有没有人数学高考公式 出高考数学题的人

中专问答 2025-01-13 05:35:27

高中常用数学公式有哪些

余弦定理:a^2=b^2+c^2-2bccosA

高中常用数学公式有哪些呢?如果没有进行过整理的同学,应该不是很清楚。下面是由我为大家整理的“高中常用数学公式有哪些”,仅供参考,欢迎大家阅读。

有没有人数学高考公式 出高考数学题的人有没有人数学高考公式 出高考数学题的人


有没有人数学高考公式 出高考数学题的人


有没有人数学高考公式 出高考数学题的人


高中常用数学公式有哪些

1 元素与的关系:

2 的子集个数共有 个;真子集有 个;非空子集有 个;非空的真子集有 个.

(2) 顶点式 ;(当已知抛物线的顶点坐标 时,设为此式)

(3) 零点式 ;(当已知抛物线与 轴的交点坐标为 时,设为此式)

(4)切线式: 。(当已知抛物线与直线 相切且切点的横坐标为 时,设为此式)

4 真值表: 同真且真,同或

原结论 反设词 原结论 反设词

是 不是 至少有一个 一个也没有

大于 不大于 至少有 个 至多有( )个

小于 不小于 至多有 个 至少有( )个

对所有 ,成立 存在某 ,不成立 或 且

对任何 ,不成立 存在某 ,成立 且 或

6 四种命题的相互关系(下图):(原命题与逆否命题同真同;逆命题与否命题同真同.)

原命题 互逆 逆命题

若p则q 若q则p

互 为 为 互

否 否

逆 逆

否 否

否命题 逆否命题

若非p则非q 互逆 若非q则非p

充要条件: (1)、 ,则P是q的充分条件,反之,q是p的必要条件;

(2)、 ,且q ≠> p,则P是q的充分不必要条件;

(3)、p ≠> p ,且 ,则P是q的必要不充分条件;

4、p ≠> p ,且q ≠> p,则P是q的既不充分又不必要条件。

拓展阅读:高中数学解题技巧

为了使回想、联想、猜想的方向更明确,思路更加活泼,进一步提高探索的成效,我们必须掌握一些解题的策略。

一切解题的策略的基本出发点在于“变换”,即把面临的问题转化为一道或几道易于解答的新题,以通过对新题的考察,发现原题的解题思路,最终达到解决原题的目的。

基于这样的认识,常用的解题策略有:熟悉化、简单化、直观化、特殊化、一般化、整体化、间接化等。

一、 熟悉化策略

所谓熟悉化策略,就是当我们面临的是一道以前没有接触过的陌生题目时,要设法把它化为曾经解过的或比较熟悉的题目,以便充分利用已有的知识、经验或解题模式,顺利地解出原题。

一般说来,对于题目的熟悉程度,取决于对题目自身结构的认识和理解。从结构上来分析,任何一道解答题,都包含条件和结论(或问题)两个方面。因此,要把陌生题转化为熟悉题,可以在变换题目的条件、结论(或问题)以及它们的上多下功夫。

常用的途径有:

(一)、充分联想回忆基本知识和题型:

按照波利亚的观点,在解决问题之前,我们应充分联想和回忆与原有问题相同或相似的知识点和题型,充分利用相似问题中的方式、方法和结论,从而解决现有的问题。

(二)、全方位、多角度分析题意:

对于同一道数学题,常常可以不同的侧面、不同的角度去认识。因此,根据自己的知识和经验,适时调整分析问题的视角,有助于更好地把握题意,找到自己熟悉的解题方向。

(三)恰当构造辅助元素:

数学中,同一素材的题目,常常可以有不同的表现形式;条件与结论(或问题)之间,也存在着多种。因此,恰当构造辅助元素,有助于改变题目的形式,沟通条件与结论(或条件与问题)的内在联系,把陌生题转化为熟悉题。

数学解题中,构造的辅助元素是多种多样的,常见的有构造图形(点、线、面、体),构造算法,构造多项式,构造方程(组),构造坐标系,构造数列,构造行列式,构造等价性命题,构例,构造数学模型等等。

二、简单化策略

所谓简单化策略,就是当我们面临的是一道结构复杂、难以入手的题目时,要设法把转化为一道或几道比较简单、易于解答的新题,以便通过对新题的考察,启迪解题思路,以简驭繁,解出原题。

简单化是熟悉化的补充和发挥。一般说来,我们对于简单问题往往比较熟悉或容易熟悉。

因此,在实际解题时,这两种策略常常是结合在一起进行的,只是着眼点有所不同而已。

解题中,实施简单化策略的途径是多方面的,常用的有: 寻求中间环节,分类考察讨论,简化已知条件,恰当分解结论等。

1、寻求中间环节,挖掘隐含条件:

因此,从题目的因果关系入手,寻求可能的中间环节和隐含条件,把原题分解成一组相互联系的系列题,是实现复杂问题简单化的一条重要途径。

2、分类考察讨论:证明如下:

在些数学题,解题的复杂性,主要在于它的条件、结论(或问题)包含多种不易识别的可能情形。对于这类问题,选择恰当的分类标准,把原题分解成一组并列的简单题,有助于实现复杂问题简单化。

3、简单化已知条件:

有些数学题,条件比较抽象、复杂,不太容易入手。这时,不妨简化题中某些已知条件,甚至暂时撇开不顾,先考虑一个简化问题。这样简单化了的问题,对于解答原题,常常能起到穿针引线的作用。

4、恰当分解结论:

有些问题,解题的主要困难,来自结论的抽象概括,难以直接和条件联系起来,这时,不妨猜想一下,能否把结论分解为几个比较简单的部分,以便各个击破,解出原题。

三、直观化策略:

所谓直观化策略,就是当我们面临的是一道内容抽象,不易捉摸的题目时,要设法把它转化为形象鲜明、直观具体的问题,以便凭借事物的形象把握题中所及的各对象之间的联系,找到原题的解题思路。

有些数学题,内容抽象,关系复杂,给理解题意增添了困难,常常会由于题目的抽象性和复杂性,使正常的思维难以进行到底。

对于这类题目,借助图表直观,利用示意图或表格分析题意,有助于抽象内容形象化,复杂关系条理化,使思维有相对具体的依托,便于深入思考,发现解题线索。

(二)、图形直观:

有些涉及数量关系的题目,用代数方法求解,道路崎岖曲折,计算量偏大。这时,不妨借助图形直观,给题中有关数量以恰当的几何分析,拓宽解题思路,找出简捷、合理的解题途径。

(三)、图象直观:

不少涉及数量关系的题目,与函数的图象密切相关,灵活运用图象的直观性,常常能以简驭繁,获取简便,巧妙的解法。

四、特殊化策略

所谓特殊化策略,就是当我们面临的是一道难以入手的一般性题目时,要注意从一般退到特殊,先考察包含在一般情形里的某些比较简单的特殊问题,以便从特殊问题的研究中,拓宽解题思路,发现解答原题的方向或途径。

五、一般化策略

所谓一般化策略,就是当我们面临的是一个计算比较复杂或内在联系不甚明显的特殊问题时,要设法把特殊问题一般化,找出一个能够揭示事物本质属性的一般情形的方法、技巧或结果,顺利解出原题。

六、整体化策略

所谓整体化策略,就是当我们面临的是一道按常规思路进行局部处理难以奏效或计算冗繁的题目时,要适时调整视角,把问题作为一个有机整体,从整体入手,对整体结构进行全面、深刻的分析和改造,以便从整体特性的研究中,找到解决问题的途径和办法。

七、间接化策略

所谓间接化策略,就是当我们面临的是一道从正面入手复杂繁难,或在特定场合甚至找不到解题依据的题目时,要随时改变思维方向,从结论(或问题)的反面进行思考,以便化难为易解出原题。

高考文科数学相关重要公式

3 二次函数的解析式的三种形式:

跟你一样 我也是学文科的我有深刻的体验 因为高中的公式太多 文科数学不同于理科的特点就是 只要掌握好公式的运用及转化 就很简单了我很同意楼上的那位说 拿着课本记忆印象更深 因为自己翻过的东西更有价值 会觉得更有成就感很多知识点是串联在一起的 所以理解记忆 很重要比如说包括在三角函数或与之有关的内容 全部都要深刻记忆 像是 诱导公式 , 二倍角公式,正余弦定理,两角和公式,三角恒等变换,解三角形里的三角形面积公式,求角公式和求边公式,以及关于函数的一些相关内容:y=Asin(ωx+φ)+ b 这类函数的图像及 义域值域 单调性 奇偶性 周期 对称中心 对称轴…… 很多东西都是串联起的 特别是函数内容 文科数学高考函数题目占绝大部分 很多也只是一些些小小的知识点组合在一起的 再说 文科数学也不难的 只要会用公式 套进题目中去就完全ok了 别人告诉你了公式 1、倒数关系:对着上面写 可下次碰到同样的题目 忘记公式 还是不会写啊总结我的经验 我认为 需要将书本翻翻 自己做好归纳 哪些有关联就将哪些归纳在一起 不是说归纳公式 而是像我那样的 归纳综合点 在翻书的过程中已经形成了记忆 综合了所以模块的知识点 然后看看主干 自己想想:比如看到诱导公式 就要想诱导公式有哪些 分几种情况 什么时候变函数名什么时候不要变 什么时候结果去负号什么时候可以不取负号 还有除此之外 有哪些性质 有哪些典型例题总会出现在试卷上的 这都需要结合记忆的 所以 把教材都拿出来翻翻吧~ 如果你真的想把数学学好的话 我的话去做做吧~ 总会有收获的 就是看你有没有恒心了 文科数学要想的高分很简单的 就是我前面说的那些方法 结合记忆 特别还要多做习题 巩固记忆 作为文科生呢 数学就更重要了 文科生普遍都对数学不感兴趣的 所以搞好数学是高考拉分的关键呀 对别像是你这种对数学还有兴趣 有点基础的同学还说 数学很重要 每天都要保证有充足的时间学习数学 这样就不会那么容易忘掉了 我是湖南的 2011年也就要高考了 听说今天的数学题目并不难的 所以要对自己有信心 也是关键我们一起加油吧~!

高中数学必备公式有哪些?

sin2A=2sinAcosA

高中数学必备公式有三大基础函数的解析式,三角函数的诱导公式,三角恒等变换公式,求导公式,向量的运算,数量积公式,积分运算公式,立体几何体积公式,等、等比数列的通项公式、前n项和公式等。

同角三角函数的基本关系式介绍

tanα ·cotα=1、sinα ·cscα=1、cosα ·secα=1

2、的关系:

sinα/cosα=tanα=secα/cscα、cosα/sinα=cotα=cscα/secα

3、平方关系:

sin^2(α)+cos又因为指数函数是单调函数,所以^2(α)=1

1+tan^2(α)=sec^2(α)

1+cot^2(α)=csc^2(α)

六种基本函数:

函数名:正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数。

正弦函数:sinθ=y/r

余弦函数:cosθ=x/r

正切函数:tanθ=y/x

余切函数:cotθ=x/y

正割函数:secθ=r/x

余割函数:cscθ=r/y

高考时数学常用的公式

N={b^[log(b)(a)]}^[log(a)(N)]=b^{[log(a)(N)][log(b)(a)]}

正弦定理:a/sinA=b/sinB=c/sinC=2R R为三角形外接圆的半径

sin(A+B)=sinC

sin(A-B)=sinAcosB+sinBcosA

cos2A=2(cosA)^2-1=(cosA)^2-(sinA)^2=1-2(sinA)^2

tan2A=2tanA/[1-(tanA)^2]

(sinA)^2+(cosA)^2=1

解三角形大概常用的就这些

概率似乎没有什么现成的公式可以套

立体几何求点面距离常用等积法,构建一个四面体,用另外一对底面和高算出体积再除以所求点面距作为高对应的底面的面积

计算二面角常用三垂线定理,或者就是直接构造,原则是2023年高考数学难度趋势要方便计算,不要构造出来的角每条边都要算半天就得不偿失了

圆锥曲线似乎没有现成的公式,但有一些常用方法,比如设点消点,或者椭圆的时候还可以用参数方程计算

数列就更简单了,一般就是求通项然后证明不等式,不等式就没办法了,我也不能保证每次都证出来,通项常用的方法就是改变下标,比如Sn-S(n-1)=an

直接求不出可以尝试着求倒数的通项,很可能很好求

高考数学公式

1.a^(log(a)(b))=b

对数的性质及推导

用^表示乘方,用log(a)(b)表示以a为底,b的对数

表示乘号,/表示除号

定义式:

若a^n=b(a>0且a≠1)

基本性质:

2.log(a)(MN)=log(a)(M)+log(a)(N);

3.log(a)(M/N)=log(a)(M)-log(a)(N);

4.log(a)(M^n)=nlog(a)(M)

推导

1.这个就不用推了吧,直接由定义式可得(把定义式中的[n=log(a)(b)]带入a^n=b)

2.

MN=MN

a^[log(a)(MN)]=a^[log(a)(M)]a^[log(a)(N)]

由指数的性质

a^[log(a)(MN)]=a^{[log(a)(M)]+[log(a)(N)]}

log(a)(MN)=log(a)(M)+log(a)(N)

3.与2类似处理

MN=M/N

a^[log(a)(M/N)]=a^[log(a)(M)]/a^[log(a)(N)]

由指数的性质

a^[l在些结构复杂的综合题,就其生成背景而论,大多是由若干比较简单的基本题,经过适当组合抽去中间环节而构成的。og(a)(M/N)]=a^{[log(a)(M)]-[log(a)(N)]}

log(a)(M/N)=log(a)(M)-log(a)(N)

4.与2类似处理

M^n=M^n

由基本性质1(换掉M)

a^[log(a)(M^n)]={a^[log(a)(M)]}^n

由指数的性质

a^[log(a)(M^n)]=a^{[log(a)(M)]n}

log(a)(M^n)=nlog(a)(M)

其他性质:

性质一:换底公式

log(a)(N)=log(b)(N)/log(b)(a)

推导如下

N=a^[log(a)(N)]

a=b^[log(b)(a)]

综合两式可得

又因为N=b^[log(b)(N)]

所以

b^[log(b)(N)]=b^{[log(a)(N)][log(b)(a)]}

所以

log(b)(N)=[log(a)(N)][log(b)(a)]{这步不明白或有疑问看上面的}

所以log(a)(N)=log(b)(N)/log(b)(a)

性质二:(不知道什么名字)

推导如下

由换底公式[lnx是log(e)(x),e称作自然对数的底]

log(a^n)(b^m)=ln(a^n)/ln(b^n)

由基本性质4可得

log(a^n)(b^m)=[nln(a)]/[mln(b)]=(m/n){[ln(a)]/[ln(b)]}

再由换底公式

--------------------------------------------(性质及推导完)

公式三:

log(a)(b)=1/log(b)(a)

由换底公式log(a)(b)=log(b)(b)/log(b)(a)----取以b为底的对数,log(b)(b)=1

=1/log(b)(a)

还可变形得:

log(a)(b)log(b)(a)=1

三角函数的和化积公式

sinα-sinβ=2cos(α+β)/2·sin(α-β)/2

cosα+cosβ=2cos(α+β)/2·cos(α-β)/2

cosα-cosβ=-2sin(α+β)/2·sin(α-β)/2

三角函数的积化和公式

sinα·cosβ=1/2[sin(α+β)+sin(α-β)]

cosα·sinβ=1/2[sin(α+β)-sin(α-β)]

cosα·cosβ=1/2[cos(α+β)+cos(α-β)]

sinα·sinβ=-1/2[cos(α+β)-cos(α-β)]

高中数学有哪些基本求导公式?

(1) 一般式 ;

24个基本求导公式如下:

1、C'=0(C为常数)。

2、(xAn)'=nxA(n——1)。

3、(sinx)'=cosx。

4、(cosx)'=——sinx。

5、(Inx)'=1/x。

6、(enx)'=enx。

7、 (logaX)'=1/(xlna)。

8、 (anx)'=(anx)ina。

9、(u±V)'=u'±V'。

10、 (uv)'=u'v+uv'。

11、 (u/v)'=(u'v——uv')/v。

12、 f(g(x))'=(f(u))'(g(x))'u=g(x)。

导函数:

如果函数f(x)在(a,b)中每一点处都可导,则称f(x)在(a,b)上可导,则可建立f(x)的导函数,简称导数,记为f'(x)。如果f(x)在(a,b)内可导,且在区间端点a处的右导数和端点b处的左导数都存在,则称f(x)在闭区间【a,b】上可导,f'(x)为区间【a,b】上的导函数,简称导数。

条件:如果一个函数的定义域为全体实数,即函数在上都有定义,那么该函数是在定义域上处处可导是否定的。函数在定义域中一点可导需要一定的条件是:函数在该点的左右两侧导数都存在且相等。这实际上是按照极限存在的一个充要条件(极限存在它的左右极限存在且相等)log(a^n)(b^m)=m/n[log(a)(b)]推导而来。

有没有在高中之后学到的但对高考有用数学公式

叉乘公式啊,立体几何叉乘求平面法向量比高中方法不知道方便多少倍,至于洛必达,对导数压轴题有点用吧,虽然理论上,没学极限是学不了洛必达的,不过高中涉及的极限应该很好理解,洛必达还是可以了解一下,就是出现∞╱∞或0╱0,上下求导就行,不过话说回来导数压轴题也不会题题都出现不定式都是 不都是 至多有一个 至少有两个吧,也不用过于纠结洛必达法则5 常见结论的否定形式;。

2023年高考数学试卷上有公式么

(一)、图表直观:

2023年高考数学试卷上有公式么:没有,公式要自己记。

数学题目不会出现偏题和怪题,难度不会增加太多。

2023年在高考命题将会有相应的调整。当中有一项比较重要的内容就是:为了能让新高考省份实现平稳过渡,确保这些省份的考生能够适应新高考的内容,促进高考试题的平稳,坚决不能出现偏题和怪题,也不能出现超纲内容。相关负责人还表示,未来高考命题会局限在课本的主干知识和重点知识,避免出现冷门知识或者超纲知识。

2022年新高考1卷的数学题目是很难的,引发了网友们的热议,也让一些高考生没能在考试中取得理想的成绩。按照对于出题的要求,2023年的高考难度大概率会保持目前的趋势,难度不会大幅提升,但也不会比2022年简单太多。

1、首先,依照的要求,高考数学题目可能会与现实中的复杂场景结合。这就要求考生不但具备出色的逻辑推理、计算能力,也对同学们的阅读能力、理解能力提出了很高的要求,做到举一反三是非常重要的。题目的灵活度增加,数学基础如果不够扎实可能会觉得很难,但如果应用能力强,也可能会觉得题目不难。

2、其互 互次,对于数学的考察会更强调数学思想和方法。这就要求同学们在学习过程中掌握数学的核心,如逻辑思维能力、计算能力等。务必要吃透每一个方法,如果解题的时候总是一知半解、似懂非懂,高考的时候很可能会吃苦头。

综合以上,2023年的高考和2022年对比起来异不会太大,可能难度稍有提升。所以同学们在的几个月时间里一定要回归课本,把考纲内的数学基础知识掌握牢固,提升自己举一反三的能力,不必纠结一些难题和偏题。

高考数学的基本公式都有哪些?拜托了各位 谢谢

sin(A+B)=sinAcosB+sinBcosA

十字交叉双乘法没有公式,一定要说的话 那就是利用x^2+(p+q)x+pq=(x+q)(x+p)其中PQ为常数。x^2是X的平方 1.因式分解 即和化积,其结果要分解到不能再分为止。而且可以肯定一个多项式要能分解因式,则结果,因为:数域F上的次数大于零的多项式f(x),如果不计零次因式的异,那么f(x)可以的分解为以下形式: f(x)=aP1k1(x)P2k2(x)…Piki(x),其中α是f(x)的次项的系数,P1(x),P2(x)……Pi(x)是首1互不相等的不可约多项式,并且Pi(x)(I=1,2…,t)是f(x)的Ki重因式。 ()或叫做多项式f(x)的典型分解式。证明:可参见《高代》P52-53 初等数学中,把多项式的分解叫因式分解,其一般步骤为:一提二套三分组等 要求为:要分到不能再分为止。 2.方法介绍 2.1提公因式法: 如果多项式各项都有公共因式,则可先考虑把公因式提出来,进行因式分解,注意要每项都必须有公因式。 例15x3+10x2+5x 解析显然每项均含有公因式5x故可考虑提取公因式5x,接下来剩下x2+2x+1仍可继续分解。 解:原式=5x(x2+2x+1) =5x(x+1)2 2.2公式法 即多项式如果满足特殊公式的结构特征,即可采用套公式法,进行多项式的因式分解,故对于一些常用的公式要求熟悉,除教材的基本公式外,数学竞赛中常出现的一些基本公式现整理归纳如下: a2-b2=(a+b)(a-由基本性质1(换掉M和N)b) a2±2ab+b2=(a±b)2 a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) a3±3a2b+3ab2±b2=(a±b)3 a2+b2+c2+2ab+2bc+2ac=(a+b+c)2 a12+a22+…+an2+2a1a2+…+2an-1an=(a1+a2+…+an)2 a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-ac-bc) an+bn=(a+b)(an-1-an-2b+…+bn-1)(n为奇数) 说明由因式定理,即对一元多项式f(x),若f(b)=0,则一定含有一次因式x-b。可判断当n为偶数时,当a=b,a=-b时,均有an-bn=0故an-bn中一定含有a+b,a-b因式。 例2分解因式:①64x6-y12②1+x+x2+…+x15 解析各小题均可套用公式 解①64x6-y12=(8x3-y6)(8x3+y6) =(2x-y2)(4x2+2xy2+y4)(2x+y2)(4x2-2xy2+y4) ②1+x+x2+…+x15= =(1+x)(1+x2)(1+x4)(1+x8) 注多项式分解时,先构造公式再分解。 2.3分组分解法 当多项式的项数较多时,可将多项式进行合理分组,达到顺利分解的目的。当然可能要综合其他分法,且分组方法也不一定。 例1分解因式:x15+m12+m9+m6+m3+1 解原式=(x15+m12)+(m9+m6)+(m3+1) =m12(m3+1)+m6(m3+1)+(m3+1) =(m3+1)(m12+m6++1) =(m3+1)[(m6+1)2-m6] =(m+1)(m2-m+1)(m6+1+m3)(m6+1-m3) 例2分解因式:x4+5x3+15x-9 解析可根据系数特征进行分组 解原式=(x4-9)+5x3+15x =(x2+3)(x2-3)+5x(x2+3) =(x2+3)(x2+5x-3) 2.4十字相乘法 对于形如ax2+bx+c结构特征的二次三项式可以考虑用十字相乘法, 即x2+(b+c)x+bc=(x+b)(x+c)当x2项系数不为1时,同样也可用十字相乘进行作。 例3分解因式:①x2-x-6②6x2-x-12 解①1x2 1x-3 原式=(x+2)(x-3) ②2x-3 3x4 原式=(2x-3)(3x+4) 注:“ax4+bx2+c”型也可考虑此种方法。 2.5双十字相乘法 在分解二次三项式时,十字相乘法是常用的基本方法,对于比较复杂的多项式,尤其是某些二次六项式,如4x2-4xy-3y2-4x+10y-3,也可以运用十字相乘法分解因式,其具体步骤为: (1)用十字相乘法分解由前三次组成的二次三项式,得到一个十字相乘图 (2)把常数项分解成两个因式填在第二个十字的右边且使这两个因式在第二个十字中交叉之积的和等于原式中含y的一次项,同时还必须与个十字中左端的两个因式交叉之积的和等于原式中含x的一次项 例5分解因式 ①4x2-4xy-3y2-4x+10y-3②x2-3xy-10y2+x+9y-2 ③ab+b2+a-b-2④6x2-7xy-3y2-xz+7yz-2z2 解①原式=(2x-3y+1)(2x+y-3) 2x-3y1 2xy-3 ②原式=(x-5y+2)(x+2y-1) x-5y2 x2y-1 ③原式=(b+1)(a+b-2) 0ab1 ab-2 ④原式=(2x-3y+z)(3x+y-2z) 2x-3yz 3x-y-2z 说明:③式补上oa2,可用双十字相乘法,当然此题也可用分组分解法。 如(ab+a)+(b2-b-2)=a(b+1)+(b+1)(b-2)=(b+1)(a+b-2) ④式三个字母满足二次六项式,把-2z2看作常数分解即可: 2.6拆法、添项法 对于一些多项式,如果不能直接因式分解时,可以将其中的某项拆成二项之或之和。再应用分组法,公式法等进行分解因式,其中拆项、添项方法不是,可解有许多不同途径,对题目一定要具体分析,选择简捷的分解方法。 例6分解因式:x3+3x2-4 解析法一:可将-4拆成-1,-3即(x3-1)+(3x2-3) 法二:添x4,再减x4,.即(x4+3x2-4)+(x3-x4) 法三:添4x,再减4x即,(x3+3x2-4x)+(4x-4) 法四:把3x2拆成4x2-x2,即(x3-x2)+(4x2-4) 法五:把x3拆为,4x2-3x3即(4x3-4)-(3x3-3x2)等解(选择法四)原式=x3-x2+4x2-4 =x2(x-1)+4(x-1)(x+1) =(x-1)(x2+4x+4) =(x-1)(x+2)2 2.7换元法 换元法就是引入新的字母变量,将原式中的字母变量换掉化简式子。运用此 种方法对于某些特殊的多项式因式分解可以起到简化的效果。 例7分解因式: (x+1)(x+2)(x+3)(x+4)-120 解析若将此展开,将十分繁琐,但我们注意到 (x+1)(x+4)=x2+5x+4 (x+2)(x+3)=x2+5x+6 故可用换元法分解此题 解原式=(x2+5x+4)(x2+5x+6)-120 令y=x2+5x+5则原式=(y-1)(y+1)-120 =y2-121 =(y+11)(y-11) =(x2+5x+16)(x2+5x-6) =(x+6)(x-1)(x2+5x+16) 注在此也可令x2+5x+4=y或x2+5x+6=y或x2+5x=y请认真比较体会哪种换法更简单? 2.8待定系数法 待定系数法是解决代数式恒等变形中的重要方法,如果能确定代数式变形后的字母框架,只是字母的系数高不能确定,则可先用未知数表示字母系数,然后根据多项式的恒等性质列出n个含有特殊确定系数的方程(组),解出这个方程(组)求出待定系数。待定系数法应用广泛,在此只研究它的因式分解中的一些应用。 例7分解因式:2a2+3ab-9b2+14a+3b+20 分析属于二次六项式,也可考虑用双十字相乘法,在此我们用待定系数法 先分解2a2+3ab+9b2=(2a-3b)(a+3b) 解设可设原式=(2a-3b+m)(a+3b+n) =2a2+3ab-9b2+(m+2n)a+(3m-3n)b+mn…………… 比较两个多项式(即原式与式)的系数 m+2n=14(1)m=4 3m-3n=-3(2)=> mn=20(3)n=5 ∴原式=(2x-3b+4)(a+3b+5) 注对于()式因为对a,b取任何值等式都成立,也可用令特殊值法,求m,n 令a=1,b=0,m+2n=14m=4 => 令a=0,b=1,m=n=-1n=5 2.9因式定理、综合除法分解因式 对于整系数一元多项式f(x)=anxn+an-1xn-1+…+a1x+a0 由因式定理可先判断它是否含有一次因式(x-)(其中p,q互质),p为首项系数an的约数,q为末项系数a0的约数 若f()=0,则一定会有(x-)再用综合除法,将多项式分解 例8分解因式x3-4x2+6x-4 解这是一个整系数一元多项式,因为4的正约数为1、2、4 ∴可能出现的因式为x±1,x±2,x±4, ∵f(1)≠0,f(1)≠0 但f(2)=0,故(x-2)是这个多项式的因式,再用综合除法 21-46-4 2-44 1-220 所以原式=(x-2)(x2-2x+2) 当然此题也可拆项分解,如x3-4x2+4x+2x-4 =x(x-2)2+(x-2) =(x-2)(x2-2x+2) 分解因式的方法是多样的,且其方法之间相互联系,一道题很可能要同时运用多种方法才可能完成,故在知晓这些方法之后,一定要注意各种方法灵活运用,牢固掌握! ------------------------------------------------------------------------------------------------------------- 不知道你是什么教材的 初中的都给你好了 ------------------------------------------------------------------------------------------------------------- 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理 三角形两边的和大于第三边 16 推论 三角形两边的小于第三边 17 三角形内角和定理 三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的 30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的 42 定理1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形 48定理 四边形的内角和等于360°

高考数学必背公式整理

在应试教育中,只有多记公式,掌握解题技巧,熟悉各种题型,把自己变成一个做题机器,才能在考试中取得的成绩。

两角和公式

s则n=log(a)(b)in(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)

ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2sinα+sinβ=2sin(α+β)/2·cos(α-β)/2a-1=1-2sin2a

半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA))

tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。