四边形的内角和等于360度.
四边形内角和(四边形内角和证明方法)
四边形内角和(四边形内角和证明方法)
由不在同一直线上的不交叉的四条线段依次首尾相接围成的封闭的平面图形或立体图形叫四边形,由凸四边形和凹四边形组成。
顺次连接任意四边形上的中点所得四边形叫中点四边形,中点四边形都是平行四边形。菱形的中点四边形是矩形,矩形中点四边形是菱形,等腰梯形的中点四边形是菱形,正方形中点四边形就是正方形。
扩展资料
四边形分为凸面四边形和凹面四边形。
1、凸四边形包括平行四边形(包括:普通平行四边形,矩形,菱形,正方形)和梯形(包括:普通梯形,直角梯形,等腰梯形)。
凸四边形的内角和和外角和均为360度。
2、凹四边形包括,矩形、菱形、正方形等。
若原四边形的对角线垂直,则中点四边形为矩形;若原四边形的对角线相等,则中点四边形为菱形;若原四边形的对角线既垂直又相等,则中点四边形为正方形。
参考资料:
四边形内角和是360°。四边形内角和=(4-2)×180°=360°;任意的四边形多可分为2个三角形,而且三角形内角和是180°,所以四边形的内角和等于180°×2=360°。
三角形是由同一平面内不在同一直线上的三条线段“首尾”顺次连接所组成的封闭图形,在数学、建筑学有应用。常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形)
四边形内角和是多少度呢呢,还有同学记得吗,不清楚的话,快来我这里瞧瞧。下面是由我为大家整理的“四边形内角和是多少度呢”,仅供参考,欢迎大家阅读。
四边形内角和是多少度呢
四边形的内角和等于三百六十度. 由不在同一直线上的不交叉的四条线段依次首尾相接围成的封闭的平面图形或立体图形叫四边形,由凸四边形和凹四边形组成。
四边形内角和等于三百六十度。
n边型的内角和为(n-2)×180°,所以四边形内角和为(4-2)×180°=2×180°=3,60°。
1、四边形的特点:有四条直的边;有四个角。
2、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。
3、正方形的特点:有4个直角,4条边相等。
4、长方形和正方形是特殊的平行四边形。
5、平行四边形的特点:对边相等、对角相等。
多边形内角和定理证明
证法一:在n边形内任取一点O,连结O与各个顶点,把n边形分成n个三角形.
因为这n个三角形的内角的和等于n·180°,以O为公共顶点的n个角的和是3,60°
所以n边形的内角和是n·180°-2×180°=(n-2)·180°.(n为边数)
即n边形的内角和等于(n-2)×180°.(n为边数)
证法二:连结多边形的任一顶点A1与其不相邻的各个顶点的线段,把n边形分成(n-2)个三角形.
因为这(n-2)个三角形的内角和都等于(n-2)·180°(n为边数)
所以n边形的内角和是(n-2)×180°8。
拓展阅读:不等边梯形的面积怎么算
不等边梯形的面积的算法:
1、上底加下底的和乘以高除以二;
2、中位线乘以高;
3、中位线:连接梯形两腰中点的线段叫做梯形的中位线。
高考数学复习攻略有哪些
一、要“做题”,“做存题”
在后面阶段中,主要解决两个问题:一个是扎实学科基础,另一个则是弥补自己的薄弱环节。
考生在复习的中后期阶段,一定要对自己有一个比较清晰的认识,只有对自己的认识清晰准确,才能够对自己薄弱的环节或者知识点进行有针对性的学习与训练!
要解决这两个问题,就是要“做题”“做存题”。所谓的“存题”,就是现有的、以前做过的题目。同学们可以重新翻看这些资料,或者可以查看自己的错题集,从自己的失误中,找到得分点,找到自己的提升空间。把过去的知识点进行重新梳理和“温故”。
二、错题重做
要重拾做错的题,特别是大型考试中出错的题,对于一些模拟考试,考生一定要注意!因为模拟考试是与高考接近的一次考试。这次模拟考试的成绩和分数在很大程度上会影响考生的自我定位。对于一些自我认识不够的考生,可以参考模拟考的考试成绩,和考试的失分情况,进行适当的训练。分析出错的原因,从出错的根源上解决问题。结合考纲考点,采取对账的方式,做到点点过关,单元过关。
三、适当“读题”
读题的任务就是要理清解题思路,明确解题步骤,分析解题切入点。
读题强调解读结合,边“解”边“读”,以“解”为主。考生需要注意解题的思路和解题的方式,有些题目不止一种解题方式。考生需要做的就是充分了解,并且掌握解题的方式。你掌握的解题方式和思路越多,考试遇到题目就越是能够有效应对!
四、基础训练
到了冲刺阶段,训练应以客观题和解答题为主。其训练内容应包括以下方面:基础知识和基本运算;解选择题、填空题的策略。
考生越到复习后期,越是要注意基础题。因为在高考中,基础题的分数值累计起来还是很多的。考生若是感觉提高有难度,可以从基础题开始巩固。从基础的训练中巩固已经掌握的知识点内容,基础掌握的越扎实,考试发挥也就越稳定。基础扎实了,后期想要提高,也是比较容易的。有不少的考生,基础还没有打扎实,就想着提高;这只会难上加难!
四边形的内角和等于360度.
由不在同一直线上的不交叉的四条线段依次首尾相接围成的封闭的平面图形或立体图形叫四边形,由凸四边形和凹四边形组成。
顺次连接任意四边形上的中点所得四边形叫中点四边形,中点四边形都是平行四边形。菱形的中点四边形是矩形,矩形中点四边形是菱形,等腰梯形的中点四边形是菱形,正方形中点四边形就是正方形。
扩展资料
四边形分为凸面四边形和凹面四边形。
1、凸四边形包括平行四边形(包括:普通平行四边形,矩形,菱形,正方形)和梯形(包括:普通梯形,直角梯形,等腰梯形)。
凸四边形的内角和和外角和均为360度。
2、凹四边形包括,矩形、菱形、正方形等。
若原四边形的对角线垂直,则中点四边形为矩形;若原四边形的对角线相等,则中点四边形为菱形;若原四边形的对角线既垂直又相等,则中点四边形为正方形。
参考资料:
四边形的内角和等于360度.
由不在同一直线上的不交叉的四条线段依次首尾相接围成的封闭的平面图形或立体图形叫四边形,由凸四边形和凹四边形组成。
顺次连接任意四边形上的中点所得四边形叫中点四边形,中点四边形都是平行四边形。菱形的中点四边形是矩形,矩形中点四边形是菱形,等腰梯形的中点四边形是菱形,正方形中点四边形就是正方形。
扩展资料
四边形分为凸面四边形和凹面四边形。
1、凸四边形包括平行四边形(包括:普通平行四边形,矩形,菱形,正方形)和梯形(包括:普通梯形,直角梯形,等腰梯形)。
凸四边形的内角和和外角和均为360度。
2、凹四边形包括,矩形、菱形、正方形等。
若原四边形的对角线垂直,则中点四边形为矩形;若原四边形的对角线相等,则中点四边形为菱形;若原四边形的对角线既垂直又相等,则中点四边形为正方形。
参考资料:
四边形内角和是360°。四边形内角和=(4-2)×180°=360°;任意的四边形多可分为2个三角形,而且三角形内角和是180°,所以四边形的内角和等于180°×2=360°。
三角形是由同一平面内不在同一直线上的三条线段“首尾”顺次连接所组成的封闭图形,在数学、建筑学有应用。常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形)
版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。