识点

1.函数的奇偶性

(1)若f(x)是偶函数,那么f(x)=f(-x);

(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);

(3)判断函数奇偶性可用定义的等价形式:f(x)±f((2)再看“充要条件”-x)=0或(f(x)≠0);

(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

(5)奇函数在对称的单调区间内有相同的.单调性;偶函数在对称的单调区间内有相反的单调性;

2.复合函数的有关问题

(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定;

3.函数图像(或方程曲线的对称性)

(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;

(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;

(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;

4.函数的周期性

(1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;

(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;

(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;

(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;

(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;

(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;

5.方程

(1)方程k=f(x)有解k∈D(D为f(x)的值域);

(2)a≥f(x)恒成立a≥[f(x)]max,;

a≤f(x)恒成立a≤[f(x)]min;

(3)(a>0,a≠1,b>0,n∈R+);

logaN=(a>0,a≠1,b>0,b≠1);

(4)logab的符号由口诀“同正异负”记忆;

alogaN=N(a>0,a≠1,N>0);

6.映射

判断对应是否为映射时,抓住两点:

(1)A中元素必须都有象且;

(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

7.函数单调性

(1)能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性;

(2)依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题

8.反函数

对于反函数,应掌握以下一些结论:

(1)定义域上的单调函数必有反函数;

(3)定义域为非单元素集的偶函数不存在反函数;

(4)周期函数不存在反函数;(5)互为反函数的两个函数具有相同的单调性;

(5)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).

9.数形结合

处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系.

10.恒成立问题

(1)分离参数法;

(2)转化为一元二次方程的根的分布列不等式(组)求解;

2.高三数学下册必修一知识点

1、的概念

是数学中最原始的不定义的概念,只能给出,描述性说明:某些制定的且不同的对象在一起就称为一个。组成的对象叫元素,通常用大写字母A、B、C、…来表示。元素常用小写字母a、b、c、…来表示。

是一个确定的整体,因此对也可以这样描述:具有某种属性的对象的全体组成的一个。

2、元素与的关系元素与的关系有属于和不属于两种:元素a属于A,记做a∈A;元素a不属于A,记做a?A。

3、中元素的特性

(1)确定性:设A是一个给定的,x是某一具体对象,则x或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。例如A={0,1,3,4},可知0∈A,6?A。

(2)互异性:“张的元素必须是互异的”,就是说“对于一个给定的,它的任何两个元素都是不同的”。

(3)无序性:与其中元素的排列次序无关,如{a,b,c}与{c,b,a}是同一个。

4、的分类

科根据他含有的元素个数的多少分为两类:

有限集:含有有限个元素的。如“方程3x+1=0”的解组成的”,由“2,4,6,8,组成的”,它们的元素个数是可数的,因此两个是有限集。

无限集:含有无限个元素的,如“到平面上两个定点的距离相等于所有点”“所有的三角形”,组成上述的元素不可数的,因此他们是无限集。

特别的,我们把不含有任何元素的叫做空集,记错F,如{x?R|+1=0}。

5、特定的2、如果函数f(x)(x∈D)在定义域内有两个对称中心A(a,0),B(b,0)则函数f(x)是周期函数,且周期T=2|b-a|(不一定为最小正周期)。的表示

为了书写方便,我们规定常见的数集用特定的字母表示,下面是几种常见的数集表示方法,请牢记。

(1)全体非负整数的通常简称非负整数集(或自然数集),记做N。

(2)非负整数集内排出0的,也称正整数集,记做N_或N+。

(3)全体整数的通常简称为整数集Z。

(4)全体有理数的通常简称为有理数集,记做Q。

(5)全体实数的通常简称为实数集,记做R。

3.高三数学下册必修一知识点

章:空间几何。三视图和直观图的绘制不算难。但是从三视图复原出实物从而计算就需要比较强的空间感,要能从三张平面图中慢慢在脑海中画出实物。这就要求学生特别是空间感弱的学生多看书上的例图,把实物图和平面图结合起来看,先熟练地正推,再慢慢的逆推。有必要的还要在做题时结合草图,不能单凭想象。后面的锥体柱体台体的表面积和体积,把公式记牢问题就不大。做题表求表面积时注意好到底有几个面,到底有没有上下底这类问题就可以。

第二章:点、直线、平面之间的位置关系。这一章除了面与面的相交外,对空间概念的要求不强,大部分都可以直接画图,这就要求学生要多看图,自己画草图的时候要严格注意好实线虚线,这是个规范性问题。关于这一章的内容,牢记直线与直线、面与面、直线与面相交、垂直、平行的几大定理及几大性质,同时能用图形语言、文字语言、数学表达式表示出来。只要这些全部过关这一章就解决了一大半。这一章的难点在于二面角这个概念,难度在于对这个概念无法理解,即知道有这个概念,但就是无法在二面里面做出这个角。对这种情况只有从定义入手,先要把定义记牢,再多做多看,这个没有什么捷径可走。

第四章:圆与方程。能熟练的把一般式方程转化为标准方程,通常的考试形式是等式的一遍含根号,另一边不含,这时就要注意开方后定义域或值域的限制;通过点到点的距离、点到直线的距离与圆半径的大小关系判断点与圆、直线与圆、圆与圆的位置关系。另外注意圆的对称性引起的相切、相交直线的多种情况,这也是常考点。

4.高三数学下册必修一知识点

1.定义:如果一个数列,从第二项开始它的每一项与前一项之都等于同一常数,这个数列就叫等数列,这个常数叫做等数列的公,通常用字母d来表示。同样为数列的等比数列的性质与等数列也有相通之处。

2.数列为等数列的充要条件是:数列的前n项和S可以写成S=an^2+bn的形式(其中a、b为常数).等数列练习题

3.性质1:公为d的等数列,各项同乘以常数k所得数列仍是等数列,其公为kd.

4.性质2:公为d的等数列,各项同加一数所得数列仍是等数列,其公仍为d.

5.性质3:当公d>0时,等数列中的数随项数的增大而增大;当d

函数奇偶性和周期性

子集、全集、 子集、全集 理解 ★★ 选择题、填空题

这是一道高考题目的压轴题

一由于f(2-x)=

f(2+x),

f(7-x)=

f(7+x)

可知f(x)的对称轴为x=2和x=7,

即f(x)不是奇函数。

联立

f(2+x)

f(7-x)=

f(7+x)

推得f(4-x)=

f(14-x)=

f(x)

又f(1)=

f(3)=0

,而f(7)≠0

故函数为非奇非偶函数。

由f(4-x)=

f(14-x)=

f(x)

且函数最难学 基本上整个高中题都可以和函数有关 也是考试的重点闭区间[0,7]上只有f(1)=

f(3)=0

2.圆锥曲线题目条件、结论以向量形式给出。得f(11)=

f(13)=f(-7)=

f(-9)=

即在[-10,0]和[0,10]函数各有两个解

得方程f(x)=0在闭区间[-2005,2005]上的根的个数为802个

函数周期性5个结论的推导是什么?

⑥基本不等式法:转化成型如: ,利用平均值不等式公式来求值域;

函数周期性只有三个推导,分别如下:利用一次函数在区间上的保号性可解决求一类参数的范围问题;

1、如果函数f(x)(x∈D)在定义域内有两条对称轴x=a,x=b则函数f(x)是周期函数(5)互为反函数的图象间的关系: ;,且周期T=2|b-a|(不一定为最小正周期)。

3、如果函数f(x)(x∈D)在定义域内有一条对称轴x=a和一个对称中心B(b, 0)(a≠b),则函数f(x)是周期函数,且周期T=4|b-a|(不一定为最小正周期)。

扩展资料设f(x)是定义在数集M上的函数,如果存在非零常数T具有性质:f(x+T)=f(x),则称f(x)是数集M上的周期函数,常数T称为f(x)的一个周期。如果在所有正周期中有一个最小的,则称它是函数f(x)的最小正周期。

周期函数性质如下:

(1)若T(≠0)是f(x)的周期,则-T也是f(x)的周期。

(2)若T(≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。

(3)若T1与T2都是f(x)的周期,则T1±T2也是f(x)的周期。

(4)若f(x)有最小正周期T,那么f(x)的任何正周期T一定是T的正整数倍。

参考资料来源:

数学函数周期性,奇偶性怎么求?

立体几何初等数列步

周期性:直接将所求的函数f(x)写成f(x+T)根据具体情况求出最小的T值即可

奇偶性:直接考查f(X)=f(-x)和f(x)=-直线与圆的位置关系 直线与圆的位置关系、圆的切线方程、公共弦方程、弦长 运用 ★★★★ 选择题、填空题f(-x)是否成立。前者成立为偶,后者为奇。但一定得注意函数定义域必须关于y轴对称,否则不是奇或偶

版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。