分部积分法 S表示积分号
关于arcsinx的不定积分的信息
关于arcsinx的不定积分的信息
Sarcsinxdx=xarcsins-Sxdarcsinx=xarcsins-Sx/根号下(1-x^2)dx=xarcsins+0.5S1/根号下(1-x^2)d(1-x^2)=xarcsins+根号下(1-x^2)+C
分部积分法 S表示积分号
Sarcsinxdx=xarcsins-Sxdarcsinx=xarcsins-Sx/根号下(1-x^2)dx=xarcsins+0.5S1/根号下(1-x^2)d(1-x^2)=xarcsins+根号下(1-x^2)+C
是xarcsinx+√(1-x^2)+C
令a=1即可
分部积分法 S表示积分号
Sarcsinxdx=xarcsins-Sxdarcsinx=xarcsins-Sx/根号下(1-x^2)dx=xarcsins+0.5S1/根号下(1-x^2)d(1-x^2)=xarcsins+根号下(1-x^2)+C
是xarcsinx+√(1-x^2)+C
令a=1即可
令arcsinx=u,则x=sinu;dx=cosudu;arccosx=π/2-arcsinx=π/2-u;代入原式得:原式=∫[u(π/2-u)cosudu=(π/2)∫ucosudu-∫u²cosudu=(π/2)∫ud(sinu)-∫u²dsinu。
在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F ,即F ′ = f。不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。这样,许多函数的定积分的计算就可以简便地通过求不定积分来进行。
不可积函数
虽然很多函数都可通过如上的各种手段计算其不定积分,但这并不意味着所有的函数的原函数都可以表示成初等函数的有限次复合。
原函数不可以表示成初等函数的有限次复合的函数称为不可积函数。利用微分代数中的微分Galois理论可以证明,如sinx/x这样的函数是不可积的。
详细解答如下
分部积分法 S表示积分号
Sarcsinxdx=xarcsins-Sxdarcsinx=xarcsins-Sx/根号下(1-x^2)dx=xarcsins+0.5S1/根号下(1-x^2)d(1-x^2)=xarcsins+根号下(1-x^2)+C
是xarcsinx+√(1-x^2)+C
令a=1即可
令arcsinx=u,则x=sinu;dx=cosudu;arccosx=π/2-arcsinx=π/2-u;代入原式得:原式=∫[u(π/2-u)cosudu=(π/2)∫ucosudu-∫u²cosudu=(π/2)∫ud(sinu)-∫u²dsinu。
在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F ,即F ′ = f。不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。这样,许多函数的定积分的计算就可以简便地通过求不定积分来进行。
不可积函数
虽然很多函数都可通过如上的各种手段计算其不定积分,但这并不意味着所有的函数的原函数都可以表示成初等函数的有限次复合。
原函数不可以表示成初等函数的有限次复合的函数称为不可积函数。利用微分代数中的微分Galois理论可以证明,如sinx/x这样的函数是不可积的。
版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。