如果你不是数学特强的换
高考数学几何题解题 初二数学几何解题思路和方法
高考数学几何题解题 初二数学几何解题思路和方法
高考数学几何题解题 初二数学几何解题思路和方法
联立
系数
判别式
韦达定理
到这停止
2分钟不用
可以拿到7.8分
再稍微动动应该9分
甚至十分
除非是状元料
要不费半天力气
不值
好多思想
比如
提垂直
就是向量积为零
说等腰
取中点
等等吧
都不是很重要
谁都会说
重要是计算过关
..谢谢
解答任何一个数学题目之前,都要先进行分析。相对于比较难的题目,分析更显得尤为重要。我们知道,解决数学问题实际上就是在题目的已知条件和待求结论中架起联络的桥梁,也就是在分析题目中已知与待求之间异的基础上,消除这些异。当然在这个过程中也反映出对数学基础知识掌握的熟练程度、理解程度和数学方法的灵活应用能力。 又AD平分 所以 所以 由1知BD=CD 在三角形ABE与三角形BDE中 所以三角形ABE相似于三角形BDE 所以AB/AE=BD/BE 即ABBE=AEDC 这个问题不好回答 这个是要看题目的 立体几何坐标系一般要以简化运算为前提来建立 因为现在的立体几何题目比较中性了 不比以前的 其实现在的立体几何题目用解析几何的方法去做说不定更简单 主要是辅助线的作法比较难想 一般建立坐标系来解题主要是运用向量来运算的 所以尽量将需要运算的点放到坐标轴上 这样会比较简化运算的 运算起来也是比较方便的 就高考的难度而言,用空间直角坐标系真的是一定能做出来的,有可能遇到的问题也只是计算量稍大。所以掌握好空间直角坐标系几乎就能保证立体几何得分。 传统方法虽然可能会使计算量减小,但是想要在空间中分析角度长度等等因素是很麻烦的,所以还是不使用传统方法,掌握好坐标系就可以了。 证明四点共圆的基本方法 证明四点共圆有下述一些基本方法:方法1从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆.方法2把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等(同弧所对的圆周角相等),从而即可肯定这四点共圆. (若能证明其两顶角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径。)方法3把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.方法4把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.(根据托勒密定理的逆定理)方法5证被证共圆的点到某一定点的距离都相等,从而确定它们共圆.既连成的四边形三边中垂线有交点,即可肯定这四点共圆. 上述五种基本方法中的每一种的根据,就是产生四点共圆的一种原因,因此当要求证四点共圆的问题时,首先就要根据命题的条件,并结合图形的特点,在这五种基本方法中选择一种证法,给予证明. 判定与性质: 圆内接四边形的对角和为180°,并且任何一个外角都等于它的内对角。 如四边形ABCD内接于圆O,延长AB和DC交至E,过点E作圆O的切线EF,AC、BD交于P,则A+C=π,B+D=π, 角DBC=角DAC(同弧所对的圆周角相等)。 角CBE=角ADE(外角等于内对角) △ABP∽△DCP(三个内角对应相等) APCP=BPDP(相交弦定理) 四点共圆的EBEA=ECED(割线定理) EFEF= EBEA=ECED(切割线定理) (切割线定理,割线定理,相交弦定理统称圆幂定理) ABCD+ADCB=ACBD(托勒密定理Ptolemy) 弦切角定理 方法6 同斜边的两个RT三角形的四个顶点共圆,其斜边为圆的直径四点共圆的定理四点共圆的判定定理方法1 把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆. (可以说成:若线段同侧二点到线段两端点连线夹角相等,那么这二点和线段二端点四点共圆) 方法2 把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆. (可以说成:若平面上四点连成四边形的对角互补或一个外角等于其内对角。那么这四点共圆)反证法证明现就“若平面上四点连成四边形的对角互补。那么这个四点共圆”证明如下(其它画个证明图如后) 已知:四边形ABCD中,∠A+∠C=180° 求证:四边形ABCD内接于一个圆(A,B,C,D四点共圆) 证明:用反证法 过A,B,D作圆O,设C不在圆O上,点C在圆外或圆内, 若点C在圆外,设BC交圆O于C’,连结DC’,根据圆内接四边形的性质得∠A+∠DC’B=180° ,∵∠A+∠C=180° ∴∠DC’B=∠C 这与三角形外角定理矛盾,故C不可能在圆外。类似地可证C不可能在圆内。 ∴C在圆O上,也即A,B,C,D四点共圆 高考数学选择题答题技巧,内容如下: 1、直接法 当选择题是由计算题、应用题、证明题、判断题改编成的时,可直接按计算题、应用题、证明题、判断题来做,确定之后,从选项里找即可。 2、筛选法(排除法) 去伪存真,筛除一些较易判定的的、 不合题意的结论,以缩小选择的范围,再从其余的结论中求得正确的。如筛去不合题意的以后, 结论只有一个,则为应选项。 3、特殊值法 根据中所提供的信息,选择某些特殊情况有些学生没有养成读题、思考的习惯,心里着急,匆匆一看,就开始解题,结果常常是漏掉了一些资讯,花了很长时间解不出来,还找不到原因,想快却慢了。所以,在实际解题时,应特别注意,审题要认真、仔细。进行分析,或某些特殊值进行计算,或将字母 参数换成具体数值代入,或将比例数看成具体数带人,总之,把一般形式变为特殊形式,再进行判断往往十分简单。 4、验证法(代入法) 将各选项逐个代入题干中,进行验证、或适当选取特殊值进行检验、或采取其他验证手段,以判断选择支正误的方法。 5、图象法 可先根椐题意,作出草图,然后参照图形的作法、形状、位置、性质,综合图象的特征,得出结论。 6、试探法 综合性较强、选择对象比较多的试题,要想条理清楚,可以根据题意建立一个几何模型、代数构造,然后通过试探法来选择,并注意灵活地运用上述多种方法。 7、猜答(语感法) 选择题存在凭猜答得分的可能性,我们称为机遇分。 高考数学必考的题型: 主要考查运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。 2、平面向量与三角函数、三而且细节得扣你2分角变换及其应用 这一部分是高考的重点但不是难点,主要出一些基础题或中档题。 3、数列及其应用 这部分是高考的重点而且是难点,要出-些综合题。 4、不等式. 主要考查不等式的求解和证明,且很少单独考查,主要是在解答题中比较大小。高考的重点和难点。 5、概率和统计 这部分和我们的生活联系比较大,属应用题。 主要是证明平行或垂直,求角和距离。要考察对定理的熟悉程度、运用程度。 7、解析几何 考的难点,运算大,一般含参数。 每一年的高考数学题都会有一道十分奇葩的题出现。今年的全国一卷文科卷也有一道十分奇葩的题,那就是计算胡夫金字塔,其侧面三角形底边上的高与底面正方形的边长比值。 我们先来看一下题干,这是一个正四棱锥,我们首先想到的就是正四棱锥的性质,底面是一个正方形。而且题干中也告诉我们这个正四棱锥的高和底面的关系。底面正方形的面积等于侧面三角形的面积,这是一个很规则的正四棱锥,如果你练题练多了的话,你凭借记忆就可以知道这道题的一加根号五比四。 如果列式子计算的话,金字塔高等于h,边长等于a,侧面三角形底边的高h1,那么我们可得h的平方等于四分之根号三a的平方,随后侧面三角形是等边三角形,可以算出h1和a的关系。两个式子化简融合,而且这些式子的化简融合,我记得我上高一,节课数学老师就讲的这些,这都是最基本的运用。这样可以得到正确。 这道题真的是秒出的一道题,很多人感觉难,要是真的难的话,就不会放到前五题的位置。其实这道题和去年的维纳斯的身高有很大的一致性和相同性。去年维纳斯的身高那题虽然难倒了一片人,但是一个比例就可以算出来,只不过是计算比较繁琐复杂而已。而这道题纯考的是你几何的知识和对于字母的运用。好好读读题,稍微想一下这道题,其实很简单。 将底面正方形的边长设成2,高设成x,然后根据已知条件列等式找到x等于什么,然后根据题目要求的列式子,即可求出。 2020高考数学,“金字塔”题解法是有二元一次方程和几何公式算出金字塔的各个部分,然后算出体积和面积即可! 令四棱锥的高为h,侧面三角形的高为h1 ,底面正方形的边长为a ,求h1这道题一出现,就让很多的考生苦不堪言,感觉超出了自己对数学的认知范围,我虽然不是今年的高考生,但是我也看到了这道题,说实话这道题对于我这种理科生来说,真的很简单。无非就是一个比值问题,两边约分即可得出这个比值。:a。 这道题的正确选C。 立体几何不难,最难的是圆锥曲线和导数,高二学。 立体几何看似难,但理解好了,习惯了就不难了,高考(2)根据需要讨论不占太大分值,考的相对简单 圆锥曲线和导数才是决定命运的关键 最难的当三角函数和解三角形一般是个基础性题目,只要公式变形应用熟练就没啥问题,审题要看清楚,如果这个题目是选条件做的,那么多去看看每个条件的逻辑关系,务必保证个大题不要丢分啊。然是函数啦,各种函数。。。立体几何技巧就是多练吧,多练练空间想象力就会比较强 函数,导函数,圆锥曲线,当然还有一些立体几何题出现在了选择题或者填空题一道,这样的立体几何题是比较难的,不过“一般情况”下只要选择题前11道都会做,一道不用做也能秒选了 立体几何最难 圆 椭圆 双曲线其次。导数也很难,但是那道题可以战略性放弃。倒数基础题比前面这两个简单太多了 立体几何是最简单的。。分一定要拿到!难的应该是圆锥曲线导数吧 立体几何是高中最简单的,比初中的平面几何还简单,平面向量才是最难的! 高考数学常考题型答题技巧与方法 1、解决问题 主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含的问题转化为不含的问题。 具体转化方法有: ①分类讨论法:根据符号中的数或式子的正、零、负分情况去掉。 ③两边平方法:适用于两边非负的方程或不等式。 ④几何意义法:适用于有明显几何意义的情况。 2、因式分解 根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是: 提取公因式 选择用公式 分组分解法 拆项添项法一般就求方程 3、配方法 利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。配方法的主要根据有: 4、换元法 解某些复杂的特型方程要用到“换元法”。换元法解方程的一般步骤是: 设元→换元→解元→还元 5、待定系数法 待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。其解题步骤是:①设②列③解④写 6、复杂代数等式 复杂代数等式型条件的使用技巧:左边化零,右边变形。 ①因式分解型: (-----)(----)=0两种情况为或型 ②配成平方型: (----)2+(----)2=0两种情况为且型 7、数学中两个最伟大的解题思路 (1)求值的思路列欲求值字母的方程或方程组 (2)求取值范围的思路列欲求范围字母的不等式或不等式组 8、化简二次根式 基本思路是:把√m化成完全平方式。即: 10、代数式求值 方法有: (1)直接代入法 (2)化简代入法 (3)适当变形法(和积代入法) 注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。 11、解含参方程 方程中除过未知数以外,含有的 其它 字母叫参数,这种方程叫含参方程。解含参方程一般要用‘分类讨论法’,其原则是: (1)按照类型求解 (3)分类写出结论 12、恒相等成立的有用条件 (1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。 (2)ax2+bx+c=0对于任意x都成立关于x的方程ax2+bx+c=0有无数解a=0、b=0、c=0。 13、恒不等成立的条件 由一元二次不等式解集为R的有关结论容易得到下列恒不等成立的条件: 14、平移规律 图像的平移规律是研究复杂函数的重要方法。平移规律是: 15、图像法 讨论函数性质的重要方法是图像法——看图像、得性质。 定义域图像在X轴上对应的部分 值域图像在Y轴上对应的部分 单调性从左向右看,连续上升的一段在X轴上对应的区间是增区间;从左向右看,连广东高考数学压轴题基本上包括:函数与导数;数列;圆锥曲线方程;不等式等。其中,函数思想渗透到每一个方面,可以这么说,函数占高中数学大半壁江山。函数一般要求单调性,可以对函数求导;数列是特殊的函数,要求通项公式,前n项和;圆锥曲线方程一般涉及直线与方程,弦长,中点,对称点,可以联立方程,应用韦达定理,设而不求等方法去求解。具体问题具体分析,没有什么一种方法可以解决全部问题的!有什么不明白可以再提问!!续下降的一段在X轴上对应的区间是减区间。 最值图像点处有值,图像点处有最小值 奇偶性关于Y轴对称是偶函数,关于原点对称是奇函数 16、函数、方程、不等式间的重要关系 方程的根 不等式解集端点 17、一元二次不等式的解法 一元二次不等式可以用因式分解转化为二元一次不等式组去解,但比较复杂;它的简便的实用解法是根据“三个二次”间的关系,利用二次函数的图像去解。具体步骤如下: 二次化为正 判别且求根 画出示意图 解集横轴中 18、一元二次方程根的讨论 一元二次方程根的符号问题或m型问题可以利用根的判别式和根与系数的关系来解决,但根的一般问题、特别是区间根的问题要根据“三个二次”间的关系,利用二次函数的图像来解决。“图像法”解决一元二次方程根的问题的一般思路是: 题意 不等式组 不等式组包括:a的符号;△的情况;对称轴的位置;区间端点函数值的符号。 19、基本函数在区间上的值域 我们学过的一次函数、反比例函数、二次函数等有名称的函数是基本函数。基本函数求值域或最值有两种情况: (1)定义域没有特别限制时---记忆法或结论法; (2)定义域有特别限制时---图像截断法,一般思路是: 画出图像 截出一断 得出结论 20、最值型应用题的解法 应用题中,涉及“一个变量取什么值时另一个变量取得值或最小值”的问题是最值型应用题。解决最值型应用题的基本思路是函数思想法,其解题步骤是: 设变量 列函数 求最值 写结论 21、穿线法 穿线法是解高次不等式和分式不等式的方法。其一般思路是: 首项化正 求根标根 右上起穿 1. 2019高考数学选择题答题技巧及方法 3. 高考数学必考题型以及题型分析 4. 高考数学选择题答题技巧有哪些 5. 2017高考数学常考的题型总结 6. 2017高考常考数学题型归纳 8. 高考数学不同题型的答题技巧 9. 高考数学的核心考点及答题技巧方法 平时做数学题的速度慢,考试的时候速度会更慢。因为考试比较容易紧张,不仅速度慢,还可能会把自己原本会做的题做错。因此掌握一些数学的解题方法尤为重要。下面是我分享的高考数学的解题方法,一起来看看吧。 高考数学的解题方法 熟悉基本的解题步骤和解题方法 解题的过程,是一个思维的过程。对一些基本的、常见的问题,前人已经总结出了一些基本的解题思路和常用的解题程式,我们一般只要顺着这些解题的思路,遵循这些解题的步骤,往往很容易找到习题的。 审题要认真仔细 对于一道具体的习题,解题时最重要的环节是审题。审题的步是读题,这是获取资讯量和思考的过程。读题要慢,一边读,一边想,应特别注意每一句话的内在涵义,并从中找出隐含条件。 常见函式值域或最值的经典求法 函式值域是函式概念中三要素之一,是高考中必考内容,具有较强的综合性,贯穿整个高中数学的始终.而在高考试卷中的形式可谓千变万化,但万变不离其宗,真正实现了常考常新的考试要求。所以,我们应该掌握一些简单函式的值域求解的基本方法。 学会画图 画图是一个翻译的过程,把解题时的抽象思维,变成了形象思维,从而降低了解题难度。有些题目,只要分析图一画出来,其中的关系就变得一目了然。尤其是对于几何题,包括解析几何题,若不会画图,有时简直是无从下手。 因此,牢记各种题型的基本作图方法,牢记各种函式的影象和意义及演变过程和条件,对于提高解题速度非常重要。 离心率的求值或取值范围问题 圆锥曲线的离心率是近年高考的一个热点,有关离心率的试题究其原因,一是贯彻高考命题“以能力立意”的指导思想,离心率问题综合性较强,灵活多变,能较好反映考生对知识的熟练掌握和灵活运用的能力,能有效地反映考生对数学思想和方法的掌握程度;二是圆锥曲线是高中数学的重要内容,具有数学的实用性和美学价值,也是以后进一步学习的基础。 极端性原则 将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。 数列求和方法 数列是高中数学的重要内容,又是高中数学与高等数学的重要衔接点,其涉及的基础知识、数学思想与方法,在高等数学的学习中起着重要作用,因而成为历年高考久考不衰的热点题型,在历年的高考中都占有重要地位。数列求和的常用方法是我们在高中数学学习中必须掌握的基本方法,是高考的必考热点之一。此类问题中除了利用等数列和等比数列求和公式外,大部分数列的求和都需要一定的技巧。 高考数学解题时的注意事项 1.精选题目,避免题海战术 只有解决质量高的、有代表性的题目才能达到事半功倍的效果。然而绝大多数的同学还没有辨别、分析题目好坏的能力,这就需要在老师的指导下来选择复习的练习题,以了解高考题的形式、难度。 2.认真分析题目 3.做好题目总结 解题不是目的,我们是通过解题来检验我们的学习效果,发现学习中的不足,以便改进和提高。因此,解题后的总结至关重要,这正是我们学习的大好机会。对于一道完成的题目,有以下几个方面需要总结: 1在知识方面。题目中涉及哪些概念、定理、公式等基础知识,在解题过程中是如何应用这些知识的。 2在方法方面。如何入手的,用到了哪些解题方法、技巧,自己是否能够熟练掌握和应用。 3能否归纳出题目的型别,进而掌握这类题目的解题方法。 高考数学解题策略 1注意审题。把题目多读几遍,弄清这个题目求什么,已知什么,求、知之间有什么关系,把题目搞清楚了再动手答题。 2答题顺序不一定按题号进行。可先从自己熟悉的题目答起,从有把握的题目入手,使自己尽快进入到解题状态,产生解题的 和欲望,再解答陌生或不太熟悉的题目。若有时间,再去拼那些把握不大或无从下手的题。这样也许能超水平发挥。 3数学选择题大约有70%的题目都是直接法,要注意对符号、概念、公式、定理及性质等的理解和使用,例如函式的性质、数列的性质就是常见题目。 4挖掘隐含条件,注意易错易混点,例如 中的空集、函式的定义域、应用性问题的限制条件等。 5方法多样,不择手段。高考试题凸现能力,小题要小做,注意巧解,善于使用数形结合、特值含特殊值、特殊位置、特殊图形、排除、验证、转化、分析、估算、极限等方法,一旦思路清晰,就迅速作答。不要在一两个小题上纠缠,杜绝小题大做,如果确实没有思路,也要坚定信心,“题可以不会,但是要做对”,即使是“蒙”也有25%的胜率。 6控制时间。一般不要超过40分钟,是25分钟左右完成选择题,争取又快又准,为后面的解答题留下充裕的时间,防止“超时失分”。高考数学中的立体几何题怎样建立坐标系?
二次函数图像高考数学选修22题:几何证明
高考数学常考题型答题技巧与方法有哪些相关 文章 :高考数学选择题答题技巧
2020高考数学,“金字塔”题解法是什么?
1、函数与导数高考数学最难的是什么? 立体几何么?
高考数学常考题型答题技巧与方法有哪些
高考数学的解题方法有哪些
9、观察法
版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。