初中数学的方程有一元一次方程,=元一次方程组,一元=次方程,可化为一元一次方程的分式方程。
初中数学公式大全(完整版)
初中数学公式大全(完整版)
初中数学公式大全(完整版)
对于初三年一元二次方程的公式是求根公式,ax^2+bx+c=0。先判断是否有根,由△=b^2一4ac是否非负数,若是由公式x=一b十(一)根号△/2a。
乘法与因式分解:
a2-b2=(a+b)(a-b)
a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b)(a2+ab+b2)
三角不等式:
|a+b|≤|a|+|b|
|a-b|≤|a|+|b|
|a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解:
-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a
根与系数的关系
X1+X2=-b/aX1X2=c/a注:韦达定理
判别式b2-4a=0注:方程有相等的两实根
b2-4ac>0注:方程有一个实根
b2-4ac<0注:方程有共轭复数根
两角和公式:
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)
ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式:
tan2A=2tanA/(1-tan2A)
ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式:
sin(A/2)=√((1-cosA)/2)
sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)
cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))
tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))
ctg(A/2)=-√((1+cosA)/((1-cosA))
和化积:
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB
-ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和:
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)
12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4
12+23+34+45+56+67+…+n(n+1)=n(n+1)(n+2)/3
正弦定理:a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径
余弦定理:b2=a2+c2-2accosB注:角B是边a和边c的夹角
圆的标准方程:(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标
圆的一般方程:x2+y2+Dx+Ey+F=0注:D2+E2-4F>0
抛物线标准方程:y2=2px
y2=-2px
x2=2py
x2=-2py
直棱柱侧面积:S=ch
斜棱柱侧面积:S=c'h
正棱锥侧面积:S=1/2ch'
正棱台侧面积:S=1/2(c+c')h'
圆台侧面积:S=1/2(c+c')l=pi(R+r)l
球的表面积:S=4pir2
圆柱侧面积:S=ch=2pih
圆锥侧面积:S=1/2cl=pirl
弧长公式:l=ar,a是圆心角的弧度数r>0
扇形面积公式:s=1/2lr
锥体体积公式:V=1/3SH
圆锥体体积公式:V=1/ir2h
斜棱柱体积:V=S'L注:其中,S'是直截面面积,L是侧棱长
柱体体积公式:V=sh
圆柱体:V=pir2h
1、平方公式:a-b=(a+b)(a-b)。
2、完全平方公式:a+2ab+b=(a+b)。
3、立方和公式:a+b=(a+b)(a-ab+b)。
4、立方公式:a-b=(a-b)(a+ab+b)。
5、完全立方和公式:a+3ab+3ab+b=(a+b)。
6、完全立方公式:a-3ab+3ab-b=(a-b)。
7、三项完全平方公式:a+b+c+2ab+2bc+2ac=(a+b+c)。
8、三项立方和公式:a+b+c-3abc=(a+b+c)(a+b+c-ab-bc-ac)。
根号内的数可以化成相同或相同则可以相加减,不同不能相加减。
如果根号里面的数相同就可以相加减,如果根号里面的数不相同就不可以相加减,能够化简到根号里面的数相同就可以相加减了。
举例如下:
版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。