历年数列通项高考题_数列近几年高考题汇总

招生计划 2024-11-18 10:12:49

数列求和

总之,每次碰到一道陌生的数列题,要进行 总结 ,得出该类的解题方法,或者从中学会一种放缩方法,这对于以后很有帮助。

调和级数S=1+1/2+1/3+……是发散的,证明如下:

历年数列通项高考题_数列近几年高考题汇总历年数列通项高考题_数列近几年高考题汇总


历年数列通项高考题_数列近几年高考题汇总


历年数列通项高考题_数列近几年高考题汇总


历年数列通项高考题_数列近几年高考题汇总


如果一个数列是等数列或等比数列,则求和时直接利用等、等比数列的前n项和公式.注意等比数列公示q的取值要分q=1和q≠1.

由于ln(1+1/n)<1/n (n=1,2,3,…)

于是调和级数的前n项部分和满足

Sn=1+1/2+1/3+…+1/n>ln(1+1)+ln(1+1/2)+ln(1+1/3)+…+ln(1+1/n)

=ln2+ln(3/2)+ln(4/3)+…+ln[(n+1)/n]

=ln[23/24/3…(n+1)/n]=ln(n+1)

由于

lim Sn(n→∞)≥lim ln(n+1)(n→∞)=+∞

所以Sn的极限不存在,调和级数发散。

但极限S=lim[1+1/2+1/3+…+1/n-ln(n)](n→∞)却存在,因为

Sn=1+1/2+1/3+…+1/n-ln(n)>ln(1+1)+ln(1+1/2)+ln(1+1/3)+…+ln(1+1/n)-ln(n)

=ln(n+1)-ln(n)=ln(1+1/n)

由于

lim Sn(n→∞)≥lim ln(1+1/n)(n→∞)=0

因此Sn有下界

而Sn-S(n+1)=1+1/2+1/3+…+1/n-ln(n)-[1+1/2+1/3+…+1/(n+1)-ln(n+1)]

=ln(n+1)-ln(n)-1/(n+1)=ln(1+1/n)-1/(n+1)>ln(1+1/n)-1/n>0

所以Sn单调递减。由单调有界数列极限定理,可知Sn必有极限,因此

于是设这个数为γ,这个数就叫作欧拉常数,他的近似值约为0.57721566490153286060651209,目前还不知道它是有理数还是无理数。

于是我们得到Sn的公式是:Sn=lnn+γ

在微积分学中,欧拉常数γ有许多应用,如求某些数列的极限,某些收敛数项级数的和等。

高考必考数学考点

函数部分1--2道:如求函数值域、最值、极值、求某参数取值范围、求函数零点个数、两函数交点个数等;

轨迹方程的求解

符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的,叫做满足该条件的点的轨迹.

轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).

【轨迹方程】就是与几何轨迹对应的代数描述。

一、求动点的轨迹方程的基本步骤

⒈建立适当的坐标系,设出动点M的坐标;

⒉写出点M的;

⒊列出方程=0;

⒋化简方程为最简形式;

⒌检验。

二、求动点的轨迹又E是PD的中点,方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

求数列通项公式的方法大全

五.分组求和法

构造法求数列的通项公式

在数列求通项的有关问题中,经常遇到即非等数列,又非等比数列的求通项问题,特别是给出的数列相邻两项是线性关系的题型,在老教材中,可以通过不完全归纳法进行归纳、猜想,然后借助于数学归纳法予以证明,但新教材中,由于删除了数学归纳法,因而我们遇到这类问题,就要避免用数学归纳法。这里我向大家介绍一种解题方法——构造等比数列或等数列求通项公式。

构造法就是在解决某些数学问题的过程中,通过对条件与结论的充分剖析,有时会联想出一种适当的辅助模型,以此促成命题转换,产生新的解题方法,这种思维方法的特点就是“构造”.若已知条件给的是数列的递推公式要求出该数列的通项公式,此类题通常较难,但使用构造法往往给人耳目一新的感觉.

供参考。

1、构造等数列或等比数列

由于等数列与等比数列的通项公式显然,对于一些递推数列问题,若能构造等数列或等比数列,无疑是一种行之有效的构造方法.

例1

设各项均为正数的数列

的前n项和为Sn,对于任意正整数n,都有等式:

成立,求

的通项an.

解:

,∴

,∵

,∴

.即

是以2为公的等数列,且

.∴

例2

数列

中前n项的和

,求数列的通项公式

.解:∵

当n≥2时,

令,则

,且

(A) (B)是以

为公比的等比数列,

∴.

2、构造式与和式

解题的基本思路就是构造出某个数列的相邻两项之,然后采用迭加的方法就可求得这一数列的通项公式.

例3

设是首项为1的正项数列,且

,(n∈N),求数列的通项公式an.

解:由题设得

.∵

,,∴

.∴

.例4

数列

,且

,(n∈N),求通项公式an.

解:∵

∴(n∈N)

3、构造商式与积式

构造数列相邻两项的商式,然后连乘也是求数列通项公式的一种简单方法.

例5

数列

,前n项的和

,求

.解:

,∴

∴4、构造对数式或倒数式

有些数列若通过取对数,取倒数代数变形方法,可由复杂变为简单,使问题得以解决.

例6

设正项数列

满足

,(n≥2).求数列

的通项公式.

解:两边取对数得:

,则

是以2为公比的等比数列,

.,

,,

∴例7

已知数列

,n≥2时

,求通项公式.

解:∵

,两边取倒数得

.可化为等数列关系式.

一、题目已知或通过简单推理判断出是等比数列或等数列,直接用其通项公式。

例:在数列{an}中,若a1=1,an

1=an

2(n1),求该数列的通项公式an。

解:由an

1=an

2(n1)及已知可推出数列{an}为a1=1,d=2的等数列。所以an=2n-1。此类题主要是用等比、等数列的定义判断,是较简单的基础小题。

二、已知数列的前n项和,用公式

s1

(n=1)

sn-sn-1

(n2)

例:已知数列{an}的前n项和sn=n2-9n,第k项满足5

(a)

9(b)

8(c)

7(d)

6解:∵an=sn-sn-1=2n-10,∴5<2k-10<8

∴k=8

选(b)

此类题在解时要注意考虑n=1的情况。

三、已知an与sn的关系时,通常用转化的方法,先求出sn与n的关系,再由上面的(二)方法求通项公式。

例:已知数列{an}的前n项和sn满足an=snsn-1(n2),且a1=-,求数列{an}的通项公式。

解:∵an=snsn-1(n2),而an=sn-sn-1,snsn-1=sn-sn-1,两边同除以snsn-1,得---=-1(n2),而-=-=-,∴{-}

是以-为首项,-1为公的等数列,∴-=

-,sn=

-,

再用(二)的方法:当n2时,an=sn-sn-1=-,当n=1时不适合此式,所以,

-(n=1)

-(n2)

四、用累加、累积的方法求通项公式

对于题中给出an与an

1、an-1的递推式子,常用累加、累积的方法求通项公式。

例:设数列{an}是首项为1的正项数列,且满足(n

1)an

12-nan2

an

1an=0,求数列{an}的通项公式

解:∵(n

1)an

12-nan2

an

1an=0,可分解为[(n

1)an

1-nan](an

1an)=0

又∵{an}是首项为1的正项数列,∴an

1an

≠0,∴-=-,由此得出:-=-,-=-,-=-,…,-=-,这n-1个式子,将其相乘得:∴

-=-,

又∵a1=1,∴an=-(n2),∵n=1也成立,∴an=-(n∈n)

五、用构造数列方法求通项公式

题目中若给出的是递推关系式,而用累加、累积、迭代等又不易求通项公式时,可以考虑通过变形,构造出含有

an(或sn)的式子,使其成为等比或等数列,从而求出an(或sn)与n的关系,这是近一、二年来的高考热点,因此既是重点也是难点。

例:已知数列{an}中,a1=2,an

1=(--1)(an

2),n=1,2,3,……

(1)求{an}通项公式

(2)略

解:由an

1=(--1)(an

1--=

(--1)(an--)

∴{an--}是首项为a1--,公比为--1的等比数列。

由a1=2得an--=(--1)n-1(2--)

,于是an=(--1)n-1(2--)

-又例:在数列{an}中,a1=2,an

1=4an-3n

1(n∈n),证明数列{an-n}是等比数列。

证明:本题即证an

1-(n

1)=q(an-n)

(q为非0常数)

由an

1=4an-3n

1,可变形为an

1-(n

1)=4(an-n),又∵a1-1=1,

所以数列{an-n}是首项为1,公比为4的等比数列。

若将此问改为求an的通项公式,则仍可以通过求出{an-n}的通项公式,再转化到an的通项公式上来。

又例:设数列{an}的首项a1∈(0,1),an=-,n=2,3,4……(1)求{an}通项公式。(2)略

解:由an=-,n=2,3,4,……,整理为1-an=--(1-an-1),又1-a1≠0,所以{1-an}是首项为1-a1,公比为--的等比数列,得an=1-(1-a1)(--)n-1

(1/2)求高手帮忙查一下每年的高考全国卷数学有没有固定的题型,,往年高考的解答题有没有固定的题型,...

得分 评卷人

不知道你是文科还是理科,文理略有区别,理科考查题型及知识点如下:

一、选择题(12题,每题5分,共60分)

二、填空题(4题,每题5分,共20分)

小题考查知识点比较杂,但根据历年高考,大体考查知识点涵盖(根据题的难度,顺序可能有所调整):

1.考查复数的四则运算,通常为复数的除法;

例: 复数-1+3i/1+i=

A 2+I B 2-I C 1+2i D 1- 2(9) 的值等于__________________.i

2.考查运算,即的交、并、补等;

例:已知A={1.3,根号m},B={1,m} ,A并B=A, 则m=

A 0或根号3 B 0或3 C 1或根号3 D 1或3

还包括圆锥曲线部分1--2道:如求离心率等;

数列部分1道;

平面向量1道;

三角函数1--2道;

二项式定理1道:通常求二项展开式中每一项的系数;

排列组合1道;

立体几何1--2道。

三、解答题(6道,共70分)大体题型及考查知识点较为固定。

17题:通常考查三角函数或者解三角形;

例:△ABC的内角A、B、C的对边分别为a、b、c,已知cos(A-C)+cosB=1,a=2c,求c。

18题:通常考查立体几何,包括证明异面直线位置关系、证明线面关系、求二面角、求图形中某椎体体积等;

19题:通常考查概率统计和分布列与期望;

例:乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换。每次发球,胜方得1分,负方得0分。设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互。甲、乙的一局比赛中,甲先发球。

(Ⅰ)求开始第4次发球时,甲、乙的比分为1比2的概率;

(Ⅱ)X表示开始第4次发球时乙的得分,求X的期望。

20题:通常考查函数部分,包括求函数单调区间、函数极值、参数取值范围等

例:设函数f(x)=ax+cosx,x∈[0,π]。

(Ⅰ)讨论f(x)的单调性;

(Ⅱ)设f(x)≤1+sinx,求a的取值范围。

21题:圆锥曲线部分:问通常为求曲线方程或求离心率;第二问为直线与圆锥曲线相交的问题(计算量非常大,建议只列式,放弃计算)

22题:数列部分:包括求通项公式或证明某数列是等、等比数列、求前n项和、证明某不等式等题型

例:

函数f(x)=x2-2x-3,定义数列{xn}如下:x1=2,xn+1是过两点P(4,5)、Qn(xn,f(xn))的直线PQn与x轴交点的横坐标。

(Ⅰ)证明:2<xnxn+1<3;

(Ⅱ)求数列{xn}的通项公式。

基本大题 三角函数 解析几何 立体几何 导数 概率都会有的。 可以自己看看近三年的高考试卷。

怎么可能是数列压轴

你还不如问有没有今年的

题是选择题,第二题填空题,第三题简答题,第四题选做题啊。。。。

谁有近年来的数学高考试题 提供一份 谢谢

2006年普通高等学校招生全国统一考试

“人教”里的资料比较多,而且全是免费的,有时间去看看吧

2)得到an

绝密★启用前

数 学(文史类)(卷)

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至9页,共150分。考试时间120分钟 考试结束,将本试卷和答题卡一并交回。

第Ⅰ卷(选择题 共40分)

注意事项:

1.答第Ⅰ卷前,考生务必将自己的姓名,准考证号、考试科目涂写在答题卡上。

2.每小题选出后,用铅笔把答题卡上对应题目的标号除黑。如需改动,用像皮擦干净后,再选涂其他标号。不能答在试卷上。

一、 本大题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。

(1)设A= ,B= ,则A B等于

(A) (B)

(C) (D)

(2)函数y=1+cosx的图象

(A)关于x轴对称 (B)关于y轴对称

(C)关于原点对称 (D)关于直线x= 对称

(3)若a与b-c都是非零向量,则"a·b=a·c"是"a (b-c)"的

(A)充分而不必要条件 (B)必要而不充分条件

(C)充分必要条件 (D) 既不充分也不必要条件

(4)在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为偶数的共有

(A)36个 (B)24个

(C)18个 (D)6个

(5)已知 是(- ,+ )上的增函数,那么a的取值范围是

(A)(1,+ ) (B)(- ,3)

(C) (D)(1,3)

(6)如果-1,a,b,c,-9成等比数列,那么

(A)b=3,ac=9 (B)b=-3,ac=9

(C)b=3,ac=-9 (D)b=-3,ac=-9

(7)设A、B、C、D是空间四个不同的点,在下列命题中,不正确的是

(A)若AC与BD共面,则AD与BC共面

(B)若AC与BD是异面直线,则AD与BC是异面直线

(C) 若AB=AC,DB=DC,则AD=BC

(D) 若AB=AC,DB=DC,则AD BC

(8)下图为某三岔路通环岛的简化模型,在某高峰时段,单位时间进出路口A、B、C的机辆数如图所示,图中x1`x2`x3,分别表示该时段单位时间通过路段 , , 的机辆数(设:单位时间内,在上述路段中,同一路段上驶入与驶出的车辆数相等),则

(A)x1>x2>x3

(B)x1>x3>x2

(C)x2>x3>x1

(D)x3>x2>x1

绝密★启用前

数 学(文史类)(卷)

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至9页,共150分。考试时间120分钟 考试结束,将本试卷和答题卡一并交回。

第Ⅱ卷(共110分)

注意事项:

1.用钢笔或圆珠笔将直接写在试卷上。

2.答卷前将密封线内的项目填写清楚。

题 号 二 三 总 分

15 16 17 18 19 20

分数

二、 填空题:本大题共6小题,每小题5分,共30分。把填在题中横线上。

(9)若三点A(2,2),B(a,0),C(0,4)共线,则a的值等于 。

(10)在 的展开式中,x3的系数是 .(用数字作答)

(11)已知函数 的反函数的图象经过点(-1,2),那么a的值等于

.(12)已知向量a=(cos ,sin ),b=(cos ,sin ),且a b,那么a+b与a-b的夹角的大小是 .

(13)在△ABC中, A, B, C所对的边长分别为a,b,c.若sinA:sinB:sinC=5∶7∶8,则a∶b∶c= , B的大小是 .

(14) 已知点P(x,y)的坐标满足条件 点O为坐标原点,那么|PO|的最小值等于____________,值等于______________.

三、解答题:本大题共6小,共80分。解答应写出文字说明,证明过程或演算步骤。

(15)(本小题共12分)

已知函数f(x)=

(Ⅰ)求f(x)的定义域;

(Ⅱ)设α是第四象限的角,且tan = ,求f( )的值.

(18)(本小题共13分)

某公司员工,指定三门考试课程,有两种考试方案.

方案一:考试三门课程,至少有两门及格为考试通过;

方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.

设某应聘者对三门指定课程考试及格的概率分别是0.5,0.6,0.9,且三门课程考试是否及格相互之间没有影响.求:

(Ⅰ)该应聘者用方案一考试通过的概率;

(Ⅱ)该应聘者用方案二考试通过的概率.

(20)(本小题共14分)

设等数列{an}的首项a1及公d都为整数,前n项和为Sn.

(Ⅰ)若a11=0,S14=98,求数列{an}的通项公式;

(Ⅱ)若a1≥6,a11>0,S14≤77,求所有可能的数列{an}的通项公式.

:

一、选择题(本大题共8小题,每小题5分,共40分)

(1)A (2)B (3)C (4)A

(5)D (6)B (7)C (8)C

二、填空题(本大题共6小题,每小题5分,共30分)

(9)4 (10)84

(11)2 (12)

(13)5:7:8 (14)

三、解答题(本大题共6小题,共80分)

(15)(共12分)

解:(Ⅰ)由cosx≠0得x≠kπ+ (k∈Z),

故f(x)的定义域为{|x|x≠kπ+ ,k∈Z}.

(Ⅱ)因为tanα= ,且α是第四象限的角,

所以sinα= ,cosα= ,

故f(α)=

==

= .

(16)(共13分)

(Ⅰ)由图象可知,在(-∝,1)上 (x)>0,在(1,2)上 (x)<0.

在(2,+∝)上 (x)>0.

故f(x)在(-∝,1),(2,+∝)上递增,在(1,2)上递减.

因此f(x)在x=1处取得极大值,所以x0=1.

(Ⅱ) (x)=3ax2+2bx+c,

由 (1)=0, (2)=0, f(1)=5,

得解得a=2,b=-9,c=12.

解法二:(Ⅰ)同解法一.

(Ⅱ)设 (x)=m(x-1)(x-2)=mx2-3mx+2m,

又 (x)=3ax2+2bx+c,

所以a= ,b=

f(x)=

由f(l)=5,

即得m=6.

所以a=2,b=-9,c=12.

(18)(共13分)

解:记该应聘者对三门指定课程考试及格的分别为A,B,C,

则P(A)=0.5,P(B)=0.6,P(C)=0.9.

(Ⅰ) 应聘者用方案一考试通过的概率

=0.5×0.6×0.1+0.5×0.6×0.9+0.5×0.4×0.9+0.5×0.6×0.9

=0.03+0.27+0.18+0.27

=0.75.

(Ⅱ) 应聘者用方案二考试通过的概率

p2= P(A·B)+ P(B·C)+ P(A·C)

= ×(0.5×0.6+0.6×0.9+0.5×0.9)

= ×1.29

=0.43

(19)(共14分)

(Ⅰ)因为点P在椭圆C上,所以 ,a=3.

在Rt△PF1F2中, 故椭圆的半焦距c= ,

从而b2=a2-c2=4,

所以椭圆C的方程为 =1.

(Ⅱ)设A,B的坐标分别为(x1,y1)、(x2,y2).

已知圆的方程为(x+2)2+(y-1)2=5,所以圆心M的坐标为(-2,1).

从而可设直线l的方程为

y=k(x+2)+1,

代入椭圆C的方程得

(4+9k2)x2+(36k2+18k)x+36k2+36k-27=0.

因为A,B关于点M对称.

所以

解得 ,

所以直线l的方程为

即8x-9y+25=0.

(经检验,所求直线方程符合题意)

解法二:

(Ⅰ)同解法一.

设A,B的坐标分别为(x1,y1),(x2,y2).由题意x1 x2且

①②

由①-②得

③因为A、B关于点M对称,

所以x1+ x2=-4, y1+ y2=2,

代入③得 = ,

即直线l的斜率为 ,

所以直线l的方程为y-1= (x+2),

即8x-9y+25=0.

(经检验,所求直线方程符合题意.)

(20)(共14分)

解:(Ⅰ)由S14=98得2a1+13d=14,

又a11=a1+10d=0,

故解得d=-2,a1=20.

因此,{an}的通项公式是an=22-2n,n=1,2,3…

(Ⅱ)由 得

即由①+②得-7d<11。

即d>- 。

由①+③得13d≤-1

即d≤-

于是- <d≤-

又d∈Z,故

d=-1

将④代入①②得10<a1≤12.

又a1∈Z,故a1=11或a1=12.

所以,所有可能的数列{an}的通项公式是

an=12-n和an=13-n,n=1,2,3,…

绝密★启用前

数 学(理工农医类)(卷)

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至9页,共150分。考试时间120分钟。考试结束,将本试卷和答题卡一并交回。

第Ⅰ卷(选择题 共40分)

注意事项:

1. 答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡。

2. 每小题选出后,用铅笔把答题卡上对应题目的标号涂黑。如需改动,用橡皮擦干净后,再选涂其他标号。不能答在试卷上。

一、 本大题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。

(1) 在复平面内,复数 对应的点位于

(A)象限 (B)第二象限

(C)第三象限 (D)第四象限

(2)若 与 都是非零向量,则“ ”是“ ”的

(A)充分而不必要条件 (B)必要而不充分条件

(C)充分必要条件 (D)既不充分也不必要条件

(3)在 这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有

(A)36个 (B)24个

(C)18个 (D)6个

(A)一条直线 (B)一个圆

(C)一个椭圆 (D)双曲线的一支

(5)已知 是 上的减函数,那么 的取值范围是

(A) (B)

(C) (D)

(6)在下列四个函数中,满足性质:“对于区间 上的任意 , 恒成立”的只有

(C) (D)

(7)设 ,则 等于

(C) (D)

(8)下图为某三岔路通环岛的简化模型,在某高峰时段,单位时间进出路口 的机辆数如图所示,图中 分别表示该时段单位时间通过路段 的机辆数(设:单位时间内,在上述路段中,同一路段上驶入与驶出的车辆数相等),则20,30;35,30;55,50

(A)

(B)

(C)

(D)

绝密★启用前

数 学(理工农医类)(卷)

第Ⅱ卷(共110分)

注意事项:

1. 用钢笔或圆珠笔将直接写在试卷上

2. 答卷前将密封线内的项目填写清楚。

二、 填空题:本大题共6小题,每小题5分,共30分。把填在题中横线上。

(10)在 的展开式中, 的系数中__________________(用数字作答).

(11)若三点 共线,则 的值等于_________________.

(12)在 中,若 ,则 的大小是______________.

(13)已知点 的坐标满足条件 ,点 为坐标原点,那么 的最小值等于_______,值等于____________.

(14)已知 三点在球心为 ,半径为 的球面上, ,且 ,那么 两点的球面距离为_______________,球心到平面 的距离为______________.

三、 解答题:本大题共6小题,共80分。解答应写出文字说明,证明过程或演算步骤。

(15)(本小题共12分)

已知函数 ,

(Ⅰ)求 的定义域;

(Ⅱ)设 是第四象限的角,且 ,求 的值.

(16)(本小题共13分)

已知函数 在点 处取得极大值 ,其导函数 的图象经过点 , ,如图所示.求:

(Ⅰ) 的值;

(Ⅱ) 的值.

(17)(本小题共14分)

如图,在底面为平行四边表的四棱锥 中, , 平面 ,且 ,点 是 的中点.

(Ⅰ)求证: ;

(Ⅱ)求证: 平面 ;

(Ⅲ)求二面角 的大小.

(18)(本小题共13分)

某公司员工,指定三门考试课程,有两种考试方案.

方案一:考试三门课程,至少有两门及格为考试通过;

方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.

设某应聘者对三门指定课程考试及格的概率分别是 ,且三门课程考试是否及格相互之间没有影响.

(Ⅰ)分别求该应聘者用方案一和方案二时考试通过的概率;

(Ⅱ)试比较该应聘者在上述两种方案下考试通过的概率的大小.(说明理由)

(19)(本小题共14分)

已知点 ,动点 满足条件 .记动点 的轨迹为 .

(Ⅰ)求 的方程;

(Ⅱ)若 是 上的不同两点, 是坐标原点,求 的最小值.

(20)(本小题共14分)

在数列 中,若 是正整数,且 ,则称 为“数列”.

(Ⅰ)举出一个前五项不为零的“数列”(只要求写出前十项);

(Ⅱ)若“数列” 中, ,数列 满足 , ,分别判断当 时, 与 的极限是否存在,如果存在,求出其极限值;

(Ⅲ)证明:任何“数列”中总含有无穷多个为零的项.

一、选择题(本大题共8小题,每小题5分,共40分)

(1)D (2)C (3)B (4)A

(5)C (6)A (7)D (8)C

二、填空题(本大题共6小题,每小题5分,共30分)

(9) (10)-14

(1) (12)

(13) (14)

三、解答题(本大题共6小题,共80分)

(15)(共12分)

解:(Ⅰ)由cosx≠0得

故f(x)的定义域为

(Ⅱ)因为 ,且a是第四象限的角。

所以 ,

故(16)(共13分)

(Ⅰ)由图象可知,在(-∞,1)上 ,在(1,2)上 ,

在(2,+∞)上

故 在(-∞,1),(2,+∞)上递增,在(1,2)上递减。

因此 在x=1处取得极大值,所以 。

(Ⅱ)

由得

解得a=2,b= -9,c=12

解法二:

(Ⅰ)同解法一。

(Ⅱ)设

又所以

由即

得m=6

所以a=2,b= -9,c=12

(17)(共14分)

(Ⅰ)∵PA⊥平面ABCD

∴AB是PB在平面ABCD上的射影

又∵AB⊥AC,AC 平面ABCD,

∴AC⊥PB

(Ⅱ)连接BD,与AC相交于O,连接EO。

∵ABCD是平等四边形,

∴O是BD的中点,

∴EO‖PB

又PB 平面AEC,EO 平面AEC,

∴PB‖平面AEC。

(Ⅲ)取BC中点G,连接OG,则点G的坐标为

又∴

∴OE⊥AC,OG⊥AC

∴∠EOG是二面角E-AC-B的平面角。

∵∴

∴二面角 的大小为

(18)(共13分)

解:记该应聘者对三门指定课程考试及格的分别为A,B,C,

则(Ⅰ)应聘者用方案一考试通过的概率

应聘者用方案二考试通过的概率

(Ⅱ)因为 所以

即采用种方案,该应聘者考试通过的概率较大。

(19)(共14分)

(Ⅰ)由 知动点P的轨迹是以M,N为焦点的双曲线的右支,实半轴长

又半焦距c=2,故虚半轴长

所以W的方程为

(Ⅱ)设A,B的坐标分别为( ),( )

当当AB与x 轴不垂直时,设直线AB的方程为y=kx+m,与W的方程联立,消去y得:

故所以

又因为

综上,当 取得最小值2。

解法二:

(Ⅰ)同解法一。

(Ⅱ)设A,B的坐标分别为 ,则

令则 ,所以

当且仅当 时,“=”成立

所以 的最小值是2。

(20)(共14分)

(Ⅰ)解:

(不惟一)

(Ⅱ)解:因为数列 ,所以自第20项开始,该数列是 。

即自第20项开始,每三个相邻的项周期地取值3,0,3,所以当 时,an的极限不存在。

当(Ⅲ)证明:根据定义,数列 必在有限项后出现零项,证明如下:

设 中没有零项,由于 ,所以对于任意的n,都有 ,从而当

;当

即 的值要么比 至少小1,那么比 至少小1。

令则

由于c1是确定的正整数,这样减少下去,必然存在某项c1<0,这与cn>0(n=1,2,3,…)矛盾,从而 必有零项。

若次出现的零项为第n项,记 ,则自第n项开始,每三个相邻的项周期地取值0,A,A即

所以数列 中有无穷多个零的项。

已知数列{an},通项公式an=(3n^2-n)/(2n-1) 求{an}的前n项和Sn. 求大神

把数列的通项拆成两项之,在求和时中间的一些项可以相互抵消,从而求得其和.用裂项相消法求和时应注意抵消后并不一定只剩下项和一项,也可能前面剩两项,后面也剩两项,前后剩余项是对称出现的.

哎呀,浪费我20分钟,归纳法都归纳不出来,分母是(2n-1)! 分子规律根本找不出来,有超级大的质数产生19 431 3811

算啦,做不出来,做出来告诉插空法间接法和去杂法等等一下

2022高考数学题及(2020高考数学题及解析)

解法一:

今天小编辑给各位分享2022高考数学题及的知识,其中也会对2020高考数学题及解析分析解答,如果能解决你想了解的问题,关注本站哦。

2022年全国乙卷高考数学试题

数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的,以下是我整理的2022年全国乙卷高考数学试题,希望可以提供给大家进行参考和借鉴。

2022年全国乙卷高考数学试题

全面认识你自己

认识自己是职业定位、自我定位的前提,也是科学选择专业的关键。

首先,对自我的认识来源于自我评价。考生对自己兴趣、性格、天赋的认知是志愿选择的一个重要依据。但需要注意的是,我们的教育一直专注于学生智力的培养,而忽视学生自身的认知和个性的发展,可能造成学生对自我认识的不足和偏。如,一些考生完全有能力选择更好的大学、更有挑战性的专业,但可能因为对自我评价过低而错失机会。

其次是他人评价。特别是家长,班主任老师的评价相对全面。但是这种评价可能带有浓厚个人喜好的色彩,有失客观,而且对学生内在价值动力、天赋能力等极其重要的内在心理特质缺乏真正的了解,因此,在参考他人意见的时候需要谨慎对待。

是心理测评,即通过心理测评来指导高考志愿填报。在国内,高考志愿测评是一个新鲜事物,其测评的结果较为全面和科学,渐渐地为更多的家长和教育机构所接受。考生如果希望在志愿填报时就对今后的长期发展有个较好的规划,可以尝试选择相关的测试系统帮助分析,进而对专业的选择给出一定的指导建议。

高考志愿填报无疑对考生的一生影响深远,因此,考生在专业选择时应该特别注意考虑的全面性--专业是否是自己兴趣喜欢的?专业是否自己性格适合的?专业是否是自己天赋能力擅长的?只有在三者之间找到一个的结合点,考生才能在自己的人生路上迈出正确、关键的一步。

与此同时,尽管高考志愿测评技术在国内发展较快,但哪怕是一些较权威的专业测评,也有其局限性,他们只能通过网络平台为考生提供测评服务,学生只有登陆其网站才能参加测评,这使得不少上网条件受到限制的考生难以通过测试对自己进行分析。

此外,市面上不少测评软件仅仅只是从兴趣的维度对考生进行考察,相对于性格和天赋,兴趣的稳定性欠佳,这样得出的结果对考生就没有太大的指导意义。

在此,也提醒考生,选择测评软件时,需要先对测评体系有个系统的了解。

考生个人特征情况

考生个人特征如兴趣、特长、志向、能力、职业价值观等。

兴趣——兴趣是指一个人力求认识、掌握某种事物并经常参与该种活动的心理倾向。据有关专家研究表明,如果一个人对某种工作有兴趣,他能发挥其全部才能的80%~90%,并且能长时间保持高效率而不知疲惫。相反,如果他对某种工作没有兴趣,则只能发挥全部才能的20%~30%,还容易精疲力竭。而具体在进行专业选择时,对于自己兴趣的考查,主要看当前潜在的职业兴趣和对各门学科的学科兴趣。

特长——选择了符合自己特长的专业,无疑在未来的学习、工作中可以扬长避短,充分发挥自己的聪明才智。俗话说,最了解自己的还是自己。每个考生部应认真自我分析,看看到底最喜欢哪一门学科?是动手能力强,还是更擅长动脑?表象思维与逻辑思维能力哪一个更有优势?组织管理能力、艺术修养、口头与书面表达能力,在同学中处于什么地位?等等。这些都是你选择志愿的参考因素。

志向——各人的志向、理想是激发自己奋发努力的动力之一,也是成就事业不可缺少的条件之一。

能力——能力可以分为一般能力和特殊能力。一般能力包括观察力、记忆力、注意力、思维力、想像力等。具体在选择专业填报志愿时,考生需要知道的是,有些专业是需要考生具备一些特殊能力才能报考和学习的,如美术、音乐、等。但是就其他大部分专业来说,对学生能力的要求是不超出一般范围的。另外,在学生所处年龄这个阶段,可以说,他们能力发展的空间是相当大的,尤其进入大学阶段后,随着眼界的扩大,知识的扩展、锻炼能力机会的增加,他们的能力会不断得到提高,所以,在专业选择时,虽然能力是一个需要考虑的因素,但是不宜作为一个化的考虑因素。

职业价值观;一般说来,职业价值观与理想基本是一致的,但无论是以什么专业作为理想专业的人,职业价值体系中均应以充分体现自己的兴趣,发挥个人能力及个性为位,然后,再考虑一些外在因素,如这个专业将来对应职业的工资、地位、稳定性等。在进行专业选择时,考生家庭中的成员就这个方面的问题进行认真的讨论,弄清个人和家庭的职业价值观是什么,再作出专业和将来的职业选择。

2022年全国乙卷高考数学试题相关文章:

★2022高考全国乙卷试题及

★2022高考理科数学乙卷试题解析

★2022年全国乙卷高考理科数学

★2022年全国乙卷文科数学卷真题公布

★2022年高考数学试题及

★2022年全国乙卷高考数及

★2022年全国理科数学卷试题及解析

★2022全国Ⅰ卷高考数学试题及参一览

★2022年英语全国乙卷试题及

★2022年高考乙卷数试卷

2022年全国新高考1卷数学试题及解析

数学科高考以我国的经济发展、生产生活实际为情境素材设置试题。下面是我为大家收集的关于2022年全国新高考1卷数学试题及解析。希望可以帮助大家。

全国新高考1卷数学试题

全国新高考1卷数学试题解析

因为基础知识融汇于主干内容之中,主干内容又是整个学科知识体系的重要支撑,理所当然是高考的重之中重。主干内容包括:函数、不等式、三角、数列、解析几何、向量等内容。现分块阐述如下:

1.函数

函数是贯穿中学数学的一条主线,近几年对函数的考察既全面又深入,保持了较高的内容比例,并达到了一定深度。题型分布总体趋势是四道小题一道大题,题量稳中有变,但分值基本在35分左右。选填题覆盖了函数的大部分内容,如函数的三要素,函数的四性与函数图像、常见的初等函数,反函数等。小题突出考察基础知识,大题注重考察函数的思想方法和综合应用。

2.三角函数

三角部分是高中数学的传统内容,它是中学数学重要的基础知识,因而具有基础性的地位,同时它也是解决数学本身与其它学科的重要工具,因此具有工具性。高考大部分以中低档题的形式出现,至少考一大一小两题,分值16分左右,其中三角恒等变形、求值、三角函数的图象与性质,解三角形是支撑三角函数的知识体系的主干知识,这无疑是高考命题的重点。

3.立体几何

承载着空间想象能力,逻辑推理能力与运算能力考察的立体几何试题,在历年的高考中被定义于中低档题,多是一道解答题,一道选填题;解答一般与棱柱,棱锥有关,主要考察线线与线面关系,其解法一般有两种以上,并且一般都能用空间向量方法来求解。

4.数列与极限

数列与极限是高中数学重要内容之一,也是进一步学习高中数学的基础,每年高考占15%。高考以一大一小两题形式出现,小题主要考察基础知识的掌握,解答题一般为中等以上难度的压轴题。由于这部分知识处于交汇点的地位,比如函数、不等式,向量、解几等都与它们有密切的联系,因此大题目具有较强的综合性与灵活性和思维的深刻性。

5.解析几何

直线与圆的方程,圆锥曲线的定义、标准方程、几何性质是支撑解析几何的基础,也是高考命题的重点,以下三个小题一道大题的形式出现约占30分。客观题主要考察直线方程,斜率、两直线位置关系,夹角公式、点到直线距离,圆锥曲线的标准方程,几何性质等基础知识。解答题为难度较大的综合压轴题。解析几何融合了代数,三角几何等知识是考察学生综合能力的绝好素材。

2022年全国新高考1卷数学试题及解析相关文章:

★2022高考甲卷数试卷及

★2022年新高考Ⅱ卷数试卷及

★2022高考全国甲卷数学试题及

★2022高考数学大题题型总结

★2022全国乙卷理科数及解析

★2022年全国乙卷高考数学试卷

★2022年新高考1卷语文真题及解析

★全国新高考一卷2022语文试题及一览

★2022江西高考文科数学试题及

★2022全国新高考II卷语文试题及解析

2022年全国新高考1卷数学试题及详解

高考数学命题贯彻高考内容改革的要求,依据高中课程标准命题,进一步增强考试与教学的衔接。下面是我为大家收集的关于2022年全国新高考1卷数学试题及详解。希望可以帮助大家。

全国新高考1卷数学试题

2022高考数学知识点总结

1.定义:

用符号〉,=,〈号连接的式子叫不等式。

2.性质:

①不等式的两边都加上或减去同一个整式,不等号方向不变。

②不等式的两边都乘以或者除以一个正数,不等号方向不变。

③不等式的两边都乘以或除以同一个负数,不等号方向相反。

3.分类:

①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。

②一元一次不等式组:

a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

4.考点:

①解一元一次不等式

②根据具体问题中的数量关系列不等式并解决简单实际问题

③用数轴表全国新高考1卷数学详解示一元一次不等式的解集

考点一:与简易逻辑

部分一般以选择题出现,属容易题。重点考查间关系的理解和认识。近年的试题加强了对计算化简能力的考查,并向无限集发展,考查抽象思维能力。在解决这些问题时,要注意利用几何的直观性,并注重表示方法的转换与化简。简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。

考点二:函数与导数

函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。

考点三:三角函数与平面向量

一般是2道小题,1道综合解答题。小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型.

考点四:数列与不等式

不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查.在选择、填空题中考查等或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、题目.

一、排列

1定义

从n个不同元素中取出m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一排列。

从n个不同元素中取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Amn.

2排列数的公式与性质

特例:当m=n时,Amn=n!=n×3×2×1

规定:0!=1

二、组合

1定义

从n个不同元素中取出m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合

从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号Cmn表示。

2比较与鉴别

由排列与组合的定义知,获得一个排列需要“取出元素”和“对取出元素按一定顺序排成一列”两个过程,而获得一个组合只需要“取出元素”,不管怎样的顺序并成一组这一个步骤。

排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。

三、排列组合与二项式定理知识点

1.计数原理知识点

①乘法原理:N=n1·n2·n3·nM②加法原理:N=n1+n2+n3++nM

2.排列与组合

Anm=n-=n!/!Ann=n!

Cnm=n!/!m!

Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?6?1k!=!-k!

3.排列组合混合题的解题原则:先选后排,先分再排

排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素.以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.

捆绑法

在求解排列与组合应用问题时,应注意:

把具体问题转化或归结为排列或组合问题;

通过分析确定运用分类计数原理还是分步计数原理;

分析题目条件,避免“选取”时重复和遗漏;

列出式子计算和作答.

经常运用的数学思想是:

①分类讨论思想;②转化思想;③对称思想.

4.二项式定理知识点:

①n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3++Cnran-rbr+-+Cnn-1abn-1+Cnnbn

特别地:n=1+Cn1x+Cn2x2++Cnrxr++Cnnxn

②主要性质和主要结论:对称性Cnm=Cnn-m

二项式系数在中间。

所有二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4++Cnr++Cnn=2n

奇数项二项式系数的和=偶数项而是系数的和

Cn0+Cn2+Cn4+Cn6+Cn8+=Cn1+Cn3+Cn5+Cn7+Cn9+=2n-1

③通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。

5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。

6.注意二项式系数与项的系数的区别,在求某几项的系数的和时注意赋值法的应用。

不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用。因此不等式应用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了很好的促进作用。在解决问题时,要依据题设与结论的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明。不等式的应用范围十分广泛,它始终贯串在整个中学数学之中。

诸如问题,方程的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。

知识整合

1。解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化。在解不等式中,换元法和图解法是常用的技巧之一。通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰。

2。整式不等式的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、不等式等化归为整式不等式是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法。方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用。

3。在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰。

4。证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法。要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点。比较法的一般步骤是:作→变形→判断符号。

数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等数列、等比数列,求极限和数学归纳法综合在一起。

探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。

近几年来,高考关于数列方面的命题主要有以下三个方面;

数列本身的有关知识,其中有等数列与等比数列的概念、性质、通项公式及求和公式。

数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为一题难度较大。

1.在掌握等数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;

2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,

进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力

2022年全国新高考1卷数学试题及详解相关文章:

★2022高考卷数及解析

★2022高考甲卷数试卷及

★2022卷高考文科数学试题及解析

★2022高考全国甲卷数学试题及

★2022年新高考Ⅱ卷数试卷及

★2022全国乙卷理科数及解析

★2022高考数学大题题型总结

★2022年高考全国一卷作文预测及范文

★2022年高考数学必考知识点总结

★2022年全国乙卷高考数学试卷

2022年高考数学试题及参

相比很多同学在高考过后的时间就是找核对,虽然知道这样可能会影响心情,但还是忍不住想要对照。下面是我为大家整理的关于2022年高考数学试题及参,如果喜欢可以分享给身边的朋友喔!

2022年高考数学试题

2022年高考数学试题参

高考数学答题策略

考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。

一、会做与得分的关系

要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现"会而不对""对而不全"的情况,考生自己的估分与实际得分之甚远。如立体几何论证中的"跳步",使很多人丢失1/3以上得分,代数论证中"以图代证",尽管解题思路正确甚至很巧妙,但是由于不善于把"图形语言"准确地转译为"文字语言",得分少得可怜。只有重视解题过程的语言表述,会做的题才会得分。

二、审题与解题的关系

有的考生对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。其实只要耐心仔细地审题,准确地把握题目中的与量,从中获取尽可能多的信息,才能迅速找准解题的方向。

三、难题与容易题的关系

拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的'顺序作答。这几年,数学试题已从"一题把关"转为"多题把关",因此解答题都设置了层次分明的"台阶",入口宽,入手易,但是深入难,解到底难,因此看似容易的题也会有"咬手"的关卡,看似难做的题也有可得分之处。所以考试中看到容易的题目不可掉以轻心,看到新面孔的难题不要胆怯,冷静思考、仔细分析,定能得到应有的分数。

四、快与准的关系

在目前题量大、时间紧的情况下,准字则尤为重要。只有准才能得分,只有准你才可以不必考虑再花时间检查,而快是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。适当地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。

近年的高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面6.先高后低。即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。

2022年高考数学试题及参相关文章:

★2022数学高考题及

★2022新高考数学Ⅰ卷试卷及参

★2022年全国Ⅰ卷高考数学试题及参公布

★2022全国一卷高考数学试题及

★2022新高考全国一卷数学试卷及解析

★2022年高考数学试题及

★2022全国新高考Ⅰ卷数学卷完整试题及一览

★2022新高考全国一卷数学试卷解析

★2022年高考数学全国乙卷试题

高三总复习 数列部分 高考题 求解析

中,

7)S9/S5=(9a5)/(5a3)=9/5(a5/a3)=9/55/9= 1 。

8)S4,S8-S4 ,S12-S8 ,S16-S12 成等数列,

由于 S4/S8=1/3 ,因此 S8=3S4 ,

所以 S8-S4=2S4 ,S12-S8=3S4 ,S16-S12=4S4 ,

由此得 S16=10S4 ,

所以 S8/S16=8S高考数学复习主干知识点汇总:4/(10S4)=4/5 。

高中数学数列方法和技巧

排列数的公式:Amn=n

数列是高中数学的重要内容,又是学习高等数学的基础。高考对数列的考查比较全面,等数列,等比数列的考查每年都不会遗漏。下面是我为大家整理的关于高中数学数列 方法 和技巧,希望对您有所帮助。欢迎大家阅读参考学习!

1高中数学数列方法和技巧

一.公式法

二.倒序相加法

如果一个数列的首末两端等“距离”的两项的和相等,那么求这个数列的前n项和即可用倒序相加法,如等数列的前n项和公式即是用此法推导的.

三.错位相减法

如果一个数列的各项和是由一个等数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.

四.裂项相消法

若一个数列的通项公式是由若干个等数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和然后相加减.

2高中数学数列问题的答题技巧

高中数列,有规律可循的类型无非就是两者,等数列和等比数列,这两者的题目还是比较简单的,要把公式牢记住,求和,求项也都是比较简单的,公式的运用要熟悉。

题目常常不会如此简单容易,稍微加难一点的题目就是等和等比数列的一些组合题,这里要采用的一些方法有错位相消法。

题目变化多端,往往出现的压轴题都是一些从,,设来没有接触过的一些通项,有些甚至连通项也不给。针对这两类,我认为应该积累以下的一些方法。

对于求和一类的题目,可以用柯西不等式,转化为等比数列再求和,分母的放缩,数学归纳法,转化为函数等方法等方法

对于求通项一类的题目,可以采用先代入求值找规律,再数学归纳法验证,或是用累加法,累乘法都可以。

3高考数学解题方法

解题过程要规范

高考数学计算题要保证既对且全,全而规范。应为高考数学计算题表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。

解决高考数学计算题,首先要全面调查题意,迅速接受概念,此为“面”;透过冗长叙述,抓住重点词句,提出重点数据,此为“点”;综合联系,提炼关系,依靠数学方法,建立数学模型,此为“线”,如此将应用性问题转化为纯数学问题。当然,高考数学计算题解题过程和结果都不能离开实际背景。

先熟后生

高考数学书卷发下来后,通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对高考数学全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的数学计算。这样,在拿下数学熟题的同时,可以使思维流畅、超常发挥,达到拿下中题目的目的。

4高中生学好数学的诀窍

首先、准备好 笔记本 和草稿本,笔记本不是让你记公式记概念,那些东西书上都有,没必要再誊一遍到笔记本上,笔记本上主要记老师给的例题。毕竟老师是很有 经验 的,他们给的例题一定是很有代表性的,必要的时候可以背一背例题的解题方法,理解思路。

草稿本就是有些不是很重要的题,老师让举一反三这类的东西,就没必要写在笔记上,但是一定要跟着算,在纸上写两笔算一下比你光看光想的效果要好得多。

其次、上课一定集中注意力,要和老师有一定的互动,时间长了,上课百分之九十的时间老师都是在看着你讲课,你不点头表示明白了她就不往下讲。。毕竟一节课四十分钟,一个老师一节课平均分给每个学生也就不到一分钟,所以自私点说,就是要给自己争取时间。

课下有问题就问,不要问同学,尤其是以为脑子很聪明所以数学学的好的同学,这种人千万别问,倒不是说人家不愿意给你讲,而是现在毕竟是应试 教育 ,那些聪明的同学上课不一定听讲有多认真,有些人做题就是根据自己的思路走,那些解题方法可能适合于他们并不适合你,所以问题一定找老师,老师会给你一套最适合应试的解题方法。

高中数学数列方法和技巧相关 文章 :

1. 高中数学的100个学习方法与高中数学48条秒杀的公式

2. 高中数学学习方法和技巧是什么

3. 高中数学学习的方法技巧

4. 高中数学数列通项公式的求法

5. 高中数学六种解题技巧与五种数学答题思路

6. 高二数学学习方法和技巧大全

7. 高中数学50个解题小技巧

8. 高中数学学习方法及策略

9. 高中数学学习方法总结

高中数学题数列题目。完全不会

=1p1=P(A·B· )+P( ·B·C)+P(A· ·C)+P(A·B·C)/d(1/a1-1/a2+1/a2-1/a3+……+1/a(n-1)-1/an)=1/d(1/a1-1/an)=(n-1)/a1/an

已知 an为等数列,不妨设其通项公式为

an=a1+(n-1)d

所以哟 1/a1a2 = (1/a1 - 1/a2)/d

1/a2a3 = (1/a2 - 1/a3)/d

……

1/a(n-1)an = (1/a(n-1) - 1/an)/d

因此结果= (1/a1- 1/an(Ⅱ)已知圆的方程为(x+2)2+(y-1)2=5,所以圆心M的坐标为(-2,1).) /d

=(n-1)d /ana1 /d

=(n-1)/a1an

版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。