高考数学考的最多的知识点:
高考函数数学知识点_高考数学函数经典题型
高考函数数学知识点_高考数学函数经典题型
高考函数数学知识点_高考数学函数经典题型
、简易逻辑(4个)
1.元素与间的运算
2.四种命题之间的关系
3.全称、特称命题
4.充要条件
函数与导数(13个)
1.比较大小
2.分段函数
顶点任庖缓扔诤竺媪礁S盏脊骄褪呛茫夯蟠蠡。?nbsp;3.函数周期性
4.函数奇偶性
5.函数的单调性
6.函数的零点
8.定积分的计算
9.导数与曲线的切线方程
10.最值与极值
11.求参数的取值范围
12.证明不等式
13.数学归纳法
数列(4个)
1.数列求值
2.证明等、等比数列
3.递推数列求通顶公式
4.数列前n项和
三角函数(4个)
1.求值化简(同角三角函数的基本关系式)
2.正弦函数、余弦函数的图象和性质(函数图象变换、函数的周期性、函数的奇偶性、函数的单调性)
3.二倍角的正、余弦、辅助角公式的化简
4.解三角形(正、余弦定理,面积公式)
平面向量(3个⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.)
1.模长与向量的数量积
2.夹角的计算
3.向量垂直、平行的判定
不等式(3个)
1.不等式的解法
2. 基本不等式的应用(化简、证明、求最值)
3.简单线性规划问题
直线和圆的方程(3个)
1.直线的倾斜角和斜率
2.两条直线平行与垂直的条件
3.点到直线的距离
圆锥曲线(4个)
1.求标准方程
2.求离心率
3.弦长
4.直线与圆锥曲线的位置关系
空间简单几何体(3个)
1.线、面垂直与平行的判定
2.夹角与距离的计算
3.三视图(体积、表面积、视图判断)
排列、组合、二项式定理 (3个)
1.分类计数原理与分步计数原理
2.排列、组合的常用方法
概率与统计(6个)
1.抽样方法
2.频率分布直方图
3.古典概型与几何概型
4.条件概率
5. 离散型随机变量的分布列、期望和方
6.线性回归方程与性检验
复数(3个)
1.复数的四则运算
2.复数的模长与共轭复数
3.复数与复平面的点的位置
框图(3个)
1.按流程计算结果
2.循环结构条件的判断
3.程序语言的读取
极坐标与参数方程(2个)
1.极坐标与直角坐标之间的互化
2.参数方程的化简
不等式选讲(2个)
1.含不等式的解法(零点分段法)
2. 利用不等式求参数的取值范围
1.高三数学必修五知识点梳理
3.高三数学下册必修一知识点等比数列的基本性质
⑵对任何m、n,在等比数列{a}中有:a=a·q,特别地,当m=1时,便得等比数列的通项公式,此式较等比数列的通项公式更具有普遍性。
⑶一般地,如果t,k,p,…,m,n,r,…皆为自然数,且t+k,p,…,m+…=m+n+r+…(两边的自然数个数相等),那么当{a}为等比数列时,有:a、a、a、…=a、a、a、…。
⑷若{a}是公比为q的等比数列,则{|a|}、{a}、{ka}也是等比数列,其公比分别为|q|}、{q}、{q}。
⑹如果{a}是等比数列,那么对任意在n,都有a·a=a·q>0。
⑺两个等比数列各对应项的积组成的数列仍是等比数列,且公比等于这4、等比数列性质两个数列的公比的积。
⑻当q>1且a>0或00且01时,等比数列为递减数列;当q=1时,等比数列为常数列;当q<0时,等比数列为摆动数列。
2.高三数学必修五知识点梳理
函数的值域与最值
1、函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:
(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域。
(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元。
(3)反函数法:利用函数f(x)与其反函数f—1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得。
(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法。
(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧。
(6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域。其题型特征是解析式中含有根式或分式。
(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域。
(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域。
2、求函数的最值与值域的区别和联系
求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值。因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异。
如函数的值域是(0,16],值是16,无最小值。再如函数的值域是(—∞,—2]∪[2,+∞),但此函数无值和最小值,只有在改变函数定义域后,如x>0时,函数的最小值为2。可见定义域对函数的值域或最值的影响。
3、函数的最值在实际问题中的应用
函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价”,“利润”或“面积(体积)(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值。
3.高三数学必修五知识点梳理
映射、函数、反函数
1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射。
2、对于函数的概念,应注意如下几点:
(1)掌握构成函数的三要素,会判断两个函数是否为同一函数。
(2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式。
(3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数。
3、求函数y=f(x)的反函数的一般步骤:
(1)确定原函数的值域,也就是反函数的定义域;
(2)由y=f(x)的解析式求出x=f—1(y);
(3)将x,y对换,得反函数的习惯表达式y=f—1(x),并注明定义域。
注意:
①对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起。
②熟悉的应用,求f—1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算。
4.高三数学必修五知识点梳理
等数列前n项和公式S的基本性质
⑴数列{a}为等数列的充要条件是:数列{a}的前n项和S可以写成S=an+bn的形式(其中a、b为常数)。
⑵在等数列{a}中,当项数为2n(nN)时,S—S=nd,=;当项数为(2n—1)(n)时,S—S=a,=。
⑶若数列{a}为等数列,则S,S—S,S—S,…仍然成等数列,公为、
⑷若两个等数列{a}、{b}的前n项和分别是S、T(n为奇数),则=。
⑸在等数列{a}中,S=a,S=b(n>m),则S=(a—b)。
⑹等数列{a}中,是n的一次函数,且点(n,)均在直线y=x+(a—)上。
⑺记等数列{a}的前n项和为S、若a>0,公d<0,则当a≥0且a≤0时,S;若a
1、等比中项
如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项。
有关系:
注:两个非零同号的实数的等比中项有两个,它们互为相反数,所以G2=ab是a,G,b三数成等比数列的必要不充分条件。
2、等比数列通项公式
an=a1xq’(n—1)(其中首项是a1,公比是q)
an=Sn—S(n—1)(n≥2)
前n项和
当q≠1时,等比数列的前n项和的公式为
Sn=a1(1—q’n)/(1—q)=(a1—a1xq’n)/(1—q)(q≠1)
当q=1时,等比数列的前n项和的公式为
Sn=na1
3、等比数列前n项和与通项的关系
an=a1=s1(n=1)
an=sn—s(n—1)(n≥2)
(1)若m、n、p、q∈Nx,且m+n=p+q,则am·an=ap·aq;
(2)在等比数列中,依次每k项之和仍成等比数列。
(3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an—1=a3·an—2=…=ak·an—k+1,k∈{1,2,…,n}
(4)等比中项:q、r、p成等比数列,则aq·ap=ar2,ar则为ap,aq等比中项。
记πn=a1·a2…an,则有π2n—1=(an)2n—1,π2n+1=(an+1)2n+1
另外,一个各项均为正数的等比数列各项取同底指数幂后构成一个等数列;反之,以任一个正数C为底,用一个等数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等数列是“同构”的。
(5)等比数列前n项之和Sn=a1(1—q’n)/(1—q)
(6)任意两项am,an的关系为an=am·q’(n—m)
(7)在等比数列中,首项a1与公比q都不为零。
注意:上述公式中a’n表示a的n次方。
【篇一】高三数学重要知识点整理
选修Ⅱ(24个)一、求动点的轨迹方程的基本步骤
⒈建立适当的坐标系,设出动点M的坐标;
⒉写出点M的;
⒊列出方程=0;
⒋化简方程为最简形式;
⒌检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
直译法:求动点轨迹方程的一般步骤
①建系——建立适当的坐标系;
②设点——设轨迹上的1.导数的概念; 2.导数的几何意义; 3.几种常见函数的导数;任一点P(x,y);
③列式——列出动点p所满足的关系式;
④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;
⑤证明——证明所求方程即为符合条件的动点轨迹方程。
【篇二】高三数学重要知识点整理
、高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。
主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是个板块。
第二、平面向量和三角函数。
重点考察三个方面:一个是划减与求值,,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。
第三、数列。
数列这个板块,重点考两个方面:一个通项;一个是求和。
第四、空间向量和立体几何,在里面重点考察两个方面:一个是证明;一个是计算。
第五、概率和统计。
这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,……等可能的概率,第二………,第三是,还有重复发生的概率。
第六、解析几何。
这是我们比较头疼的问题,是整个试卷里难度比较大,计算量的题,当然这一类题,我总结下面五类常考的题型,包括:
类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法;
第二类我们所讲的动点问题;
第三类是弦长问题;
第四类是对称问题,这也是2008年高考已经考过的一点;
第五类重点问题,这类题时往往觉得有思路,但是没有,
当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。
第七、押轴题。
考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。
【篇三】高三数学重要知识点整理
考点一:与简易逻辑
部分一般以选择题出现,属容易题。重点考查间关系的理解和认识。近年的试题加强了对计算化简能力的考查,并向无限集发展,考查抽象思维能力。在解决这些问题时,要注意利用几何的直观性,并注重表示方法的转换与化简。简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。
考点二:函数与导数
函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。
考点三:三角函数与平面向量
一般是2道小题,1道综合解答题。小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型.
考点四:数列与不等式
不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查.在选择、填空题中考查等或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、题目.
考点五:立体几何与空间向量
一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系;三是考查利用空间向量解决立体几何问题:利用空间向量证明线面平行与垂直、求空间角等(文科不要求).在高考试卷中,一般有1~2个客观题和一个解答题,多为中档题。
考点六:解析几何
一般有1~2个客观题和1个解答题,其中客观题主要考查直线斜率、直线方程、圆的方程、直线与圆的位置关系、圆锥曲线的定义应用、标准方程的求解、离心率的计算等,解答题则主要考查直线与椭圆、抛物线等的位置关系问题,经常与平面向量、函数与不等式交汇,考查一些存在性问题、证明问题、定点与定值、最值与范围问题等。
考点七:算法复数推理与证明
高考对算法的考查以选择题或填空题的形式出现,或给解答题披层“外衣”.考查的热点是流程图的识别与算法语言的阅读理解.算法与数列知识的网络交汇命题是考查的主流.复数考查的重点是复数的有关概念、复数的代数形式、运算及运算的几何意义,一般是选择题、填空题,难度不大.推理证明部分命题的方向主要会在函数、三角、数列、立体几何、解析几何等方面,单独出题的可能性较小。对于理科,数学归纳法可能作为解答题的一小问.
【 #高三# 导语】高中学习方法其实很简单,但是这个方法要一直保持下去,才能在最终考试时看到成效,如果对某一科目感兴趣或者有天赋异禀,那么学习成绩会有明显提高,若是学习动力比较足或是受到了一些积极的影响或,分数也会大幅度上涨。 高三频道为你准备了《高三数学必修五知识点归纳》,希望助你一臂之力!
1.高三数学必修五知识点归纳
1.函数思想:把某变化过程中的一些相互制约的变量用函数关系表达出来,并研究这些量间的相互制约关系,解决问题,这就是函数思想;
2.应用函数思想解题,确立变量之间的函数关系是一关键步骤,大体可分为下面两个步骤:
(1)根据题意建立变量之间的函数关系式,把问题转化为相应的函数问题;
(3)方程思想:在某变化过程中,往往需要根据一些要求,确定某些变量的值,这时常常列出这些变量的方程或(方程组),通过解方程(或方程组)求出它们,这就是方程思想;
3.函数与方程是两个有着密切联系的数学概念,它们之间相互渗透,很多方程的问题需要用函数的知识和方法解决,很多函数的问题也需要用方程的方法的支援,函数与方程之间的辩证关系,形成了函数方程思想。
2.高三数学必修五知识点归纳
1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。
2.判定两个平面平行的方法:
(1)根据定义--证明两平面没有公共点;
(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;
(3)证明两平面同垂直于一条直线。
3.两个平面平行的主要性质:
(1)由定义知:“两-2sinAsinB=cos(A+B)-cos(A-B)平行平面没有公共点”;
(2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面”;
(3)两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交,那么它们的交线平行”;
(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面;
(5)夹在两个平行平面间的平行线段相等;
(6)经过平面外一点只有一个平面和已知平面平行。
3.高三数学必修五知识点归纳
(一)导数定义
设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有增量△x(x0+△x也在该邻域内)时,相应地函数取得增量△y=f(x0+△x)-f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f'(x0),即导数定义
(二)导数第二定义
设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有变化△x(x-x0也在该邻域内)时,相应地函数变化△y=f(x)-f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f'(x0),即导数第二定义
(三)导函数与导数
如果函数y=f(x)在开区间I内每一点都可导,就称函数f(x)在区间I内可导。这时函数y=f(x)对于区间I内的每一个确定的x值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y',f'(x),dy/dx,df(x)/dx。导函数简称导数。
(四)单调性及其应用
1.利用导数研究多项式函数单调性的一般步骤
(1)求f¢(x)对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是辐角度。
(2)确定f¢(x)在(a,b)内符号(3)若f¢(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f¢(x)0的解集与定义域的交集的对应区间为增区间;f¢(x)q,得出p为q的充分条件是容易理解的。
但为什么说q是p的必要条件呢?
事实上,与“p=>q”等价的逆否命题是“非q=>非p”。它的意思是:若q不成立,则p一定不成立。这就是说,q对于p是必不可少的,因而是必要的。
(2)再看“充要条件”
若有p=>q,同时q=>p,则p既是q的充分条件,又是必要条件。简称为p是q的充要条件。记作pq。回忆一下初中学过的“等价于”这一概念;如果从命题A成立可以推出命题B成立,反过来,从命题B成立也可以推出命题A成立,那么称A等价于B,记作AB。“充要条件”的含义,实际上与“等价于”的含义完全相同。也就是说,如果命题A等价于命题B,那么我们说命题A成立的充要条件是命题B成立;同时有命题B成立的充要条件是命题A成立。
(3)定义与充要条件
数学中,只有A是B的充要条件时,才用A去定义B,因此每个定义中都包含一个充要条件。如“两组对边分别平行的四边形叫做平行四边形”这一定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。显然,一个定理如果有逆定理,那么定理、逆定理合在一起,可以用一个含有充要条件的语句来表示。“充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示“充分”。“仅当”表示“必要”。
(4)一般地,定义中的条件都是充要条件,判定定理中的条件都是充分条件,性质定理中的“结论”都可作为必要条件。
数学是一切科学的基础,一不小心就容易出错,在高考上出错可就不好了.接下来是我为大家整理的高考数学必考知识点2022,希望大家喜欢!
分层标准目录
(2)根据需要构造函数,利用函数的相关知识解决问题;高考数学必考知识点一
高考数学必考知识点二
高考数学必考知识点三
高考数学必考知识点四
高考数学必考知识点一
一、、简易逻辑(14课时,8个)
二、函数(30课时,12个)
1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例。
三、数列(12课时,5个)
1.数列;2.等数列及其通项公式;3.等数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式。
四、三角函数(46课时,17个)
1.角的概念的推广;2.弧度制;3.任意角的三角函数;4.单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式;7.两角和与的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16.余弦定理;17.斜三角形解法举例。
五、平面向量(12课时,8个)
1.向量;2.向量的加法与减法;3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移。
六、不等式(22课时,5个)
1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含的不等式。
七、直线和圆的方程(22课时,12个)
1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题;9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程。
八、圆锥曲线(18课时,7个)
1.椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质。
九、直线、平面、简单何体(36课时,28个)
1.平面及基本性质;2.平面图形直观图的画法;3.平面直线;4.直线和平面平行的判定与性质;5.直线和平面垂直的判定与性质;6.三垂线定理及其逆定理;7.两个平面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线所成的角;13.异面直线的公垂线;14.异面直线的距离;15.直线和平面垂直的性质;16.平面的法向量;17.点到平面的距离;18.直线和平面所成的角;19.向量在平面内的射影;20.平面与平面平行的性质;21.平行平面间的距离;22.二面角及其平面角;23.两个平面垂直的判定和性质;24.多面体;25.棱柱;26.棱锥;27.正多面体;28.球。
十、排列、组合、二项式定理(18课时,8个)
1.分类计数原理与分步计数原理;2.排列;3.排列数公式;4.组合;5.组合数公式;6.组合数的两个性质;7.二项式定理;8.二项展开式的性质。
十一、概率(12课时,5个)
1.随机的概率;2.等可能的概率;3.互斥有一个发生的概率;4.相互同时发生的概率;5.重复试验。
选修Ⅱ(24个)
十二、概率与统计(14课时,6个)
1.离散型随机变量的分布列;2.离散型随机变量的期望值和方;3.抽样 方法 ;4.总体分布的估计;5.正态分布;6.线性回归。
十三、极限(12课时,6个)
1.数学归纳法;2.数学归纳法应用举例;3.数列的极限;4.函数的极限;5.极限的四则运算;6.函数的连续性。
十四、导数(18课时,8个)
1.导数的概念;2.导数的几何意义;3.几种常见函数的导数;4.两个函数的和、、积、商的导数;5.复合函数的导数;6.基本导数公式;7.利用导数研究函数的单调性和极值;8.函数的值和最小值。
十五、复数(4课时,4个)
1.复数的概念;2.复数的加法和减法;3.复数的乘法和除法;4.复数的一元二次方程和二项方程的解法。
〈〈〈
高考数学必考知识点二
1、圆的定义:
平面内到一定点的距离等于定长的点的叫圆,定点为圆心,定长为圆的半径。
2、圆的方程
(1)标准方程,圆心,半径为r;
(2)一般方程
当时,方程表示圆,此时圆心为,半径为
一般都采用待定系数法:先设后求。确定一个圆需要三个条件,若利用圆的标准方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。
3、直线与圆的位置关系:
(1)设直线,圆,圆心到l的距离为,则有
(2)过圆外一点的切线:
①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程
(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2
4、圆与圆的位置关系:
通过两圆半径的和(),与圆心距(d)之间的大小比较来确定。
设圆,
两圆的位置关系常通过两圆半径的和(),与圆心距(d)之间的大小比较来确定。
当时两圆外离,此时有公切线四条;
当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;
当时两圆相交,连心线垂直平分公共弦,有两条外公切线;
当时,两圆内切,连心线经过切点,只有一条公切线;
当时,两圆内含;当时,为同心圆。
注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线
圆的辅助线一般为连圆心与切线或者连圆心与弦中点
〈〈〈
高考数学必考知识点三
一、随机
主要掌握好(三四五)
(1)的三种运算:并(和)、交(积)、;注意A-B可以表示成A与B的逆的积。
(2)四种运算律:交换律、结合律、分配律、德莫根律。
(3)的五种关系:包含、相等、互斥(互不相容)、对立、相互。
二、概率定义
(1)统计定义:频率稳定在一个数附近,这个数称为的概率;(2)古典定义:要求样本空间只有有限个基本,每个基本出现的可能性相等,则A所含基本个数与样本空间所含基本个数的比称为的古典概率;
(3)几何概率:样本空间中的元素有无穷多个,每个元素出现的可能性相等,则可以将样本空间看成一个几何图形,A看成这个图形的子集,它的概率通过子集图形的大小与样本空间图形的大小的比来计算;
(4)公理化定义:满足三条公理的任何从样本空间的子集到[0,1]的映射。
三、概率性质与公式
(1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特别地,如果A与B互不相容,则P(A+B)=P(A)+P(B);
(2):P(A-B)=P(A)-P(AB),特别地,如果B包含于A,则P(A-B)=P(A)-P(B);
(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互,则P(AB)=P(A)P(B);
(4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,
贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;
如果一个B可以在多种情形(原因)A1,A2,....,An下发生,则用全概率公式求B发生的概率;如果B已经发生,要求它是由Aj引起的概率,则用贝叶斯公式.
(5)二项概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有A与A的逆可能发生,各次试验结果相互)时,要考虑二项概率公式.
〈〈〈
高考数学必考知识点四
分层抽样
先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,,将这些子样本合起来构成总体的样本。
两种方法
1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。
2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,用系统抽样的方法抽取样本。
3.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。
(1)以调查所要分析和研究的主要变量或相关的变量作为分层的标准。
(2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。
(3)以那些有明显分层区分的变量作为分层变量。
分层的比例问题
(1)按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。
(2)不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次的子总体进行专门研究或进行相互比较。如果要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。
〈〈〈
高考数学必考知识点2022相关 文章 :
★ 高三数学二轮复习策略2022
★ 高三上册数学教学总结2022
★ 2022年期末考试反思总结十篇
★ 高三数学期末知识点
★ 2022年安徽高考时间
★ 2022湖北高考时间安排
★ 2022高中数学教学工作精选10篇
★ 高三数学教学工作范本2022
★ 2022年天津高考具体时间
★ 湖南高考时间2022具体时间 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();
三角函数是最主要的,大题中出现;对数函数,指数函数,还有抽象函数等
排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。试着发些这个,f(x)这种笼统函数我是专门作为一类的
三角函数、对数函数,指数函数、抽象函数
在高中 数学 的学习当中,最让考生们头疼的知识点是数学 函数 问题,对于函数的题空间该如何解答呢?以下是我整理的关于解答函数的方法:
高考数学函数解答方法
一、函数题找不到解题的突破口怎么办?
高考中的函数题不外就是导数,从这里入手大致可以了。如果是小题的话,可从函数的性质入手。
二、函数中的重点难点是什么?函数方面不好的话,应该从什么地方学起呢?
函数的基本性质是最重要的,要掌握透彻、理解透彻,才能在做题的时候灵活运用。函数题形式虽多,但是万变不离其宗,函数性质还是关键。
三、艺术生现在该怎么快速提高成绩?
快速是不存在的,但基础的同学这个时候就只能做最基础的题了。
四、上课能听懂,一到做题就不会,是什么原因呢?
5.方程五、立体几何证明除了用到中位线平移,一般还有哪些?
六、椭圆的大题怎么得分?
椭圆题得分方法常见的是用待定系数法求方程。
七、代数的二项式定理和排列组合的题弄不明白
二项式题不难,抓住通项公式不多了。排列组合用填空法比较常见,(2)互异性:“张的元素必须是互异的”,就是说“对于一个给定的,它的任何两个元素都是不同的”。但要对几个主要题型,掌握透彻。
八、怎么才能激起孩子学数学的 兴趣 呢?
只能是做题会了才有兴趣,只能是从简单的题做起,会的多了就有兴趣了。
九、概率的题有什么好的做题方法?
概率题先定位,再用公式。
十、学立体几何没有立体感怎么办,看到题没有思路?
没立体感找实物 、画图练。
十一、均值不等式的题不会做,除了记住公式还怎么办?
十二、高中立体几何在高考中比例是多少?
立几大约是17或22分。
十三、定积分的题高考会出大题吗,需要背LIM的公式吗?
定积分不会单独出大题。
高考数学必考知识点之三角函数
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα (k∈Z)
cos(2kπ+α)=cosα (k∈Z)
tan(2kπ+α)=tanα (k∈Z)
cot(2kπ+α)=cotα (k∈Z)
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
函数与导数,平面向量与三角函数、三角变换及其应用,数列及其应用,不等式。主要考查不等式的求解和证必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角明,概率和统计,空间位置关系的定性与定量分析,解析几何
高频考点是:三角函数;立体几何;数列;不等式;函数与方程;解计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。析几何;概率与统计;
新高考数学各知识点所占比如下:
一、分数占比
1、5分
2、三大函数5分
3、立体几何初步12分+5分
4、平面几何初步5分+12分
5、算法初步5分
6、统计5分
7、概率 5分+12分
8、三角函数恒等变换5分+5分+12分
10、解三角形5分+12分
11、数列5分+12分
12、不等式5分+12分
13、常用逻辑用语5分
14、圆锥曲线与方程5分+12分
15、空间向量与立体几何5分+12分
16、导数及应用5分+12分
17、推理与证明12分
18、数系(1)若对于函数y=f(x)定义域内任意一个x都有f(a+x)=f(a-x)且f(b+x)=f(b-x),(a、b不相等的常数)则函数为周期函数。(周期为:2|a-b|)扩充与复数的引入5分
19、计数原理5显然,一个定理如果有逆定理,那么定理、逆定理合在一起,可以用一个含有充要条件的语句来表示。分
20、坐标系与参数方程10分
二、题型
1、选择+填空(8题单选+4题多选+4题填空)16道,每道5分,共80分。占总分的大半。送分题、基础题较多,以书上性质、公式的运用为主。
2、、复数:默认送分题。平面向量:能建系尽量建系做。计数原理:以二次项定理与分配问题居多。统计与概率:可能会在读题上挖坑。其他:命题、各章基本概念、计算(不等式或者比大小)
3、中题会以几何或函数为主,可能会考新定义题。几何:解三角形、立体几何、解析几何。函数:函数(指对幂、正余切)的性质(单调奇偶对称周期)与图像(识别和变换)、简单求导、构造函数(常见于指对数比大小)。
4、新定义题:近年来高考的趋势,题干给出一个新的定义(高中课本里没学过的),然后让你利用其解题。难度一般都不会太大,只要严格按照题干描述一步一步做就行。
又到了一年一度的高考备考阶段,广大考生们抓紧一切时间想尽一切办法准备着2013年的高考,为帮助广大考生有效备考,我们为大家做了个高中数学知识点整理,帮助广大考生把握高中数学的脉络,让广大考生赢在高考。
知识要点:
1.定义:对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=-f(x),那么f(x)为奇函数;
对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=f(x),那么f(x)为偶函数;
2.性质:
(1)函数依据奇偶性分类可分为:奇函数非偶函数,偶函数非奇函数,既奇且偶函数,非奇非偶函数;
(3)图象特点:奇函数的图象关于原点对称;偶函数的图象关于原点对称;
(4)定义域关于原点对称是函数具有奇偶性的必要不充分条件,奇函数f(x)在原点处有定义,则有f(0)=0;
(5)任意一个定义域关于原点对称的函数f(x)总可以表示为一个奇函数与偶函数的和的形式:f(x)=g(x)+h(x),其中g(x)=-[f(x)+f(-x)]为偶函数,h(x)=-[f(x)-f(-x)]为奇函数;
(6)奇函数在关于原点对称的区间具有相同的单调性,偶函数在关于原点对称的区间具有相反的单调性。
3.判断方法:
(1)定义法
(2)等价形式:f(-x)+f(x)=0,f(x)为奇函数;
f(-x)-f(x)=0,f(x)为偶函数。
4.拓展延伸:
(1)一般地,对于函数y=f(x),定义域内每一个自变量x,都有f(a+x)=2b-f(a-x),则y=f(x)的图象关于点(a,b)成中心对称;
(2)一般地,对于函数y=f(x),定义域内每一个自变量x都有f(a+x)=f(a-x),则它的图象关于x=a成轴对称。
二、周期性:
1.定义:对于函数y=f(x),如果存在一个非零常数T,使得当自变量x取定义域内的每一个值时,都有f(x)=f(x+T)成立,那么就称函数y=f(x)为周期函数。
2.图象特点:
将函数y=f(x)的图象向左(右)平移的整数倍个单位,所得的函数图象与函数y=f(x)的图象重合。
3.函数图象的对称性与周期性的关系:
(2)若对于函数y=f(x)定义域内任意一个x都有f(a+x)=-f(a-x)且f(b+x)=-f(b-x),(a、b不相等的常数)则函数为周期函数。(周期为:2|a-b|)
(3)若对于函数y=f(x)定义域内任意一个x都有f(a+x)=-f(a-x)且f(b+x)=f(b-x),(a、b不相等的常数)则函数为周期函数。(周期为:4|a-b|)
典型例题
例1:判断下列函数的奇偶性:
(1)f(x)=(x-1)·■
解:函数的定义域为x∈{x|-1≤x<1}
函数f(x)=(x-1)·■为∴f(x)非奇非偶函数
(2) f(x)=loga(-x+-)
解:x∈R
f(-x)=loga(x+-
=loga-
=-loga(-x+-)=-f(x)
∴f(x)为奇函数
(3)f(x)=x·(-+-)
解:x∈{x∈R|x≠0}
f(-x)-f(x)=-x(-+-)-x(-+-)
=-x(-+-+1)=0
∴f(x)为偶函数
(4)f(x)=-
解:1+cosx+sinx≠0
sin(x+-)≠--,x∈{x|x≠2k-且x≠2k--,k∈R}
定义域不关于原点对称,∴f(x)为非奇非偶函数
说明:
1.判断函数的奇偶性首先要检验定义域是否关于原点对称。特别应注意,求解定义域时,不能化简解析式后再求解。
2.在判断是否有f(-x)=-f(x)或f(-x)=f(x)成立时,必要时可使用等价变形形式:f(-x)±f(x)=0
例2:(1)已知:f(x)是奇函数,且x>0时f(x)=x|x-2|
求x<0的解析式
解:设x0
-,
说明:1.利用函数的奇偶性求解析式,要将自变量x设在所求的范围内。你能认定是均值不等式就一定会做,只用二元的即可。
2.转化带入利用定义构造方程。
(2)定义在R上的奇函数f(x)且满足f(3+x)=f(3-x),若x∈(0,3),f(x)=2x
解:x∈(-6,-3) -x∈(3,6),6-(-x)∈(0,3)
-∴f(x)=-2x+6
说明:1.合理分解题意是关键。
2.此题还可以应用周期性进行求解。
例3:已知:函数f(x)的定义域为R,且满足f(x+2)=-f(x)
(1)求证:f(x)为周期函数;
(2)若f(x)为奇函数,且当0≤x≤1时,f(x)=-x,求使得f(x)=--的所有x。
(1)解:-
∴f(x)=f(x+4)
f(x)为周期是4的周期函数。
(2)解:x∈[-1,0],-x∈[0,1]
-∴f(x)=-x,x∈[-1,0]
∴f(x)=-x,x∈[-1,1]
x∈(1,3),∴-1
-∴f(x)=--(x-2),x∈[1,3]
同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;-x∈[-1,3),f(x)=--,x=-1
∴x=4n-1,n∈Z
版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。