建议你要是找不到文科的题,可以看看理科倒数第二题,或是理科一题除了一问的问题。。。其实想追求更高分重要的是你对于整套卷子把握,一是要细心,第二就是对时间的分配,良好的时间分配可以提高分数。
高考文科数学预测卷 高考数学预测题文科
高考文科数学预测卷 高考数学预测题文科
高考文科数学预测卷 高考数学预测题文科
到豆丁1.知道(了解、模仿):要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它,这一层次所涉及的主要行为动词有:了解,知所以平面,道、识别,模仿,会求、会解等.网上查查吧
看十年高考
你先于是.注册到考试网上.注册成会员之后,
等两天就OK.
你先注册到考试网上.注册成会员之后,就OK.
先注册然后点击"免费赚点"就可以了
在会员中心应该就有这类的设置,
全国卷高考文科数学考试试卷结构
全卷分为第Ⅰ卷和第Ⅱ卷两部分。
第Ⅰ卷为12个选择题,全部为必考内容.第Ⅱ卷为非选择题,分为必考和选考两部分.必考部分题由4个填空题和5个解答题组成;选考部分由选修系列4的“几何证明选讲”、“坐标系与参数方程”、“不等式选讲”各命制1个解答题,考生从3题中任选1题作答,若多做,则按所做的题给分。
1.试题类型
试题分为选择题、填空题和解答题三种题型.选择题是四选一型的单项选择题;填空题只要求直接填写结果,不必写出计算或推证过程;解答题包括计算题、证明题,解答题要写出文字说明、演算步骤或推证过程.三种题型分数的百分比约为:选择题40%左右,填空题10%左右,解答题50%左右。
2.难度控制
试题按其难度分为容易题、中等难度题和难题.难度在0.7以上的试题为容易题,难度为0.4—0.7的试题是中等难度题,难度在0.4以下的试题界定为难题.三种难度的试题应控制合适的分值比例,试卷总体难度适中.
二.全国卷高考文科数学考核目标与要求
(一)知识要求
知识是指《普通高中数学课程标准(实验)》所规定的必修课程、选修课程系列1和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算,处理数据、绘制图表等基本技能.
对知识的要求由低到高分为三个层次,依次是知道(了解、模仿)、理解(作)、掌握(运用、迁移),且高一级的层次要求包括低一级的层次要求.
2.理解(作):要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识作正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题作比较、判别、讨论,具备利用所学知识解决简单问题的能力,这一层次所涉及的主要行为动词有:描述,说明,表达、表示,推测、想象,比较、判别、判断,初步应用等。
3.掌握(运用、迁移):要求能够对所列的知识内容能够推导证明,利用所学知识对问题能够进行分析、研究、讨论,1.答题前,考生先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上并且加以解决,这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等。
能力是指空间想像能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识。
1.空间想像能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质。
2.抽象概括能力:对:D具体的、生动的实例,在抽象概括的过程中,发现研究对象的本质;从给定的大量信息材料中,概括出一些结论,并能应用于解决问题或作出新的判断。
3.推理论证能力:根据已知的事实和已获得的正确数学命题,论证某一数学命题真实性的初步的推理能力.推理包括合情推理和演绎推理,论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法.一般运用合情推理进行猜想,再运用演绎推理进行证明。
4.运算求解能力:会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算。
5.数据处理能力:会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息,并作出判断.数据处理要依据统计或统计案例中的方法对数据进行整理、分析,并解决给定的实际问题。
6.应用意识:能综合应用所学数学知识、 思想和方法解决问题,包括解决在相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题,建立数学模型;应用相关的数学方法解决问题并加以验证,并能用数学语言正确地表达和说明.应用的主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决。、
7.创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行的思考、探索和研究,提出解决问题的思路,创造性地解决问题.创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强。
(三)个性品质要求
个性品质是指考生个体的情感、态度和价值观.要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义,要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神。
(四)考查要求
数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识在各自发展过程中的纵向联系和各部分知识之间的横向联系,要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的框架结构.对数学基础知识的考查,要求既全面又要突出重点,对于支撑学科知识体系的重点内容,要占有较大的 比例,构成数学试卷的主体,注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面.要从学科的整体高度和思维价值的高度考虑问题,在知识网络交汇点设计试题,使对数学基础知识的考查达到必要的深度。数学思想和方法是数学知识在更高层次上的抽象和概括,蕴涵在数学知识发生、发展和应用的过程中,能够迁移并广泛用于相关学科和生活.因此,对数学思想和方法的考查必然要与数学知识的考查结合进行,通过对数学知识的考查,反映考生对数学思想和方法理解和掌握的程度.考查时要从学科整体意义和思想价值立意,要有明确的目的,加强针对性,注重通性通法,淡化特殊技巧,有效地检测考生对中学数学知识中所蕴涵的数学思想和方法的掌握程度。
数学是一门思维的科学,是培养理性思维的重要载体,通过空间想象、直觉猜想、归纳抽象、符号表达、运算推理、演绎证明和模式构建等诸方面,对客观事物中的数量关系和数学模式作出思考和判断,形成和发展理性思维,构成数学能力的主题.对能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料.对知识的考查侧重于理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度以及进一步学习的潜能。
对能力的考查,以思维能力为核心.全面考查各种能力,强调综合性、应用性,切合学生实际.运算能力是思维能力和运算技能的结合,它不仅包括数的运算,还包括式的运算,对考生运算能力的考查主要是对算理合逻辑推理的考查,以含字母的式的运算为主.空间想象能力是对空间形式的观察、分析、抽象的能力,考查时注意与推理相结合.实践能力在考试中表现为解答应用问题,考查的重点是客观事物的数学化,这个过程主要是依据现实的生活背景,提炼相关的数量关系,构造数学模型,将现实问题转化为数学问题,并加以解决.命题时要坚持“贴近生活,背景公平,控制难度”的原则,要把握好提出问题所涉及的数学知识和方法的深度和广度,要结合中学数学教学的实际,让数学应用问题的难度更加符合考生的水平,考试自觉地置身于现实的大环境中,关心自己身边的数学问题,促使学生在学习和实践中形成和发展数学应用的意识。
创新意识和创造能力是理想思维的高层次表现.在数学的学习和研究过程中,知识的迁移、组合、融会的程度越高,展示能力的区域就越宽泛,显现出的创造意识也就越强.命题时要注意试题的多样性,涉及考查数学主体内容,体现数学素质的题目,反映数、形运动变化的题目,研究型、探索型或开放型的题目,让考生思考,自主探索,发挥主观能动性,探究问题的本质,寻求合适的解题工具,梳理解题程序,为考生展现创新意识、发挥创造能力创设广阔的空间。
,函数与导数
主要考点:利用函数单调性比较大小、分段函数、函数周期性、函数奇偶性、函数单调性、函数零点和利用导数求值。
第二,平面向量与三角函数、三角变换及其应用
这一部分是高考的重点但不是难点,主要出一些基础题或中档题。主要考向量的运算、应用等题型。
第三,数列及其应用
这部分是高考的重点而且是难点,主要出一些综合题。主要考求数列通项、数列求或一些相关应用题型。
第四,不等式
主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。主要考不等式的解法、不等式的证明、不等式的应用等题型。
第五,概率和统计
这部分和我们的生活联系比较大,属应用题,主要出一些基础题或中档题,难度不是很大。主要考线性回归、抽样方法、二项分布等题型。
第六,空间向量与立体几何
第七,解析几何
几何是高考的难点,运算量大,一般含参数。高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。主要考直线方程、圆的方程、圆锥曲线和对称性问题等题型。
针对数学一定要全面、系统的复习基础知识,正确理解概念、定理和公式。尤其是公式一定要准确记忆,以不变应万变。
必考题有:选择题,填空题,解答题 。学校发的总复习的书上会有的。
一、选择题
二、填空题
三、解答题
选择题
填空题
解答题
学校发的总复习的书上会有的
选择题
填空题
解答题
去看你们省份往年的高考题目
文科 数学 会考哪些题型呢?什么题型是最常考的?高三文科生在复习时要着重复习哪些题型呢?下面和我一起来看看吧!
文科数学常考题型有哪些
圆/坐标系与参数方程/不等式
一般全国卷文科数学的第22至24题会考圆/坐标系与参数方程/不等式三道选做题。参数方程是大家选做最多的一道题,参数方程主要考查轨迹方程计算方法、三角换元求最值、极坐标方程和直角坐标方程转化等,这道题相对容易做。
函数
一般全国卷文科数学的第21题会考函数题。高考对三角函数知识主要考查三角函数及解三角形两部分知识。主要知识点有三角函数概念。恒等变形、同角关系等。三角函数还可以和向量知识结合在一起考,也可以和正弦定理、余弦定理结合起来一起考查。
解析几何
一般全国卷文科数学的第20题会考解析几何题。解析几何也不是难题,只要大家平时努力,这些题目都算是相对简单的。所以大家不要有畏难情绪,认为这是2道大题就觉得有多难,其实如果你认认真真去做了,这道题还是有希望做对的。退一步来说,即便是真的不会了,那也可以得一些步骤分,前一两问还是没问题的。
立体几何
一般全国卷文科数学的第19题会考立体几何题。例题几何也不难,但大家一定要敢于尝试,敢于动笔写,不要说没有做题思路就放弃这道题。只要你按照常规的方法做就可以,然后一步步分析下去,边分析边写步骤,结果自然就出来了。如果没思路可以尝试2种以上的方法做。
一般全国卷文科数学的第17题会考三角函数或数列题。数列是最简单的题目,或许你觉得它难,但它能放在道大题的位置,就说明你不应该丢分。数列题可以多总结一些类型题,分析归类,找到其中规律,题做多了,自然就有思路了。
文科数学成绩怎么提高
文科数学的一大特色,就在于你可以通过有效的总结来代替无尽的习题。总结并不代表一味地抄公式抄概念,而应该用自己的语言和做题经验归纳出针对自身的解题技巧,这也就是我所谓的“翻译”。事实上,高三一年我花在总结上的工夫与做题相比有过之而无不及。
粗心大意是文科数学学习中难以绕过的一大障碍,然而粗心只是表象,追本溯源仍是不够熟练。心态的调整亦无需花费额外的精力。我所采取的措施是在临考一个月时找来近三年的 高考试题 ,在规定的时间内细做一遍,并将写在卷上,达到降低高考恐惧感,增强自信心的目的。
我:高考数学复习重点题型有哪些
“偷懒”的要任就在于减少复习的负荷量。数学学习的负荷是永无止境的题海。开学伊始,我便整理出一个大体的概念框架,突出重点和难点。这样在般全国卷文科数学的第18题会考概率题。概率题相对比较简单,也是必须得分的题,这道题主要频数分布表、频率分布直方图、回归方程的求法、概率计算、相关系数的计算等等。主要还是对作图和识图能力考查比较多。一轮复习大家都埋头做题之时,我便早早地跳出了题海。省下时间只是手段,把精力花在研究“精题”上才是目由正弦定理得.的。经验表明,选做精题为短期内成绩攀升打下了坚实的基础。
还是做真题吧,因为我们毕竟都是为了高考的。真题的考点和每年不会有太大别的。天利38套也不错,如果有时间的话,也是可以做做的,如果时间不是那么充足还是直接看真题吧~
空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。主要考察对定理的熟悉程度、运用程度。主要考空间向量及其运算和空间向量的应用等题型。都不错,数学模拟卷为考前各学校模拟用.
其实高考真题也是要分省份的,其实你所参加的也就那么几年的。不过真题确实应该做、而天利呢,如果是针对你们省份的好多题,可以适当做做
模拟卷都概率是一些模拟练习的题目,而真题都是历年的高考了试题,各省的都有
孩子,07年的新课标卷是宁夏海南卷。
2007年普通高等学校招生全国统一考试
文科数学(宁夏、 海南卷)
本试卷分第I卷(选择题)和第II卷(非选择题)两部分.第II卷第22题为选考题,其他题为必考题.考生作答时,将答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回.
注意事项:
的准考证号、姓名,并将条形码粘贴在指定位置上.
2.选择题使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂基他标号,非选择题使用毫米的黑色中性(签字)笔或炭素笔书写,字体工整、笔迹清楚.
3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的无效.
4.保持卡面清洁,不折叠,不破损.
5.作选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的标号涂黑.
参考公式:
样本数据,,,的标准 锥体体积公式
其中为标本平均数 其中为底面面积,为高
柱体体积公式 球的表面积、体积公式
,其中为底面面积,为高 其中为球的半径
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,
只有一项是符合题目要求的.
1.设,则()
A. B.
C. D.
【解析】由,可得.
:A
2.已知命题,,则()
A., B.,
C., D.,
【解析】是对的否定,故有:
:C
3.函数在区间的简图是()
【解析】排除B、D,排除C。也可由五点法作图验证。
:A
4.已知平面向量,则向量()
A. B.
【解析】
5.如果执行右面的程序框图,那么输出的()
A.2450 B.0
C.2550 D.2652
【解析】由程序知,
:C
6.已知成等比数列,且曲线的顶点是,则等于()
A.3 B.2 C.1 D.
【解析】曲线的顶点是,则:由
成等比数列知,
:B
7.已知抛物线的焦点为,点,
在抛物线上,且,则有()
A. B.
C. D.
【解析】由抛物线定义,即:.
:C
8.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),
可得这个几何体的体积是()
A. B.
C. D.
【解析】如图,
:B
9.若,则的值为()
A. B. C. D.
【解析】
:C
A. B. C. D.
【解析】:曲线在点处的切线斜率为,因此切线方程为则切线与坐标轴交点为所以:
11.已知三棱锥的各顶点都在一个半径为的球面上,
球心在上,底面,,
则球的体积与三棱锥体积之比是()
A. B. C. D.
【解析】如图,
12.甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表
甲的成绩
环数 7 8 9 10
频数 5 5 5 5
环数 7 8 9 10
频数 6 4 4 6
丙的成绩
环数 7 8 9 10
频数 4 6 6 4
分别表示甲、乙、丙三名运动员这次测试成绩的标准,则有()
A. B.
C. D.
【解析】
:B
第Ⅱ卷
本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题为选考题,考生根据要求做答.
二、填空题:本大题共4小题,每小题5分.
13.已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,
则该双曲线的离心率为.
【解析】如图,过双曲线的顶点A、焦点F分别向其渐近线作垂线,垂足分别为B、C,
则:
:3
14.设函数为偶函数,则.
【解析】
:-1
15.是虚数单位,.(用的形式表示,)
【解析】
:
16.已知是等数列,,其前5项和,则其公.
【解析】
:
三、解答题:解答应写出文字说明,证明过程或演算步骤.
17.(本小题满分12分)
如图,测量河对岸的塔高时,可以选与塔底在同一水平面内的两个测点与.现测得,并在点测得塔顶的仰角为,求塔高.
【解析】在中,.
所以.
在中,.
18.(本小题满分12分)
如图,为空间四点.在中,.
等边三角形以为轴运动.
(Ⅰ)当平面平面时,求;
(Ⅱ)当转动时,是否总有?
证明你的结论.
【解析】(Ⅰ)取的中点,连结,
因为是等边三角形,所以.
当平面平面10.曲线在点处的切线与坐标轴所围三角形的面积为()时,
因为平面平面,
可知
(Ⅱ)当以为轴转动时,总有.
证明:
(ⅰ)当在平面内时,因为,
所以都在线段的垂直平分线上,即.
(ⅱ)当不在平面内时,由(Ⅰ)知.又因,所以.
又为相交直线,所以平面,由平面,得.
综上所述,总有.
19.(本小题满分12分)设函数
(Ⅰ)讨论的单调性;
(Ⅱ)求在区间的值和最小值.
【解析】的定义域为.
(Ⅰ).
当时,;当时,;当时,.
从而,分别在区间,单调增加,在区间单调减少.
(Ⅱ)由(Ⅰ)知在区间的最小值为.
所以在区间的值为.
20.(本小题满分12分)设有关于的一元二次方程.
(Ⅰ)若是从四个数中任取的一个数,是从三个数中任取的一个数,
求上述方程有实根的概率.
(Ⅱ)若是从区间任取的一个数,是从区间任取的一个数,
求上述方程有实根的概率.
【解析】设为“方程有实根”.
当,时,方程有实根的充要条件为.
(Ⅰ)基本共12个:
.其中个数表示的取值,第二个数表示的取值.
中包含9个基本,发生的概率为.
(Ⅱ)试验的全部结束所构成的区域为.
构成的区域为.
所以所求的概率为.
21.(本小题满分12分)
在平面直角坐标系中,已知圆的圆心为,过点
且斜率为的直线与圆相交于不同的两点.
(Ⅰ)求的取值范围;
如果不存在,请说明理由.
【解析】(Ⅰ)圆的方程可写成,所以圆心为,过
且斜率为的直线方程为.
代入圆方程得,
整理得.①
直线与圆交于两个不同的点等价于
,解得,即的取值范围为.
由方程①,
②又.③
而.
所以与共线等价于,
将②③代入上式,解得.
由(Ⅰ)知,故没有符合题意的常数.
22.请考生在A、B两题中任选一题作答,如果多做,则按所做的题记分.作答时,
用2B铅笔在答题卡上把所选题目对应的标号涂黑.
22.A(本小题满分10分)选修4-1:几何证明选讲
如图,已知是的切线,为切点,是的割线,与
交于两点,圆心在的内部,点是的中点.
(Ⅰ)证明四点共圆;
(Ⅱ)求的大小.
【解析】(Ⅰ)证明:连结.
因为与相切于点,所以.
因为是的弦的中点,所以.
由圆心在的内部,可知四边形的对角互补,
所以四点共圆.
(Ⅱ)解:由(Ⅰ)得四点共圆,所以.
由(Ⅰ)得.
由圆心在的内部,可知.
所以.
22.B(本小题满分10分)选修4-4:坐标系与参数方程
和的极坐标方程分别为.
(Ⅰ)把和的极坐标方程化为直角坐标方程;
(Ⅱ)求经过,交点的直线的直角坐标方程.
【解析】以有点为原点,极轴为轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.
所以.
即为的直角坐标方程.
同理为的直角坐标方程.三角函数/数列
(Ⅱ)由
解得.
即,交于点和.
过交点的直线的直角坐标方程为.
f(-x)+f(x)=2,f(0)=1,所以函数图象关于点(0,1)对称,则当考虑x>0时,图象右侧的值即为左侧的最小值,由对称性可得,M+m的和也为2。另外,y=1为函数的渐近线。
(Ⅰ乙的成绩),,由得.其实很简单的 f(x)=[(1+x^2)+sinx]/(x^2+1)=1+(2x+sinx)/(x^2+1),令g(x)=(2x+sinx)/(x^2+1),g(x)是奇函数值最小值互为
版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。