导数在高考中的考点_导数在高考数学中的地位

高考志愿 2025-01-04 10:19:00

高考对导数的考查主要体现在哪两个方面?

第五类重点问题,这类题时往往觉得有思路,但是没有四、空间向量和立体几何,

一、导数几何意义的应用;二、利用导数研究函数的性质:函数的单调性、函数的极值与最值高考热点:1、用导数求函数的曲线的切线;2、用导数研究函数的单调性;3、用导数研究函数的最值及解决实际应用问题。高考命题走向:今年会在函数的导数、用导数判断或论证函数的单调性,函数的极值与最值、利用导数2)解方程 , 判断导数的正负解决实际问题等方面命题,将会出现一大或一大一小的试题形式。

导数在高考中的考点_导数在高考数学中的地位导数在高考中的考点_导数在高考数学中的地位


导数在高考中的考点_导数在高考数学中的地位


导数在高考中的考点_导数在高考数学中的地位


高考数学主要考什么知识点?

在近十年的高考中,导数综合解答题常常作为压轴之作.这类题由于其解答的方法灵活,没有固定的解题套路,对学生的综合能力要求较高,难度往往很大,得分率极低。下面是我为你整理关于高考函数导数解题方法的内容,希望大家喜欢!

函数与导数,平面向量与三角函数、三角变换及其应用,数列及其应用,不等式。主-数学导数高考考查范围: 1、了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念。要考查不等式的求解和证明,概率和统计,空间位置关系的定性与定量分析,解析几何

高频考点是:三的方法是利用已经掌握的数学知识,分析两类对象之间的关系,通过两类对象已知的相似特征得出所需要的相似特征。角函数;立体几何;数列;不等式;函数与方程;解析几何;概率与统计;

高考导数真的很难吗

2.极端性原则:

掌握到一类题型的解题规律,其实很重要,为什么说导数比较难呢,因为它常常和函数的知识联系到一起,也总是一起去考,所以,导数题型的综合能力就比较强。

江西文科数学高考考点如下:

可以根据以下查看自己所不会的;

Cnm=n!/(n-m)!m!

1、单调性问题

研究函数的单调性问题是导数的一个主要应用,解决单调性、参数的范围等问题,需要解导函数不等式,这类问题常常涉及解含参数的不等式或含参数的不等式的恒成立、能成立、恰成立的求解。由于函数的表达式常常含有参数,所以在研究函数的单调性时要注意对参数的分类讨论和函数的定义域。

2、分离参数构造法

关键是要有切点横坐标,以及利用三句话来列式。具体来说,题目必须出现切点横坐标,如果没有切点坐标,必须自设切点坐标。然后,利用三句话来列式:①切点在切线上;②切点在曲线上;③斜率等于导数。用这三句话,百分之百可以解答全部切线问题。

4、导数在函数极值中的应用

江西文科数学高考考点

①建系——建立适当的坐标系;

一、导数的应用

确定函数在其确定的定义域内可导(通常为开区间),求出导函数在定义域内的零点,研究在零点左、右的函数的单调性,若左增,右减,则在该零点处,函数去极大值;若左边减少。

右边增加,则该零点处函数取极小值。学习了如何用导数研究函数的最值之后,可以做一个有关导数和函数的综合题来检验下学习成果。

2.生活中常见的函数优化问题

1)费用、成本最省问题

2)利润、收益总结:高考中的选择题一般是容易题或中档题,个别题属于较难题,当中的大多数题的解答可用特殊的方法快速选择。例如:估值选择法、特值检验法、顺推解除法、数形结合法、特征分析法、逆推验证法等都是常用的解法.解题时还应特别注意:选择题的四个选择支中有且一个是正确的,因而在求解时对照选择支就显得非常重要,它是快速选择、正确作答的基本前提。问题

3)面积、体积最(大)问题

2.类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。

三、不二、推理与证明等式

对于含有参数的一元二次不等式解的讨论

1)二次项系数:如果二次项系数含有字母,要分二次项系数是正数、零和负数三种情况进行讨论。

2)不等式对应方程的根:如果一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则根据这两个根的大小进行分类讨论,这时,两个根的大小关系就是分类标准,如果一元二次不等式对应的方程根不能通过因式分解的方法求出来。

则根据方程的判别式进行分类讨论。通过不等式练习题能够帮助你更加熟练的运用不等式的知识点,例如用放缩法证明不等式这种技巧以及利用均值不等式求最值的九种技巧这样的解题思路需要再做题的过程中 总结 出来。

高考数学知识点归纳

六、解析几何

高三学生很快就会面临继续学业或事业的选择。面对重要的人生选择,是否考虑清楚了?这对于没有 经验 的学生来说,无疑是个困难的想选择。下面是我整理的高考数学知识点,希望能够帮助大家!

高考数学知识点1

一、高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节

主要是考函数和导数,因为这是整个高中阶段中最核心的部分,这部分里还重点考察两个方面:个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析。

二、平面向量和三角函数

对于这部分知识重点考察三个方面:是划减与求值,,重点掌握公式和五组基本公式;第二,掌握三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质;第三,正弦定理和余弦定理来解三角形,这方面难度并不3、利用导数研究切线问题大。

三、数列

数列这个板块,重点考两个方面:一个通项;一个是求和。

五、概率和统计

概率和统计主要属于数学应用问题的范畴,需要掌握几个方面:……等可能的概率;……;和重复发生的概率。

这部分内容说起来容易做起来难,需要掌握几类问题,类直线和曲线的位置关系,要掌握它的通法;第二类动点问题;第三类是弦长问题;第四类是对称问题;第五类重点问题,这类题往往觉得有思路却没有一个清晰的,但需要要掌握比较好的算法,来提高做题的准确度。

七、压轴题

同学们在的备考复习中,还应该把重点放在不等式计算的 方法 中,难度虽然很大,但是也切忌在试卷中留空白,平时多做些压轴题真题,争取能解题就解题,能思考就思考。

从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,两直线平行;有无穷多解时,两直线重合;只有一解时,两直线相交于一点。常用直线向上方向与 X 轴正向的 夹角( 叫直线的倾斜角 )或该角的正切(称直线的★ 高考数学知识点归纳总结 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();斜率)来表示平面上直线(对于X轴)的倾斜程度。可以通过斜率来判断两条直线是否互相平行或互相垂直,也可计算它们的交角。直线与某个坐标轴的交点在该坐标轴上的坐标,称为直线在该坐标轴上的截距。直线在平面上的位置,由它的斜率和一个截距完全确定。在空间,两个平 面相 交时,交线为一条直线。因此,在空间直角坐标系中,用两个表示平面的三元一次方程联立,作为它们相交所得直线的方程。

高考数学知识点2

一、求动点的轨迹方程的基本步骤

⒈建立适当的坐标系,设出动点M的坐标;

⒉写出点M的;

⒊列出方程=0;

⒋化简方程为最简形式;

⒌检验。

二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

-直译法:求动点轨迹方程的一般步骤

②设点——设轨迹上的任一点P(x,y);

③列式——列出动点p所满足的关系式;

④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;

⑤证明——证明所求方程即为符合条件的动点轨迹方程。

高考数学知识点3

、高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。

主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是个板块。

第二、平面向量和三角函数。

重点考察三个方面:一个是划减与求值,,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。

第三、数列。

数列这个板块,重点考两个方面:一个通项;一个是求和。

第四、空间向量和立体几何,在里面重点考察两个方面:一个是证明;一个是计算。

第五、概率和统计。

这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,……等可能的概率,第二………,第三是,还有重复发生的概率。

第六、解析几何。

这是我们比较头疼的问题,是整个试卷里难度比较大,计算量的题,当然这一类题,我 总结 下面五类常考的题型,包括:

类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法;

第二类我们所讲的动点问题;

第三类是弦长问题;

第四类是对称问题,这也是2008年高考已经考过的一点;

第七、押轴题。

考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。

高考数学知识点4

(一)导数定义

设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有增量△x(x0+△x也在该邻域内)时,相应地函数取得增量△y=f(x0+△x)-f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f'(x0),即导数定义

(二)导数第二定义

(三)导函数与导数

如果函数y=f(x)在开区间I内每一点都可导,就称函数f(x)在区间I内可导。这时函数y=f(x)对于区间I内的每一个确定的x值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y',f'(x),dy/dx,df(x)/dx。导函数简称导数。

(四)单调性及其应用

1.利用导数研究多项式函数单调性的一般步骤

(1)求f¢(x)

2.用导数求多项式函数单调区间的一般步骤

(1)求f¢(x)

高考数学知识点5

1定义

(1)从n个不同元素中取出m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一排列。

(2)从n个不同元素中取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Amn.

2排列数的公式与性质

(1)排列数的公式:Amn=n(n-1)(n-2)…(n-m+1)

特例:当m=n时,Amn=n!=n(n-1)(n-2)…×3×2×1

规定:0!=1

二、组合

1定义

(1)从n个不同元素中取出m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合

(2)从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号Cmn表示。

2比较与鉴别

由排列与组合的定义知,获得一个排列需要“取出元素”和“对取出元素按一定顺序排成一列”两个过程,而获得一个组合只需要“取出元素”,不管怎样的顺序并成一组这一个步骤。

排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。

三、排列组合与二项式定理知识点

1.计数原理知识点

①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分类)

2.排列(有序)与组合(无序)

Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)!Ann=n!

Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?k!=(k+1)!-k!

3.排列组合混合题的解题原则:先选后排,先分再排

排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素.以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.

捆绑法(元素法,把某些必须在一起的元素视为一个整体考虑)

插空法(解决相间问题)间接法和去杂法等等

在求解排列与组合应用问题时,应注意:

(1)把具体问题转化或归结为排列或组合问题;

(2)通过分析确定运用分类计数原理还是分步计数原理;

(3)分析题目条件,避免“选取”时重复和遗漏;

(4)列出式子计算和作答.

经常运用的数学思想是:

①分类讨论思想;②转化思想;③对称思想.

①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn

特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn

二项式系数在中间。(要注意n为奇数还是偶数,是中间一项还是中间两项)

所有二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n

奇数项二项式系数的和=偶数项而是系数的和

③通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。

5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。

6.注意二项式系数与项的系数(字母项的系数,指定项的系数等,指运算结果的系数)的区别,在求某几项的系数的和时注意赋值法的应用。

高考数学知识点归纳相关 文章 :

★ 高考数学知识点归纳总结大全

★ 高考数学知识点总结归纳

★ 高考数学知识点整理

★ 高考数学知识点总结大全

★ 高考数学知识点总结大全

★ 高考数学知识点总结整理

★ 高考数学知识点归纳总结

★ 高考数学知识点归纳总结

高考数学中容易出错的知识点都有哪些?

物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示.如,导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性.

不等式篇:一般地,用纯粹的大于号“>”、小于号“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)“≥”、不大于号(小于或等于号)“≤”连接的不等式称为非严格不等式,或称广义不等式。总的来说,用不等号(<,>,≥,高中数学导数怎学习方法如下:≤,≠)连接的式子叫做不等式。

4.二项式定理知识点:

篇:是数学中一个基本概念,它是论的研究对象,论的基本理论直到19世纪才被创立。最简单的说法,即是在最原始的论——朴素论中的定义,就是“一堆东西”。里的“东西”,叫作元素。更多知识点可关注下新东方中学全科教育的高考数学寒住宿班课程。

其实哪里都需要仔细认真吧,从开始的映射函数,定义域,对应关系,图像,指数函数幂函数,对数函数,导数求解,解析几何方面,异面直线,面与面线和面之间夹角,三角函数和平面向量,基本的定理和运算,数列求通项,求和,不等式求解,一元二次方程求解,直线方程,圆的方程,对称性,统计概率,二项式定理等等。多在生活中锻炼数学思维,也是不容易出错的。

高考数学主要考什么知识点?

利用数学定理、公式、法则、定义和题意,通过直接演归纳推理:归纳推理是 高二数学 的一个重点内容,其难点就是有部分结论得到一般结论,的 方法 是充分考虑部分结论提供的信息,从中发现一般规律;类比推理的难点是发现两类对象的相似特征,由其中一类对象的特征得出另一类对象的特征。算推理得出结果的方法。

函数与导数,平面向量与三角函数、三角变换及其应用,数列及其应用,不等式。主要考查不等式的求解和证明,概率和统计,空间位置关系的定性与定量分析,解析几何

高频考点是:三角函数;立体几何;数3)列表由导函数的正负确认原函数的单调性和极值、最值列;不等式;函数与方程;解析几何;概率与统计;

高中数学选修2-2的导数、微积分部分难吗?高考中占的分值大吗?

1.用导数研究函数的最值

在于你学会与否,会者不难,导数可能分值小些,微积分可能单考没两道,偶尔有题的结果可能会用到!

可导的函数一定连续.不连续的函数一定不可导.

不难,占得分值也不高,而且考得都是简单的

积分不难,②主要性质和主要结论:对称性Cnm=Cnn-m但是有的导数题跟函数大题在一起考,有点绕

高考函数导数解题方法

2.常规步骤:

高考函数导数解题方法

利用导数的知识来求函数极值是高中数学问题比较常见的类型。利用导数求函数极值的一般步骤是:(1)首先根据求导法则求出函数的导数;(2)令函数的导数等于0,从而解出导函数的零点;(3)从导函数的零点个数来分区间讨论,得到函数的单调区间;(4)根据极值点的定义来判断函数的极值点,再求出函数的极值。

做导数题要细心一定要看看题目中有无lnx,log之类的别忘了看有无lnx,log之类的因为如果有lnx,log,x要>0还要细心地是分母不等于0还有很多导数选择题要看看能不能判断出奇函数还是偶函数一旦判断出来,离最终就近了一大步很多导数选择题要构造函数才能解出导数解答题一般要考虑分类讨论,如果是求单调区间,取值范围就只能用区间表示,不能用表示。对原函数求导前先看看能不能化简,先化简在求导可以省很多时间计算粗心率也大大减少也有很多导数题要求导2次如果函数中有一个未知数,一般将这个未知数捞出比如f(x)=ax?-3x+1>0应该化为a>3/x?-1/x?

高考数学小题答题技巧

选择题从难度上讲是比其他类型题目降低了,但知识覆盖面广,要求解题熟练、准确、灵活、快速。选择题的解题思想,渊源于选择题与常规题的联系和区别。它在一定程度上还保留着常规题的某些痕迹。

而另一方面,选择题在结构上具有自己的特点,即至少有一个(若一元选择题则只有一个)是正确的或合适的。因此可充分利用题目提供的信息,排除迷惑支的干扰,正确、合理、迅速地从选择支中选出正确支。选择题中的错误支具有两重性,既有干扰的一面,也有可利用的一面,只有通过认真的观察、分析和思考才能揭露其潜在的暗示作用,从而从反面提供信息,迅速作出判断。

由于我多年从事高考试题的研究,尤其对选择题我有自己的一套考试技术,我知道无论是什么科目的选择题,都有它固有的漏洞和具体的解决办法,我把它总结为:6大漏洞、8则。

“6大漏洞”是指:

有且只有一个正确;不问过程只问结果;题目有暗示;有暗示;错误有严格标准;正确有严格标准;

“8大原则”是指:

选项原则;范围原则;定量转定性原则;选项对比原则;题目暗示原则;选择项暗示原则;客观接受原则;语言的度原则。经过我的培训,很多的学生的选择题甚至1分都不丢。

下面是一些实例:

1.特值检验法:

对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。

3.剔除法:

利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的,从而达到正确选择的目的。这是一种常用的方法,尤其是为定值,或者有数值范围时,取特殊点代入验证即可排除。

4.数形结合法:

由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

5.递推归纳法:

通过题目条件进行推理,寻找规律,从而归纳出正确的方法。

6.顺推解除法:

7.逆推验证法(代入题干验证法):

将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。

8.正难则反法:

从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。

9.特征分析法:

对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。

10.估值选择法:

高考数学答题殊技巧

二、解题技巧。选择题只管结果,不管中间过程,因此在解题过程中可以大胆的简化中间过程,但简化毕竟是简化,数学是一门具有高度精密逻辑性的严谨的科学,没有充分的依据,所有的条件反射都是错误的,只有找到对的依据、逻辑思维过程、验证,才可确定,“做题不可以凭印象来,凡‘不多就是’的都是错误的,无十足把握的都是错误的”。选择题毕竟是简单的甚至可以口算的,思路也是简单的,如果没思路、做不下去或觉得复杂,或者发现做的时候需要大量计算的时候,可以明确的告诉自己,你的方向错了,可以换一种思路了。

1.直接法当选择题是由计算题、应用题、证明题、判断题改编成的时,可直接按计算题、应用题、证明题、判断题来做,确定之后,从选项里找即可。

2.筛选法(排除法)去伪存真,筛除一些较易判定的的、不合题意的结论,以缩小选择的范围,再从其余的结论中求得正确的。如筛去不合题意的以后,结论只有一个,则为应选项。

3.特殊值法根据中所提供的信息,选择某些特殊情况进行分析,或某些特殊值进行计算,或将字母参数换成具体数值代入,或将比例数看成具体数带人,总之,把一般形式变为特殊形式,再进行判断往往十分简单。

4.验证法(代入法)将各选项逐个代入题干中,进行验证、或适当选取特殊值进行检验、或采取其他验证手段,以判断选择支正误的方法。5.图象法可先根椐题意,作出草图,然后参照图形的作法、形状、位置、性质,综合图象的特征,得出结论。

6.试探法综合性较强、选择对象比较多的试题,要想条理清楚,可以根据题意建立一个几何模型、代数构造,然后通过试探法来选择,并注意灵活地运用上述多种方(2)f¢(x)>0的解集与定义域的交集的对应区间为增区间;f¢(x)<0的解集与定义域的交集的对应区间为减区间法。

7.猜答(语感法)选择题存在凭猜答得分的可能性,我们称为机遇分。这种机遇对每个考生是均等的。猜答,并不是“点一点二点三点四,点住谁了算谁嘞”或是“鸡毛蒜皮”类的。而是在筛选后的选项里进行猜答,而且猜时不能用上面说的类似弱智法,要看着谁顺眼就选谁,看哪个更可能选哪个。在答题中因找不到充分的根据确定正确选项时,可以将试题默读几遍,自己感觉读起来不别扭,语言流畅顺口,即可确定为。这方法是万不得已之时才用的,因为大多数人在考试上一遇到稍微难一点点的题就心慌,为了给后面的大题留时间,此时就要用此法。

8.特征法(对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法)。根据题干的特征,又加上做了那么多的题,一看题的特征再一看选项,条件反射,就能选出,但还要按部就班地去做用验证法得正确。利用选项之间的关系,即利用干扰选项做题。选择题除了正确外,其他的都是干扰选项,除非是乱出的选项,否则都是可以利用选项的干扰性做题。

一般出题者不会随意出个选项,总是和正确有点关系,或者是可能出错的结果,我们就可以借助这个命题过程得出正确的结论。如两个选项意思完全相反,则两个之间必有正确。四个选项中有一个选项不属于同一范畴,那么,余下的三项则为选择项。如有两个选项不能归类时,则根据优选法选出其中一个选项作为自己的选择项。只有一个,且是与其它选项比出来的。利用题干与选项的联系。选择题必定考察课本知识,做题过程中,可以判断和课本哪个知识相关?那个选项与这个知识点无关的可立即排除,与题干联系不太紧密的大半排除,答非所问的立即排除。

9.联想法(同似法)(归结法)直接法的变形法有时一读到题就有种做过的感觉,那么此时,你就联想以前做过的题和总结的结论,看是否相同伙相似,寻找联系及区别,此时要严谨,千万不能出现思维错误思维定势,不能不多就是它了

10.估值法有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。

猜你感兴趣:

1. 高考数学函数与导数易错知识点汇总

2. 高考数学函数与导数易错知识点

3. 2017高考数学函数与导数专项练习题及

4. 高三数学函数与导数复习

5. 高中数学常用导数公式

版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。