2020高考数学涉及的公式_高考数学公式总结

招生计划 2025-01-04 10:18:35

高考数学关于圆柱体积计算知识点

代数运算的实质,有i多项式运算。i的正整数次慕,四个数值周期现。

高考数学关于圆柱体积计算知识点

2020高考数学涉及的公式_高考数学公式总结2020高考数学涉及的公式_高考数学公式总结


2020高考数学涉及的公式_高考数学公式总结


2020高考数学涉及的公式_高考数学公式总结


2020高考数学圆柱体积公式复习汇总

圆柱体积=πr6.y=cosx y'=-sinx2 h=S底面积高(h)

先求底面积,然后乘高。

π是圆周率,一般取3.14

r是圆柱底面半径

h为圆柱的高

还可以是

v=1/2ch×r

侧面积的一半×半径

圆柱体的定义:

旋转定义法:一个长方形以一边为轴顺时针或逆时针旋转一周,所经过的空间叫做圆柱体。

平移定义法:以一个圆为底面,上或下移动一定的距离,所经过的空间叫做圆柱体。

2圆柱体积相关公式

圆柱体积:V=底面积×高或V=1/2侧面积×高

圆锥体积:V=底面积×高÷3

圆柱侧面积:S侧=底面周长×高

圆柱表面积:S表=侧面积+2个底面积

字母表示:

圆柱体积: V=sh

圆锥体积:V=sh÷3

圆柱侧面积:S=ch/2πrh/πdh

圆柱表面积:s=ch+2πr2

圆柱体侧面积=底面周长×高(底面周长知道吧,圆的周长(2π r)或(π d))

圆柱体的表面积=2个底面积+1个侧面积(底面积知道吧,圆的面积(π r×r)或(π (d÷2)×(d÷2)(不要忘了还要 ×2,因为有2个底面积哟!))

圆柱体的体积=底面积×高(Sh)(这个应该懂吧!)

圆柱体的底面积=圆的面积(π r×r)或(π (d÷2)×(d÷2))

2020高考数学圆柱体积计算

π是圆周率,一般取3.14

r是圆柱底面半径

h为圆柱的高

V=πr2h=V=sh

还可以是

v=1/2ch×r

侧面积的一半×半径

2圆柱体积相关公式

圆柱的侧面积=底面圆的周长×高

圆柱的表面积=上下底面面积+侧面积

圆柱的体积=底面积×高

3圆柱的体积怎么计算

求圆柱体积先要求圆基的半径。两个圆都会做,因为它们大小相同。如果你已经知道半径,你可以继续前进。如果你不知道半径,那么你可以用尺子测量圆的最宽部分,然后除以2。这将比测量直径的一半更准确。我们说,这个圆筒的半径是1英寸(2.5 厘米)。把它写下来。如果你知道这个圆的直径,就把它分成2个。如果你知道周长,然后除以2π得到半径。

计算圆形基的面积。要做到这一点,只是用公式求圆的面积,πR2 =。只要把你找到的半径去就可以了。这里是如何做到这一点:aπx 12 = =πx 1。因为π约3.14到三的数字,你可以说,圆形底座的面积是3.14。

找到圆柱体的高度。如果你已经知道高度了,继续前进。如果没有,用尺子量一下。高度是两个基棱之间的距离。比方说,圆柱体的高度是4英寸(10.2 厘米)。把它写下来。

把基础的面积乘以高度。你可以把圆柱体的体积看作是圆柱体的面积在圆柱的整个高度上延伸的体积。因为你知道基的面积是3.14的2,高度是4,你可以把两者相乘,得到圆柱体的体积。3.14英寸,2英寸,4英寸。= 12.56。这是你的。总是以立方单位陈述你的最终,因为体积是三维空间的量度。

2020高考数学,“金字塔”题解法是什么?

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

每一年的高考数学题都会有一道十分奇葩的题出现。今年的全国一卷文科卷也有一道十分奇葩的题,那就是计算胡夫金字塔,其侧面三角形底边上的高与底面正方形的边长比值。

这道题一出现,就让很多的考生苦不堪言,感觉超出了自己对数学的认知范围,我虽然不是今年的高考生,但是我也看到了这道题,说实话这道题对于我这种理科生来说,真的很简单。无非就是一个比值问题,两边约分即可得出这个比值。

我们先来看一下题干,这是一个正四棱锥,我们首先想到的就是正四棱锥的性质,底面是一个正方形。而且题干中也告诉我们这个正四棱锥的高和底面的关系。底面正方形的面积等于侧面三角形的面积,这是一个很规则的正四棱锥,如果你练题练多了的话,你凭借记忆就可以知道这道题的一加根号五比四。

如果列式子计算的话,金字塔高等于h,边长等于a,侧面三角形底边的高h1,那么我们可得h的平方等于四分之根号三a的平方,随后侧面三角形是等边三角形,可以算出h1和a的关系。两个式子化简融合,而且这些式子的化简融合,我记得我上高一,节课数学老师就讲的这些,这都是最基本的运用。这样可以得到正确。

这道题真的是秒出的一道题,很多人感觉难,要是真的难的话,就不会放到前五题的位置。其实这道题和去年的维纳斯的身高有很大的一致性和相同性。去年维纳斯的身高那题虽然难倒了一片人,但是一个比例就可以算出来,只不过是计算比较繁琐复杂而已。而这道题纯考的是你几何的知识和对于字母的运用。好好读读题,稍微想一下这道题,其实很简单。

将底面正方形的边长设成2,高设成x,然后根据已知条件列等式找到x等于什么,然后根据题目要求的列式子,即可求出。

2020高考数学,“金字塔”题解法是有二元一次方程和几何公式算出金字塔的各个部分,然后算出体积和面积即可!

令四棱锥的高为h,侧面三角形的高为h1 ,底面正方解这是一个整系数一元多项式,因为4的正约数为1、2、4形的边长为a ,求h1:a。

这道题的正确选C。

我想知道,高考中常用的数学公式.有高手可以告诉我几个吗?

兴趣——兴趣是指一个人力求认识、掌握某种事物并经常参与该种活动的心理倾向。据有关专家研究表明,如果一个人对某种工作有兴趣,他能发挥其全部才能的80%~90%,并且能长时间保持高效率而不知疲惫。相反,如果他对某种工作没有兴趣,则只能发挥全部才能的20%~30%,还容易精疲力竭。而具体在进行专业选择时,对于自己兴趣的考查,主要看当前潜在的职业兴趣和对各门学科的学科兴趣。

1.元素具有①确定性②互异性③无序性

2.表示方法①列举法

②描述法

③韦恩图

④数轴法

3.的运算

⑴A∩(B∪C)=(A∩B)∪(A∩C)

⑵Cu(A∩B)=CuA∪CuB

Cu(A∪B)=CuA∩CuB

4.的性质

⑴n元的子集数:2n

真子集数:2n-1;非空真子集数:2n-2

高中数学概念总结

一、

函数

1、

若A中有n

个元素,则A的所有不同的子集个数为

。二次函数

的图象的对称轴方程是

,顶点坐标是

。用待定系数法求二次函数的解析式时,解析式的设法有三种形式,即

,和

(顶点式)。

2、

幂函数

,当n为正奇数,m为正偶数,m

3、

函数

的大致图象是

由图象知,函数的值域是

,单调递增区间是

,单调递减区间是

。二、

三角函数

1、

以角

的顶点为坐标原点,始边为x轴正半轴建立直角坐标系,在角

的终边上任tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)取一个异于原点的点

,点P到原点的距离记为

=,cos

=,tg

=,ctg

=,sec

=,csc

=。

2、同角三角函数的关系中,平方关系是:

,,

;倒数关系是:

,,

;相除关系是:

,。

3、诱导公式可用十个字概括为:奇变偶不变,符号看象限。如:

,=

,。

4、

函数

的值是

,最小值是

,周期是

,频率是

,相位是

,初相是

;其图象的对称轴是直线

,凡是该图象与直线

的交点都是该图象的对称中心。

三角函数

1、

以角

的顶点为坐标原点,始边为x轴正半轴建立直角坐标系,在角

的终边上任取一个异于原点的点

,点P到原点的距离记为

=,cos

=,tg

=,ctg

=,sec

=,csc

=。

2、同角三角函数的关系中,平方关系是:

,,

;倒数关系是:

,,

;相除关系是:

,。

3、诱导公式可用十个字概括为:奇变偶不变,符号看象限。如:

,=

,。

4、

函数

的值是

,最小值是

,周期是

,频率是

,相位是

,初相是

;其图象的对称轴是直线

,凡是该图象与直线

的交点都是该图象的对称中心。

圆的标准方程

(x-a)2+(y-b)2=r2

注:(a,b)是圆心坐标

圆的一般方程

x2+y2+Dx+Ey+F=0

注:D2+E2-4F>0

抛物线标准方程

y2=2px

y2=-2px

x2=2py

x2=-2py

-b+√(b2-4ac)/2a

-b-b+√(b2-4ac)/2a

根与系数的关系

X1+X2=-b/a

X1X2=c/a

注:韦达定理

判别式

注:方程有相等的两实根

b2-4ac>0

注:方程有一个实根

b2-4ac<0

注:方程有共轭复数根

数学的公式是要记但我告诉你个记忆的好方法啊

就是做联系那样你就可以记很多公式.

比如三角的.和化积,积化和.半角公式,公式.

还有椭圆和圆,还有抛物线,双曲线的常用公式.

如果要具体的可以加我的QQ.

最重要的是三角函数和立体几何的向量法那些公式,高考是必考的.

高考数学32条秒杀公式 高中数学神级秒杀结论

数列的前n项和公式Sn:

高考数学必考的公式有哪些?数学神级秒杀公式结论都有哪些?下文我给大家整理了高考数学的公式结论,供参考!

数学32条秒杀公式整理

高考数学神级秒杀公式大全 1.函数的周期性问题:

①若f(x)=-f(x+k),则T=2k;

②若f(x)=m/(x+k)(m不为0),则T=2k;若f(x)=f(x+k)+f(x-k),则T=6k。

注意点:

a.周期函数,周期必无限

b.周期函数未必存在最小周期,如:常数函数。

c.周期函数加周期函数未必是周期函数。

③关于对称问题

若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2;

函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;

若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称。

2.函数奇偶性。

①对于属于R上的奇函数有f(0)=0;

②对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项

3.函数单调性:若函数在区间D上单调,则函数值随着自变量的增大(减小)而增大(减小)。

4.函数对称性:

①若f(x)满足f(a+x)+f(b-x)=c则函数关于(a+b/2,c/2)成中心对称。

②若f(x)满足f(a+x)=f(b-x)则函数关于直线x=a+b/2成轴对称。

5.函数y=(sinx)/x是偶函数。在(0,π)上单调递减,(-π,0)上单调递增。利用上述性质可以比较大小。

6.函数y=(lnx)/x在(0,e)上单调递增,在(e,+∞)上单调递减。另外y=x2(1/x)与该函数的单调性一致。

7.复合函数。

(1)复合函数奇偶性:内偶则偶,内奇同外。

(2)复合函数单调性:同增异减。

8.数列定律。

等数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等。

9.隔项相消。对于Sn=1/(1×3)+1/(2×4)+1/(3×5)+…+1/[n(n+2)]=1/2[1+1/2-1/(n+1)-1/(n+2)]

注:隔项相加保留四项,即首两项,尾两项。

10.面积公式:S=1/2∣mq-np∣其中向量AB=(m,n),向量BC=(p,q)注:这个公式可以解决已知三角形三点坐标求面积的问题!

11.空间立体几何中:以下命题均错。

①空间中不同三点确定一个平面;

②垂直同一直线的两直线平行;

③两组对边分别相等的四边形是平行四边形;

④如果一条直线与平面内无数条直线垂直,则直线垂直平面;

⑤有两个面互相平行,其余各面都是平行四边形的几何体是棱柱;

⑥有一个面是多边形,其余各面都是三角形的几何体都是棱锥。

12.所有棱长均相等的棱锥可以是三、,所有非空真子集的个数是四、五棱锥。

13.求f(x)=∣x-1∣+∣x-2∣+∣x-3∣+…+∣x-n∣(n为正整数)的最小值。为:当n为奇数,最小值为(n2-1)/4,在x=(n+1)/2时取到;当n为偶数时,最小值为n2/4,在x=n/2或n/2+1时取到。

14.椭圆中焦点三角形面积公式:S=b2tan(A/2)在双曲线中:S=b2/tan(A/2)说明:适用于焦点在x轴,且标准的圆锥曲线。A为两焦半径夹角。

15.[转化思想]切线长l=√(d2-r2)d表示圆外一点到圆心得距离,r为圆半径,而d最小为圆心到直线的距离。

16.对于y2=2px,过焦点的互相垂直的两弦AB、CD,它们的和最小为8p。

17.易错点:若f(x+a)[a任意]为奇函数,那么得到的结论是f(x+a)=-f(-x+a)〔等式右边不是-f(-x-a)〕,同理如果f(x+a)为偶函数,可得f(x+a)=f(-x+a)牢记!

18.三角形垂心定理.

①向量OH=向量OA+向量OB+向量OC(O为三角形外心,H为垂心

②若三角形的三个顶点都在函数y=1/x的图象上,则它的垂心也在这个函数图象上。

19.与三角形有关的定理:

①在非Rt△中,有tanA+tanB+tanC=tanAtanBtanC

②任意三角形射影定理(又称余弦定理):在△ABC中a=bcosC+ccosB;b=ccosA+acosC;c=acosB+bcosA

③任意三角形内切圆半径r=2S/a+b+c(S为面积)

高中必背数学公式

高中数学公式是高考数学复习至关重要的知识点,为了帮助高三考生进行高考数学的复习。下面我给你分享高中必背数学公式,欢迎阅读。

高中必背数学公式:一元二次方程的解

-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a

根与系数的关系x1+x2=-b/ax1x2=c/a注:韦达定理

判别式b2-4a=0注:方程有相等的两实根

b2-4ac<0注:方程有共轭复数根

高中必背数学公式:立体图形及平面图形的公式

圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标

圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0

抛物线标准方程ysinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]2=2pxy2=-2pxx2=2pyx2=-2py

直棱柱侧面积S=ch斜棱柱侧面积S=c'h

正棱锥侧面积S=1/2ch'正棱台侧面积S=1/2(c+c')h'

圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pir2

圆柱侧面积S=ch=2pih圆锥侧面积S=1/2cl=pirl

弧长公式l=ara是圆心角的弧度数r>0扇形面积公式s=1/2lr

斜棱柱体积圆柱体体积=底面积×高V=S'L注:其中,S'是直截面面积,L是侧棱长

柱体体积公式V=sh圆柱体V=pir2h

高中必背数学公式:图形周长、面积、体积公式

长方形的周长=(长+宽)×2

正方形的周长=边长×4

长方形的面积=长×宽

正方形的面积=边长×边长

三角形的面积

已知三角形底a,高h,则S=ah/2

已知三角形三边a,b,c,半周长p,则S=√[p(p-a)(p-b)(p-c)](海伦公式)(p=(a+b+c)/2)

和:(a+b+c)(a+b-c)1/4

已知三角形两边a,b,这两边夹角C,则S=absinC/2

设三角形三边分别为a、b、c,内切圆半径为r

则三角形面积=(a+b+c)r/2

设三角形三边分别为a、b、c,外接圆半径为r

则三角形面积=abc/4r

高考数学知识点2023

b2-4a=0

高考数学是一门比较占分的科目,但数学也比较难,难在它的深度和广度,但如果能理清思路,抓住重点,多加练习,学渣变学霸也不是不可能的。高考数学知识点2023有哪些?一起来看看高考数学知识点2023,欢迎查阅!

高中数学各知识点公式定理记忆口诀

与函数

内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。

复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。

函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;

正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;

求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,

奇母偶子偶函数,偶母非奇偶函数;图象象限内,函数增减看正负。

三角函数

三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。

同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;

中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,

顶点任庖缓扔诤竺媪礁S盏脊骄褪呛茫夯蟠蠡。?nbsp;

变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,

将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,

余弦积减正弦积,换角变形众公式。和化积须同名,互余角度变名称。

计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

逆反原则作指导,升幂降次和积。条件等式的证明,方程思想指路明。

公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;

1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;

三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;

利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;

不等式

解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。

高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。

证不等式的 方法 ,实数性质威力大。求与0比大小,作商和1争高下。

直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。

还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。

数列

等等比两数列,通项公式N项和。两个有限求极限,四则运算顺序换。

数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换,

取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程公式二:序好思考:

一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化:

首先验证再定,从K向着K加1,推论过程须详尽,归纳原理来肯定。

复数

虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。

对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是辐角度。

箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。

一些重要的结论,熟记巧用得结果。虚实互化本领大,复数相等来转化。

利用方程思想解,注意整体代换术。几何运算图上看,加法平行四边形,

减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。

三角形式的运算,须将辐角和模辨。利用棣莫弗公式,乘方开方极方便。

辐角运算很奇特,和是由积商得。四条性质离不得,相等和模与共轭,

两个不会为实数,比较大小要不得。复数实数很密切,须注意本质区别。

排列、组合、二项式定理

加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。

两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。

排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。

不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。

关于二项式定理,杨辉三角形。两条性质两公式,函数赋值变换式。

立体几何

垂直平行是重点,证明须弄清概念。线线线面和面面、三对之间循环现。

方程思想整体求,化归意识动割补。计算之前须证明,画好移出的图形。

立体几何辅助线,常用垂线和平面。射影概念很重要,对于解题最关键。

异面直线二面角,体积射影公式活。公理性质三垂线,解决问题一大片。

有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称。

笛卡尔的观点对,点和有序实数对,两者―一来对应,开创几何新途径。

两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。

三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。

四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。

解析几何是几何,得意忘形学不活。图形直观数入微,数学本是数形学。

高三数学 复习重要知识点

知识点1

1.对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=-f(x),那么f(x)为奇函数;

2.对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=f(x),那么f(x)为偶函数;

3.一般地,对于函数y=f(x),定义域内每一个自变量x,都有f(a+x)=2b-f(a-x),则y=f(x)的图象关于点(a,b)成中心对称;

4.一般地,对于函数y=f(x),定义域内每一个自变量x都有f(a+x)=f(a-x),则它的图象关于x=a成轴对称。

5.函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;

6.由函数奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).

知识点2

一、充分条件和必要条件

当命题“若A则B”为真时,A称为B的充分条件,B称为A的必要条件。

二、充分条件、必要条件的常用判断法

1.定义法:判断B是A的条件,实际上就是判断B=>A或者A=>B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可

2.转换法:当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断。

3.法

在命题的条件和结论间的关系判断有困难时,可从的角度考虑,记条件p、q对应的分别为A、B,则:

三、知识扩展

1.四种命题反映出命题之间的内在联系,要注意结合实际问题,理解其关系(尤其是两种等价关系)的产生过程,关于逆命题、否命题与逆否命题,也可以叙述为:

(1)交换命题的条件和结论,所得的新命题就是原来命题的逆命题;

(2)同时否定命题的条件和结论,所得的新命题就是原来的否命题;

(3)交换命题的条件和结论,并且同时否定,所得的新命题就是原命题的逆否命题。

2.由于“充分条件与必要条件”是四种命题的关系的深化,他们之间存在这密切的联系,故在判断命题的条件的充要性时,可考虑“正难则反”的原则,即在正面判断较难时,可转化为应用该命题的逆否命题进行判断。一个结论成立的充分条件可以不止一个,必要条件也可以不止一个。

高考数学复习重点 总结

,高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节

主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是个板块。

第二,平面向量和三角函数

重点考察三个方面:一个是划减与求值,,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。

第三,数列

数列这个板块,重点考两个方面:一个通项;一个是求和。

第四,空间向量和立体几何

在里面重点考察两个方面:一个是证明;一个是计算。

第五,概率和统计

这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,……等可能的概率,第二………,第三是,还有重复发生的概率。

第六,解析几何

这是我们比较头疼的问题,是整个试卷里难度比较大,计算量的题,当然这一类题,我总结下面五类常考的题型,包括类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是2008年高考已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。

考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。

高考数学知识点2023相关 文章 :

★ 2021年数学高考知识点

★ 高中数学知识点总结归纳

★ 高考数学知识点大全

★ 高考数学知识点总结归纳

★ 高考数学知识点归纳整理

★ 高考数学知识点总结整理

★ 2020高考数学知识点总结大全

★ 高考数学必考知识点整理

★ 2020高考数学知识点大全

★ 2020高考文科数学知识点

2022高考数学题及(2020高考数学题及解析)

-S3m、……仍为等比数列。

今天小编辑给各位分享2022高考数学题及的知识,其中也会对2020高考数学题及解析分析解答,如果能解决你想了解的问题,关注本站哦。

第七,押轴题

2022年全国乙卷高考数学试题

数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的,以下是我整理的2022年全国乙卷高考数学试题,希望可以提供给大家进行参考和借鉴。

2022年全国乙卷高考数学试题

全面认识你自己

认识自己是职业定位、自我定位的前提,也是科学选择专业的关键。

首先,对自我的认识来源于自我评价。考生对自己兴趣、性格、天赋的认知是志愿选择的一个重要依据。但需要注意的是,我们的教育一直专注于学生智力的培养,而忽视学生自身的认知和个性的发展,可能造成学生对自我认识的不足和偏。如,一些考生完全有能力选择更好的大学、更有挑战性的专业,但可能因为对自我评价过低而错失机会。

其次是他人评价。特别是家长,班主任老师的评价相对全面。但是这种评价可能带有浓厚个人喜好的色彩,有失客观,而且对学生内在价值动力、天赋能力等极其重要的内在心理特质缺乏真正的了解,因此,在参考他人意见的时候需要谨慎对待。

是心理测评,即通过心理测评来指导高考志愿填报。在国内,高考志愿测评是一个新鲜事物,其测评的结果较为全面和科学,渐渐地为更多的家长和教育机构所接受。考生如果希望在志愿填报时就对今后的长期发展有个较好的规划,可以尝试选择相关的测试系统帮助分析,进而对专业的选择给出一定的指导建议。

高考志愿填报无疑对考生的一生影响深远,因此,考生在专业选择时应该特别注意考虑的全面性--专业是否是自己兴趣喜欢的?专业是否自己性格适合的?专业是否是自己天赋能力擅长的?只有在三者之间找到一个的结合点,考生才能在自己的人生路上迈出正确、关键的一步。

与此同时,尽管高考志愿测评技术在国内发展较快,但哪怕是一些较权威的专业测评,也有其局限性,他们只能通过网络平台为考生提供测评服务,学生只有登陆其网站才能参加测评,这使得不少上网条件受到限制的考生难以通过测试对自己进行分析。

此外,市面上不少测评软件仅仅只是从兴趣的维度对考生进行考察,相对于性格和天赋,兴趣的稳定性欠佳,这样得出的结果对考生就没有太大的指导意义。

在此,也提醒考生,选择测评软件时,需要先对测评体系有个系统的了解。

考生个人特征情况

考生个人特征如兴趣、特长、志向、能力、职业价值观等。

特长——选择了符合自己特长的专业,无疑在未来的学习、工作中可以扬长避短,充分发挥自己的聪明才智。俗话说,最了解自己的还是自己。每个考生部应认真自我分析,看看到底最喜欢哪一门学科?是动手能力强,还是更擅长动脑?表象思维与逻辑思维能力哪一个更有优势?组织管理能力、艺术修养、口头与书面表达能力,在同学中处于什么地位?等等。这些都是你选择志愿的参考因素。

志向——各人的志向、理想是激发自己奋发努力的动力之一,也是成就事业不可缺少的条件之一。

能力——能力可以分为一般能力和特殊能力。一般能力包括观察力、记忆力、注意力、思维力、想像力等。具体在选择专业填报志愿时,考生需要知道的是,有些专业是需要考生具备一些特殊能力才能报考和学习的,如美术、音乐、等。但是就其他大部分专业来说,对学生能力的要求是不超出一般范围的。另外,在学生所处年龄这个阶段,可以说,他们能力发展的空间是相当大的,尤其进入大学阶段后,随着眼界的扩大,知识的扩展、锻炼能力机会的增加,他们的能力会不断得到提高,所以,在专业选择时,虽然能力是一个需要考虑的因素,但是不宜作为一个化的考虑因素。

职业价值观;一般说来,职业价值观与理想基本是一致的,但无论是以什么专业作为理想专业的人,职业价值体系中均应以充分体现自己的兴趣,发挥个人能力及个性为位,然后,再考虑一些外在因素,如这个专业将来对应职业的工资、地位、稳定性等。在进行专业选择时,考生家庭中的成员就这个方面的问题进行认真的讨论,弄清个人和家庭的职业价值观是什么,再作出专业和将来的职业选择。

2022年全国乙卷高考数学试题相关文章:

★2022高考全国乙卷试题及

★2022高考理科数学乙卷试题解析

★2022年全国乙卷高考理科数学

★2022年全国乙卷文科数学卷真题公布

★2022年高考数学试题及

★2022年全国乙卷高考数及

★2022年全国理科数学卷试题及解析

★2022全国Ⅰ卷高考数学试题及参一览

★2022年英语全国乙卷试题及

★2022年高考乙卷数试卷

2022年全国新高考1卷数学试题及解析

数学科高考以我国的经济发展、生产生活实际为情境素材设置试题。下面是我为大家收集的关于2022年全国新高考1卷数学试题及解析。希望可以帮助大家。

全国新高考1卷数学试题解析

高考数学复习主干知识点汇总:

因为基础知识融汇于主干内容之中,主干内容又是整个学科知识体系的重要支撑,理所当然是高考的重之中重。主干内容包括:函数、不等式、三角、数列、解析几何、向量等内容。现分块阐述如下:

1.函数

函数是贯穿中学数学的一条主线,近几年对函数的考察既全面又深入,保持了较高的内容比例,并达到了一定深度。题型分布总体趋势是四道小题一道大题,题量稳中有变,但分值基本在35分左右。选填题覆盖了函数的大部分内容,如函数的三要素,函数的四性与函数图像、常见的初等函数,反函数等。小题突出考察基础知识,大题注重考察函数的思想方法和综合应用。

2.三角函数

三角部分是高中数学的传统内容,它是中学数学重要的基础知识,因而具有基础性的地位,同时它也是解决数学本身与其它学科的重要工具,因此具有工具性。高考大部分以中低档题的形式出现,至少考一大一小两题,分值16分左右,其中三角恒等变形、求值、三角函数的图象与性质,解三角形是支撑三角函数的知识体系的主干知识,这无疑是高考命题的重点。

3.立体几何

承载着空间想象能力,逻辑推理能力与运算能力考察的立体几何试题,在历年的高考中被定义于中低档题,多是一道解答题,一道选填题;解答一般与棱柱,棱锥有关,主要考察线线与线面关系,其解法一般有两种以上,并且一般都能用空间向量方法来求解。

4.数列与极限

数列与极限是高中数学重要内容之一,也是进一步学习高中数学的基础,每年高考占15%。高考以一大一小两题形式出现,小题主要考察基础知识的掌握,解答题一般为中等以上难度的压轴题。由于这部分知识处于交汇点的地位,比如函数、不等式,向量、解几等都与它们有密切的联系,因此大题目具有较强的综合性与灵活性和思维的深刻性。

5.解析几何

直线与圆的方程,圆锥曲线的定义、标准方程、几何性质是支撑解析几何的基础,也是高考命题的重点,以下三个小题一道大题的形式出现约占30分。客观题主要考察直线方程,斜率、两直线位置关系,夹角公式、点到直线距离,圆锥曲线的标准方程,几何性质等基础知识。解答题为难度较大的综合压轴题。解析几何融合了代数,三角几何等知识是考察学生综合能力的绝好素材。

2022年全国新高考1卷数学试题及解析相关文章:

★2022高考甲卷数试卷及

★2022年新高考Ⅱ卷数试卷及

★2022高考全国甲卷数学试题及

★2022高考数学大题题型总结

★2022全国乙卷理科数及解析

★2022年全国乙卷高考数学试卷

★2022年新高考1卷语文真题及解析

★全国新高考一卷2022语文试题及一览

★2022江西高考文科数学试题及

★2022全国新高考II卷语文试题及解析

2022年全国新高考1卷数学试题及详解

高考数学命题贯彻高考内容改革的要求,依据高中课程标准命题,进一步增强考试与教学的衔接。下面是我为大家收集的关于2022年全国新高考1卷数学试题及详解。希望可以帮助大家。

2022高考数学知识点总结

1.定义:

用符号〉,=,〈号连接的式子叫不等式。

2.性质:

①不等式的两边都加上或减去同一个整式,不等号方向不变。

②不等式的两边都乘以或者除以一个正数,不等号方向不变。

③不等式的两边都乘以或除以同一个负数,不等号方向相反。

3.分类:

①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。

②一元一次不等式组:

a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

4.考点:

①解一元一次不等式

②根据具体问题中的数量关系列不等式并解决简单实际问题

③用数轴表示一元一次不等式的解集

考点一:与简易逻辑

部分一般以选择题出现,属容易题。重点考查间关系的理解和认识。近年的试题加强了对计算化简能力的考查,并向无限集发展,考查抽象思维能力。在解决这些问题时,要注意利用几何的直观性,并注重表示方法的转换与化简。简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。

考点二:函数与导数

函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。

考点三:三角函数与平面向量

一般是2道小题,1道综合解答题。小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型.

考点四:数列与不等式

不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查.在选择、填空题中考查等或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、题目.

一、排列

1定义

从n个不同元素中取出m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一排列。

从n个不同元素中取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Amn.

2排列数的公式与性质

排列数的公式:Amn=n

特例:当m=n时,Amn=n!=n×3×2×1

规定:0!=1

二、组合

1定义

从n个不同元素中取出m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合

从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号Cmn表示。

2比较与鉴别

由排列与组合的定义知,获得一个排列需要“取出元素”和“对取出元素按一定顺序排成一列”两个过程,而获得一个组合只需要“取出元素”,不管怎样的顺序并成一组这一个步骤。

排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。

三、排列组合与二项式定理知识点

1.计数原理知识点

①乘法原理:N=n1·n2·n3·nM②加法原理:N=n1+n2+n3++nM

2.排列与组合

Anm=n-=n!/!Ann=n!

Cnm=n!/!m!

Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?6?1k!=!-k!

3.排列组合混合题的解题原则:先选后排,先分再排

排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素.以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.

捆绑法

插空法间接法和去杂法等等

在求解排列与组合应用问题时,应注意:

把具体问题转化或归结为排列或组合问题;

通过分析确定运用分类计数原理还是分步计数原理;

分析题目条件,避免“选取”时重复和遗漏;

列出式子计算和作答.

经常运用的数学思想是:

①分类讨论思想;②转化思想;③对称思想.

4.二项式定理知识点:

①n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3++Cnran-rbr+-+Cnn-1abn-1+Cnnbn

特别地:n=1+Cn1x+Cn2x2++Cnrxr++Cnnxn

②主要性质和主要结论:对称性Cnm=Cnn-m

二项式系数在中间。

所有二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4++Cnr++Cnn=2n

奇数项二项式系数的和=偶数项而是系数的和

Cn0+Cn2+Cn4+Cn6+Cn8+=Cn1+Cn3+Cn5+Cn7+Cn9+=2n-1

③通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。

5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。

6.注意二项式系数与项的系数的区别,在求某几项的系数的和时注意赋值法的应用。

不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用。因此不等式应用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了很好的促进作用。在解决问题时,要依据题设与结论的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明。不等式的应用范围十分广泛,它始终贯串在整个中学数学之中。

诸如问题,方程的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。

知识整合

1。解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化。在解不等式中,换元法和图解法是常用的技巧之一。通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰。

2。整式不等式的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、不等式等化归为整式不等式是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法。方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用。

3。在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰。

4。证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法。要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点。比较法的一般步骤是:作→变形→判断符号。

数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等数列、等比数列,求极限和数学归纳法综合在一起。

探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。

近几年来,高考关于数列方面的命题主要有以下三个方面;

数列本身的有关知识,其中有等数列与等比数列的概念、性质、通项公式及求和公式。

数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。

数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为一题难度较大。

1.在掌握等数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;

2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,

进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力

2022年全国新高考1卷数学试题及详解相关文章:

★2022高考卷数及解析

★2022高考甲卷数试卷及

★2022卷高考文科数学试题及解析

★2022高考全国甲卷数学试题及

★2022年新高考Ⅱ卷数试卷及

★2022全国乙卷理科数及解析

★2022高考数学大题题型总结

★2022年高考全国一卷作文预测及范文

★2022年高考数学必考知识点总结

★2022年全国乙卷高考数学试卷

2022年高考数学试题及参

相比很多同学在高考过后的时间就是找核对,虽然知道这样可能会影响心情,但还是忍不住想要对照。下面是我为大家整理的关于2022年高考数学试题及参,如果喜欢可以分享给身边的朋友喔!

2022年高考数学试题

2022年高考数学试题参

高考数学答题策略

考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。

一、会做与得分的关系

要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现"会而不对""对而不全"的情况,考生自己的估分与实际得分之甚远。如立体几何论证中的"跳步",使很多人丢失1/3以上得分,代数论证中"以图代证",尽管解题思路正确甚至很巧妙,但是由于不善于把"图形语言"准确地转译为"文字语言",得分少得可怜。只有重视解题过程的语言表述,会做的题才会得分。

二、审题与解题的关系

有的考生对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。其实只要耐心仔细地审题,准确地把握题目中的与量,从中获取尽可能多的信息,才能迅速找准解题的方向。

三、难题与容易题的关系

拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的'顺序作答。这几年,数学试题已从"一题把关"转为"多题把关",因此解答题都设置了层次分明的"台阶",入口宽,入手易,但是深入难,解到底难,因此看似容易的题也会有"咬手"的关卡,看似难做的题也有可得分之处。所以考试中看到容易的题目不可掉以轻心,看到新面孔的难题不要胆怯,冷静思考、仔细分析,定能得到应有的分数。

四、快与准的关系

在目前题量大、时间紧的情况下,准字则尤为重要。只有准才能得分,只有准你才可以不必考虑再花时间检查,而快是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。适当地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。

近年的高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面6.先高后低。即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。

2022年高考数学试题及参相关文章:

★2022数学高考题及

★2022新高考数学Ⅰ卷试卷及参

★2022年全国Ⅰ卷高考数学试题及参公布

★2022全国一卷高考数学试题及

★2022新高考全国一卷数学试卷及解析

★2022年高考数学试题及

★2022全国新高考Ⅰ卷数学卷完整试题及一览

★2022新高考全国一卷数学试卷解析

★2022年高考数学全国乙卷试题

★2022新高考数学试题及详解

高考文科数学必背公式

微元法是把物理过程或研究对象分解为众多细小的

一、高中数学诱导公式全集:

常用的诱导公式有以下几组:

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα (k∈Z)

cos(2kπ+α)=cosα (k∈Z)

tan(2kπ+α)=tanα (k∈Z)

cot(2kπ+α)=cotα (k∈Z)

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α与 -α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:

π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈Z)

注意:在做题时,将a看成锐角来做会比较好做。

诱导公式记忆口诀

※规律总结※

上面这些诱导公式可以概括为:

对于π/2k ±α(k∈Z)的三角函数值,

①当k是偶数时,得到α的同名函数值,即函数名不改变;

②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.

(奇变偶不变)

然后在前面加上把α看成锐角时原函数值的符号。

(符号看象限)

例如:

sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。

当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。

所以sin(2π-α)=-sinα

上述的记忆口诀是:

奇变偶不变,符号看象限。

公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α

所在象限的原三角函数值的符号可记忆

水平诱导名不变;符号看象限。

#各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”.

这十二字口诀的意思就是说:

象限内任何一个角的四种三角函数值都是“+”;

第二象限内只有正弦是“+”,其余全部是“-”;

第三象限内切函数是“+”,弦函数是“-”;

第四象限内只有余弦是“+”,其余全部是“-”.

上述记忆口诀,一全正,二正弦,三内切,四余弦

#还有一种按照函数类型分点线面三位一体,柱锥 台球 为代表。距离都从点出发,角度皆为线线成。象限定正负:

函数类型 象限 第二象限 第三象限 第四象限

正弦 ...........+............+............—............—........

余弦 ...........+............—............—............+........

正切 ...........+............—............+............—........

余切 ...........+............—............+............—........

同角三角函数基本关系

同角三角函数的基本关系式

倒数关系:

tanα ·cotα=1

sinα ·cscα=1

cosα ·secα=1

商的关系:

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα

平方关系:

sin^2(α)+cos^2(α)=1

1+tan^2(α)=sec^2(α)

1+cot^2(α)=csc^2(α)

同角三角函数关系六角形记忆法

六角形记忆法:(参看或参考资料链接)

构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。

(1)倒数关系:对角线上两个函数互为倒数;

(2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。

(主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。

(3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

两角和公式

两角和与的三角函数公式

sin(α+β)=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

二倍角公式

二倍角的正弦、余弦和正切公式(升幂缩角公式)

sin2α=2sinαcosα

cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan2α=2tanα/[1-tan^2(α)]

半角公式

半角的正弦、余弦和正切公式(降幂扩角公式)

sin^2(α/2)=(1-cosα)/2

cos^2(α/2)=(1+cosα)/2

tan^2(α/2)=(1-cosα)/(1+cosα)

另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)

公式

公式

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

公式推导

附推导:

sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......,

(因为cos^2(α)+sin^2(α)=1)

再把分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α))

然后用α/2代替α即可。

同理可推导余弦的公式。正切的公式可通过正弦比余弦得到。

三倍角公式

三倍角的正弦、余弦和正切公式

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]

三倍角公式推导

附推导:

tan3α=sin3α/cos3α

=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)

=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)

上下同除以cos^3(α),得:

tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))

sin3α=sin(2α+α)=sin2αcosα+cos2αsinα

=2sinαcos^2(α)+(1-2sin^2(α))sinα

=2sinα-2sin^3(α)+sinα-2sin^3(α)

=3sinα-4sin^3(α)

cos3α=cos(2α+α)=cos2αcosα-sin2αsinα

=(2cos^2(α)-1)cosα-2cosαsin^2(α)

=2cos^3(α)-cosα+(2cosα-2cos^3(α))

=4cos^3(α)-3cosα

即sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

三倍角公式联想记忆

★记忆方法:谐音、联想

正弦三倍角:3元 减 4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”))

余弦三倍角:4元3角 减 3元(减完之后还有“余”)

☆☆注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。

★另外的记忆方法:

正弦三倍角: 山无司令 (谐音为 三无四立) 三指的是"3倍"sinα, 无指的是减号, 四指的是"4倍", 立指的是sinα立方

余弦三倍角: 司令无山 与上同理

和化积公式

三角函数的和化积公式

sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]

积化和公式

三角函数的积化和公式

sinα ·cosβ=0.5[sin(α+β)+sin(α-β)]

cosα ·sinβ=0.5[sin(α+β)-sin(α-β)]

cosα ·cosβ=0.5[cos(α+β)+cos(α-β)]

sinα ·sinβ=-0.5[cos(α+β)-cos(α-β)]

和化积公式推导

附推导:

首先,我们知道sin(a+b)=sinaco+cosasinb,sin(a-b)=sinaco-cosasinb

我们把两式相加就得到sin(a+b)+sin(a-b)=2sinaco

所以,sinaco=(sin(a+b)+sin(a-b))/2

同理,若把两式相减,就得到cosasinb=(sin(a+b)-sin(a-b))/2

同样的,我们还知道cos(a+b)=cosaco-sinasinb,cos(a-b)=cosaco+sinasinb

所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosaco

所以我们就得到,cosaco=(cos(a+b)+cos(a-b))/2

同理,两式相减我们就得到sinasinb=-(cos(a+b)-cos(a-b))/2

这样,我们就得到了积化和的四个公式:

sinaco=(sin(a+b)+sin(a-b))/2

cosasinb=(sin(a+b)-sin(a-b))/2

cosaco=(cos(a+b)+cos(a-b))/2

sinasinb=-(cos(a+b)-cos(a-b))/2

好,有了积化和的四个公式以后,我们只需一个变形,就可以得到和化积的四个公式.

我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2

把a,b分别用x,y表示就可以得到和化积的四个公式:

sinx+siny=2sin((x+y)/2)cos((x-y)/2)

sinx-siny=2cos((x+y)/2)sin((x-y)/2)

cosx+cosy=2cos((x+y)/2)cos((x-y)/2)

cosx-cosy=-2sin((x+y)/2)sin((x-y)/2)

高考数学选择题解题步骤

全国新高考1卷数学详解

高考数学难度比例为7:2:1,也就是说80%都是基础题。然而数学却是高考中最拉分的。90%的学生都缺少一套科学,高效的解题 方法 和步骤,尤其到了冲刺阶段!那么接下来给大家分享一些关于高考数学选择题解题步骤,希望对大家有所帮助。

全国新高考1卷数学试题

高考数学选择题解题步骤

1.突破运算

运算是考场解题的奠基石,运算能力不过关,解题基本无法进行到,据估计高三学生绝大多数同学都或多或少有运算困扰,但是却苦于无从提高,因为这被公认为是“基础”没有人也没有资料专门讲解,如果有也是把很多题目放在一块,这是造成很多学生运算一直无法提高的主要原因.

2.突破概念公式图形

这一块内容在课本或者资料上都有详细归纳,但高一高二解题一般公式书归纳的内容基本可以,但是进入高三,随着题目的复杂化,你会发现,课本或者公式书上的内容还远远不够,我就举一些高一课本中的简单例子,如函数的奇偶性周期性等考试中会涉及很多结论,而这些可能在书上或一般公式书都没有,怎么办?这就需要你自己 总结 ,又如函数的零点定理,它只是充分条件而不是必要条件,那么需要添加什么才能变成充要条件呢,再比如空间几何经常会考一些内外接球,可能你会计算,但是在考场上如果你没有归纳出内外接球半径计算公式,那么最终你可能由于时间关系外加紧张,可能会出现错误。

同时考试中涉及的图形可能并不完全是课本中熟知的,而是课本中基本图形的扩展图形,什么是扩展图形呢,我举一个简单例子,如直线大家都会画,那么对x或y添加,或者对x,y同时加它的图形你还会画吗?又如反比例函数y=1/x,扩展图形y=2x+1/x ,y=-2x+1/x, y=(-2x+1)/(x+3)等你知道吗?

3.突破选择

选择题在考试中占据半壁江山,选择题的解题的解答直接会影响到整个试卷的做题规划,那么如何在较短的时间内提高选择题的解题效率是我们无法回避的现实问题。那么选择题到底该如何突破呢?

突破选择题主要包括:选项特征,选择题快速计算技巧,选择题题目特征及解法,以及一些常见选择题的特殊结论等

4.突破-解答题

解答题是考试中我们遇到的另外一种题型,但是它的解法不同于选择题,由于高考中解答题的特殊性,使我们可以通过一些策略可以取得令人满意的分数。

一般高考考场中的解答题题型基本是固定的,所以我们可以通过归纳出的一些结论,特殊公式,一般解题思路及模板等再结合四步解题思路完成解答题的快速求解。

高考数学选择题秒杀方法与技巧

一:直选法——简单直观

这种方法一般适用于基本不需要“转变”或推理的简单题目.这些题目主要考查考生对物理识记内容的记忆和理解程度,属常识性知识题目.常见考纲中的Ⅰ级要求内容。

二:比较排除法——排除异己

这种方法要在读懂题意的基础上,根据题目的要求,先将明显的错误或不合理的备选一个一个地排除掉,只剩下正确的。如果选项是完全肯定或否定的判断,可通过举反例的方式排除;如果选项中有相互矛盾或者是相互排斥的选项,则两个选项中可能有一种说法是正确的,当然,也可能两者都错,但绝不可能两者都正确。

三:特殊值法、极值法——投机取巧

对较难直接判断选项的正误量,可以让某些物理量巧取满足题设条件的特殊值或极值,带入到各选项中逐个进行检验,凡是用特殊值或极值检验证明是不正确的选项,就一定是错误的,可以排除。这种方法往往可以省去严密的逻辑推理或繁杂的数学证明。

四:极限思维法——无所不极

物理中体现的极限思维常见方法有极端思维法、微元法。当题目所涉及的物理量随条件单调变化时,可用极限法是把某个物理量推向极端,即极大或极小,极左或极右,并据此做出科学的推理分析,从而给出判断或导出一般结论。

“微元”,只需对这些“微元”进行必要的数学方法或物理思想处理,便可使问题得于求解。

五:代入法——事半功倍

对于一些计算型的选择题,可以将题目选项中给出的直接代入进行检验,或在计算程中某阶段代入检验,常可以有效地减少数算量。

六:对比归谬法——去伪存真

对于一些选项间有相互关联的高考选择题,有时可能会出现如果选项A正确即会有选项B正确或选项C也正确的情况,对于应为单选或双选的选择题可用此方法进行排除错误选项。

七:整体、隔离法——双管齐下

研究对象为多个时,首先要想到利用整体、隔离法去求解。常用思路是整体求外力,隔离求内力,先整体后隔离,两种方法配合使用。

八:对称分析法——左右开弓

对于有对称性的物理问题,我们可以充分利用其特点,快速简便地求解问题

九:图像图解法——立竿见影

根据题目的内容画出图像或示意图,如物体的运动图像、受力示意图、光路图等,再利用图像分析寻找,利用图像或示意图解答时,具有形象、直观的特点,便于了解各物理量之间的关系,能够避免繁琐的计算,迅速简便地找出正确的。

十: 逆向思维 法——另辟蹊径

很多物理过程具有可逆性,如运动的可逆性,光路的可逆性等,在沿着正向“由因到果”去分析受阻时,可“反其道而行之”,沿着逆向“由果到因”的过程去思考,常常收到化难为易、出奇制胜的效果。

十一:举例求证法——避实就虚

有些选择题中带有“可能”、“可以”等不确定的词语,只要能举出一个特殊例子证明它正确,就可以肯定这个选择项是正确的;有些选择题的选项中带有“一定”“不可能”等肯定的词语,只要能举出一个反例驳倒这个选项,就可以排除这个选项。

十二:转换对象法——反客为主

在一些问题中,如以题目中给出的物体作为研究对象去分析问题,有可能十分复杂或无法解答,这时可以变换研究对象,转换为我们熟悉的问题,使分析问题变得简单易行,再去找出待求量。

十三:二级结论法——迅速准确

“二级结论”是指由基本规律和基本公式导出的结论,熟记并巧用.一些“二级结论”可以使思维简化,节约解题时间,其能常常使我们 “看到题就知道”,达到迅速准确的目的。

十四:比例分析法——化繁为简

两个物理量的数学关系明确时,利用他们的比例规律可以使数学计算简化,应用此方法必须明确研究的物理问题中涉及的物理量是什么关系,明确哪些相同量,哪些是不同量。

十五:控制变量法——以寡敌众

对多变量问题,有时采用每一次只改变其中一个变量而控制其余几个量不变的方法,使其变成较简单的单变量问题,大大降低问题的分析复杂程度,这种方法是科学探究中和重要思想方法,也是物理中常用的探索问题和分析问题的科学方法之一。

十六:量纲分析法——纲举目张

对于以字母形式出现的计算型选择题,物理公式表达了物理量间的数量和单位的双重关系,所以可以用物理量的单位来衡量和检验该物理量的运算结果是否正确。常用此方法来判断计算结果的正确性,选择题中常用其来排除一些错误选项。

十七:等效替换法——殊途同归

也可称等效处理法,类比分析法。是把较陌生、复杂的物理现象、物理过程在保证某种效果、特性或关系相同的前提下,转化为简单、熟悉的物理现象或物理过程来研究,从而认识清楚研究对象本质和规律的一种思想方法。常用的如等效重力场、类平抛运动、等效电源、力或运动的合成与分解的等效性、万有引力与库仑力的类比性等。

十八:临界分析法——以点带面

求解物理量的范围问题可以采用临界分析法,充分利用临界条件进行快速求解,常见的临界条件如:物体“刚好脱离”:接触但弹力为零件物体“刚要相对滑动”:受到静摩擦力;粒子“刚要飞出磁场”:轨迹与磁场相切,等等。

物理模型是一种理想化的物理形态,是物理知识的一种直观表现,模型思维法是利用类比、抽象、简化、理想化等手段,突出物理过程的主要因素,忽略次要因素,把研究对象的物理本质特征抽象出来,从而进行分析和推理的一种思维方法.在遇到以新颖的背景、陌生的材料和前沿的知识为命题素材,联系工农业生产、高科技或相关物理理论的题目时,如何能根据题意从题干中抽象出我们所熟悉的物理模型是解题的关键.

二十:计算推理法——有理有据

根据题给条件,利用有关的物理规律、物理公式或物理原理通过逻辑推理或计算得出正确,然后再与备选对照做出选择。

高考数学解题技巧

1.先易后难,逐步增加习题的难度

人们认识事物的过程都是从简单到复杂。简单的问题解多了,从而使概念清晰了,对公式、定理以及解题步骤熟悉了,解题时就会形成跳跃性思维,解题的速度就会大大提高。

我们在学习时,应根据自己的能力,先去解那些看似简单,却很重要的习题,以不断提高解题速度和解题能力。随着速度和能力的提高,再逐渐增加难度,就会达到事半功倍的效果。

2.保质保量拿下中下等题目

中下题目通常占全卷的80%以上,是试题的主要部分,是考生得分的主要来源。谁能保质保量地拿下这些题目,就已算是打了个胜仗,有了胜利在握的心理,对攻克高难题会更放得开。

3.面—点—线

解决应用性问题,首先要全面调查题意,迅速接受概念,此为"面";透过冗长叙述,抓住重点词句,提出重点数据,此为"点";综合联系,提炼关系,依靠数学方法,建立数学模型,此为"线",如此将应用性问题转化为纯数学问题。当然,求解过程和结果都不能离开实际背景。

4.限时答题,先提速后纠正错误

很多同学做题慢的一个重要原因就是平时做作业习惯了拖延时间,导致形成了一个不太好的解题习惯。所以,提高解题速度就要先解决“拖延症”。比较有效的方式是限时答题,例如在做数学作业时,给自己限时,先不管正确率,首先保证在规定时间内完成数学作业,然后再去纠正错误。这个过程对提高书写速度和思考效率都有较好的作用。当你习惯了一个较快的思考和书写后,解题速度自然就会提高,及改正了拖延的毛病,也提高了成绩。

高考数学选择题解题步骤相关 文章 :

★ 高考数学选择题答题技巧汇总大全

★ 数学选择题八大解题方法

★ 2019高考数学选择题答题技巧及方法

★ 高考常用的选择题解题方法

★ 高考数学选择题答题技巧

★ 高考数学选择题答题技巧大全

★ 高考数学基础题型答题技巧及解题步骤

★ 2020高考数学选择题解题技巧

★ 高考数学题型归纳及选择题答题技巧

总结一下高考数学基本公式

十九:建立模型法——即物明理

一些高中数学学习网站

,则sin

如果时间不够,自己选择可看可不看

十字交叉双乘法没有公式,下面说一下:

那就是利用x^2+(p+q)x+pq=(x+q)(x+p)其中PQ为常数。x^2是X的平方

1.因式分解

即和化积,其结果要分解到不能再分为止。而且可以肯定一个多项式要能分解因式,则结果,因为:数域F上的次数大于零的多项式f(x),如果不计零次因式的异,那么f(x)可以的分解为以下形式:

f(x)=aP1k1(x)P2k2(x)…Piki(x),其中α是f(x)的次项的系数,P1(x),P2(x)……Pi(x)是首1互不相等的不可约多项式,并且Pi(x)(I=1,2…,t)是f(x)的Ki重因式。

()或叫做多项式f(x)的典型分解式。证明:可参见《高代》P52-53

初等数学中,把多项式的分解叫因式分解,其一般步骤为:一提二套三分组等

要求为:要分到不能再分为止。

2.方法介绍

2.1提公因式法:

如果多项式各项都有公共因式,则可先考虑把公因式提出来,进行因式分解,注意要每项都必须有公因式。

例15x3+10x2+5x

解:原式=5x(x2+2x+1)

=5x(x+1)2

2.2公式法

即多项式如果满足特殊公式的结构特征,即可采用套公式法,进行多项式的因式分解,故对于一些常用的公式要求熟悉,除教材的基本公式外,数学竞赛中常出现的一些基本公式现整理归纳如下:

a2-b2=(a+b)(a-b)

a2±2ab+b2=(a±b)2

a3+b3=(a+b)(a2-ab+b2)

a3-b3=(a-b)(a2+ab+b2)

a3±3a2b+3ab2±b2=(a±b)3

a2+b2+c2+2ab+2bc+2ac=(a+b+c)2

a12+a22+…+an2+2a1a2+…+2an-1an=(a1+a2+…+an)2

a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-ac-bc)

an+bn=(a+b)(an-1-an-2b+…+bn-1)(n为奇数)

说明由因式定理,即对一元多项式f(x),若f(b)=0,则一定含有一次因式x-b。可判断当n为偶数时,当a=b,a=-b时,均有an-bn=0故an-bn中一定含有a+b,a-b因式。

例2分解因式:①64x6-y12②1+x+x2+…+x15

解析各小题均可套用公式

解①64x6-y12=(8x3-y6)(8x3+y6)

=(2x-y2)(4x2+2xy2+y4)(2x+y2)(4x2-2xy2+y4)

②1+x+x2+…+x15=

=(1+x)(1+x2)(1+x4)(1+x8)

注多项式分解时,先构造公式再分解。

2.3分组分解法

当多项式的项数较多时,可将多项式进行合理分组,达到顺利分解的目的。当然可能要综合其他分法,且分组方法也不一定。

例1分解因式:x15+m12+m9+m6+m3+1

解原式=(x15+m12)+(m9+m6)+(m3+1)

=m12(m3+1)+m6(m3+1)+(m3+1)

=(m3+1)(m12+m6++1)

=(m3+1)[(m6+1)2-m6]

=(m+1)(m2-m+1)(m6+1+m3)(m6+1-m3)

例2分解因式:x4+5x3+15x-9

解析可根据系数特征进行分组

解原式=(x4-9)+5x3+15x

=(x2+3)(x2-3)+5x(x2+3)

=(x2+3)(x2+5x-3)

2.4十字相乘法

对于形如ax2+bx+c结构特征的二次三项式可以考虑用十字相乘法,

即x2+(b+c)x+bc=(x+b)(x+c)当x2项系数不为1时,同样也可用十字相乘进行作。

例3分解因式:①x2-x-6②6x2-x-12

解①1x2

1x-3

原式=(x+2)(x-3)

②2x-3

3x4

原式=(2x-3)(3x+4)

注:“ax4+bx2+c”型也可考虑此种方法。

2.5双十字相乘法

在分解二次三项式时,十字相乘法是常用的基本方法,对于比较复杂的多项式,尤其是某些二次六项式,如4x2-4xy-3y2-4x+10y-3,也可以运用十字相乘法分解因式,其具体步骤为:

(1)用十字相乘法分解由前三次组成的二次三项式,得到一个十字相乘图

(2)把常数项分解成两个因式填在第二个十字的右边且使这两个因式在第二个十字中交叉之积的和等于原式中含y的一次项,同时还必须与个十字中左端的两个因式交叉之积的和等于原式中含x的一次项

例5分解因式

①4x2-4xy-3y2-4x+10y-3②x2-3xy-10y2+x+9y-2

③ab+b2+a-b-2④6x2-7xy-3y2-xz+7yz-2z2

解①原式=(2x-3y+1)(2x+y-3)

2x-3y1

2xy-3

②原式=(x-5y+2)(x+2y-1)

x-5y2

x2y-1

③原式=(b+1)(a+b-2)

0ab1

ab-2

④原式=(2x-3y+z)(3x+y-2z)

2x-3yz

3x-y-2z

说明:③式补上oa2,可用双十字相乘法,当然此题也可用分组分解法。

如(ab+a)+(b2-b-2)=a(b+1)+(b+1)(b-2)=(b+1)(a+b-2)

④式三个字母满足二次六项式,把-2z2看作常数分解即可:

2.6拆法、添项法

对于一些多项式,如果不能直接因式分解时,可以将其中的某项拆成二项之或之和。再应用分组法,公式法等进行分解因式,其中拆项、添项方法不是,可解有许多不同途径,对题目一定要具体分析,选择简捷的分解方法。

例6分解因式:x3+3x2-4

解析法一:可将-4拆成-1,-3即(x3-1)+(3x2-3)

法二:添x4,再减x4,.即(x4+3x2-4)+(x3-x4)

法三:添4x,再减4x即,(x3+3x2-4x)+(4x-4)

法四:把3x2拆成4x2-x2,即(x3-x2)+(4x2-4)

法五:把x3拆为,4x2-3x3即(4x3-4)-(3x3-3x2)等

解(选择法四)原式=x3-x2+4x2-4

=x2(x-1)+4(x-1)(x+1)

=(x-1)(x2+4x+4)

=(x-1)(x+2)2

2.7换元法

换元法就是引入新的字母变量,将原式中的字母变量换掉化简式子。运用此

种方法对于某些特殊的多项式因式分解可以起到简化的效果。

例7分解因式:

(x+1)(x+2)(x+3)(x+4)-120

解析若将此展开,将十分繁琐,但我们注意到

(x+1)(x+4)=x2+5x+4

(x+2)(x+3)=x2+5x+6

故可用换元法分解此题

解原式=(x2+5x+4)(x2+5x+6)-120

令y=x2+5x+5则原式=(y-1)(y+1)-120

=y2-121

=(y+11)(y-11)

=(x2+5x+16)(x2+5x-6)

=(x+6)(x-1)(x2+5x+16)

注在此也可令x2+5x+4=y或x2+5x+6=y或x2+5x=y请认真比较体会哪种换法更简单?

2.8待定系数法

待定系数法是解决代数式恒等变形中的重要方法,如果能确定代数式变形后的字母框架,只是字母的系数高不能确定,则可先用未知数表示字母系数,然后根据多项式的恒等性质列出n个含有特殊确定系数的方程(组),解出这个方程(组)求出待定系数。待定系数法应用广泛,在此只研究它的因式分解中的一些应用。

例7分解因式:2a2+3ab-9b2+14a+3b+20

分析属于二次六项式,也可考虑用双十字相乘法,在此我们用待定系数法

先分解2a2+3ab+9b2=(2a-3b)(a+3b)

解设可设原式=(2a-3b+m)(a+3b+n)

=2a2+3ab-9b2+(m+2n)a+(3m-3n)b+mn……………

比较两个多项式(即原式与式)的系数

m+2n=14(1)m=4

3m-3n=-3(2)=>

mn=20(3)n=5

∴原式=(2x-3b+4)(a+3b+5)

注对于()式因为对a,b取任何值等式都成立,也可用令特殊值法,求m,n

令a=1,b=0,m+2n=14m=4

=>

令a=0,b=1,m=n=-1n=5

2.9因式定理、综合除法分解因式

对于整系数一元多项式f(x)=anxn+an-1xn-1+…+a1x+a0

由因式定理可先判断它是否含有一次因式(x-)(其中p,q互质),p为首项系数an的约数,q为末项系数a0的约数

若f()=0,则一定会有(x-)再用综合除法,将多项式分解

例8分解因式x3-4x2+6x-4

∴可能出现的因式为x±1,x±2,x±4,

∵f(1)≠0,f(1)≠0

但f(2)=0,故(x-2)是这个多项式的因式,再用综合除法

21-46-4

2-44

1-220

所以原式=(x-2)(x2-2x+2)

当然此题也可拆项分解,如x3-4x2+4x+2x-4

=x(x-2)2+(x-2)

=(x-2)(x2-2x+2)

分解因式的方法是多样的,且其方法之间相互联系,一道题很可能要同时运用多种方法才可能完成,故在知晓这些方法之后,一定要注意各种方法灵活运用,牢固掌握!

没必要自己弄,书店一本(数理化大全)全有,才十元。又详细,又好。

2020高一数学公式整理

椭圆面积公式:S=πab

对于高一学生来说,想要学好高中数学就要先掌握好数学公式。下面给大家带来一些关于 高一数学 公式整理,希望对大家有所帮助。

高一数学公式整理1

三角函数公式

两角和公式

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

和化积

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4 1-2+2-3+3-4+4-5+5-6+6-7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角

弧长公式 l=a-r a是圆心角的弧度数r >0 扇形面积公式 s=1/2-l-r

乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根与系数的关系 X1+X2=-b/a X1-X2=c/a 注:韦达定理

判别式

b2-4ac=0 注:方程有两个相等的实根

b2-4ac>0 注:方程有两个不等的实根

b2-4ac<0 注:方程没有实根,有共轭复数根

降幂公式

(sin^2)x=1-cos2x/2

(cos^2)x=i=cos2x/2

公式

令tan(a/2)=t

sina=2t/(1+t^2)

cosa=(1-t^2)/(1+t^2)

tana=2t/(1-t^2)

高一数学公式整理2

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4 1-2+2-3+3-4+4-5+5-6+6-7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角

弧长公式 l=a-r a是圆心角的弧度数r >0 扇形面积公式 s=1/2-l-r

乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根与系数的关系 X1+X2=-b/a X1-X2=c/a 注:韦达定理

高一数学公式整理3

三角形的面积

已知三角形底a,高h,则S=ah/2

已知三角形三边a,b,c,半周长p,则S=√[p(p-a)(p-b)(p-c)](海伦公式)(p=(a+b+c)/2)

和:(a+b+c)-(a+b-c)-1/4

已知三角形两边a,b,这两边夹角C,则S=absinC/2

设三角形三边分别为a、b、c,内切圆半径为r

则三角形面积=(a+b+c)r/2

设三角形三边分别为a、b、c,外接圆半径为r

则三角形面积=abc/4r

柱形锥形体积面积公式

直棱柱侧面积S=c-h斜棱柱侧面积S=c'-h

正棱锥侧面积S=1/2c-h'正棱台侧面积S=1/2(c+c')h'

圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi-r2

圆柱侧面积S=c-h=2pi-h圆锥侧面积S=1/2-c-l=pi-r-l

弧长公式l=a-ra是圆心角的弧度数r>0扇形面积公式s=1/2-l-r

锥体体积公式V=1/3-S-H圆锥体体积公式V=1/3-pi-r2h

斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长

柱体体积公式V=s-h圆柱体V=pi-r2h

圆的标准方程和一般方程

圆:体积=4/3(π)(r^3)

面积=(π)(r^2)

周长=2(π)r的积是一个向量。

圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标

圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0

高一数学公式整理4

(一)椭圆周长计算公式

椭圆周长公式:L=2πb+4(a-b)

椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的。

(二)椭圆面积计算公式

椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。

椭圆形物体体积计算公式椭圆的长半径-短半径-PAI-高

抛物线:y=ax^2+bx+c

就是y等于ax的平方加上bx再加上c

a>0时开口向上

a<0时开口向下

c=0时抛物线经过原点

b=0时抛物线对称轴为y轴

还有顶点式y=a(x+h)^2+k

就是y等于a乘以(x+h)的平方+k

-h是顶点坐标的x

k是顶点坐标的y

一般用于求值与最小值

抛物线标准方程:y^2=2px

它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0)准线方程为x=-p/2

由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2pxy^2=-2p-^2=2pyx^2=-2py

2020高一数学公式整理相关 文章 :

★ 2020高一数学学习方法总结大全

★ 高一数学必修1公式整理

★ 高一数学公式梳理归纳

★ 2020高中三年数学知识点顺口溜与公式大全

★ 高一数学必背公式及知识汇总

★ 2020高中数学知识点梳理

★ 2020高中学数学的技巧集锦

★ 2020高中数学知识点梳理概括

★ 2020初中数学几何公式定理整理收集

★ 2020高中物理公式大全

版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。