数学这门学科,一直是很多学生的“老大难”,尤其是处在小学阶段的孩子,学起来更是非常痛苦。小学数学对于小学阶段的孩子来说,学起来可能有点难度,但绝不是学不好。相信很多数学成绩不理想就是败在了基础没有打好。下面我就为大家整理一下1一6年级数学所有公式大全。
小高考数学全部公式汇总 数学小高考知识点
小高考数学全部公式汇总 数学小高考知识点
小高考数学全部公式汇总 数学小高考知识点
1一6年级数学所有公式 一、小学数学几何形体周长 面积 体积计算公式
正方形的周长=边长×4 C=4a
长方形的面积=长×宽 S=ab
正方形的面积=边长×边长 S=a.a= a
三角形的面积=底×高÷2 S=ah÷2
平行四边形的面积=底×高 S=ah
梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
圆的面积=圆周率×半径×半径
三角形的面积=底×高÷2. 公式 S= a×h÷2
正方形的面积=边长×边长 公式 S= a×a
长方形的面积=长×宽 公式 S= a×b
平行四边形的面积=底×高 公式 S= a×h
梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2
内角和:三角形的内角和=180度.
长方体(或正方体)的体积=底面积×高 公式:V=abh
正方体的体积=棱长×棱长×棱长 公式:V=
圆的周长=直径×π 公式:L=πd=2πr
圆的面积=半径×半径×π 公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高.公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积. 公式:S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高.公式:V=Sh
圆锥的体积=1/3底面×积高.公式:V=1/3Sh
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相加减,先通分,然后再加减.
分数的乘法则:用分子的积做分子,用分母的积做分母.
分数的除法则:除以一个数等于乘以这个数的倒数.
二、单位换算
(1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米
(2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
(3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米
(4)1吨=10正方形的面积=边长×边长 S=a×a00千克 1千克= 1000克= 1公斤 = 2市斤
(5)1公顷=10000平方米 1亩=666.666平方米
(6)1升=1立方分米=1000毫升 1毫升=1立方厘米
(7)1元=10角1角=10分1元=100分
(8)1世纪=100年 1年=12月 大月(31天)有:135781012月 小月(30天)的有:461月
平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时 1时=60分
三、数量关系计算公式方面
1、每份数×份数=总数 总数÷每份数=份数总数÷份数=每份数
2、1倍数×倍数=几倍数 几倍数÷1倍数=倍数几倍数÷倍数=1倍数
3、速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率
6、加数+加数=和 和-一个加数=另一个加数
7、被减数-减数= 被减数-=减数 +减数=被减数
9、被除数÷除数=商 被除数÷商=除数 商×除数=被除数
四、算术方面
1.加法交换律:两数相加交换加数的位置,和不变.
2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第
三个数相加,和不变.
3.乘法交换律:两数相乘,交换因数的位置,积不变.
4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变.
5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变.如:(2+4)×5=2×5+4×5.
6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变.0除以任何不是0的数都得0.
7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式.等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立.
8.方程式:含有未知数的等式叫方程式.
9.一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式.
学会一元一次方程式的例法及计算.即例出代有χ的算式并计算.
10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数.
11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相加减,先通分,然后再加减.
12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小.异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小.
13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.
14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母.
15.分数除以整数(0除外),等于分数乘以这个整数的倒数.
16.真分数:分子比分母小的分数叫做真分数.
17.分数:分子比分母大或者分子和分母相等的分数叫做分数.分数大于或等于1.
18.带分数:把分数写成整数和真分数的形式,叫做带分数.
19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变.
20.一个数除以分数,等于这个数乘以分数的倒数.
21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数.
五、特殊问题
和问题的公式
(和+)÷2=大数
(和-)÷2=小数
和倍问题
和÷(倍数-1)=小数
(或者 和-小数=大数)
倍问题
÷(倍数-1)=小数
(或 小数+=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
(1)如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
(2)如果在非封闭线路的一端要植树,另一端不要植树,那么:
全长=株距×株数
株距=全长÷株数
(3)如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之=参加分配的份数
(大盈-小盈)÷两次分配量之=参加分配的份数
(大亏-小亏)÷两次分配量之=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度×追及时间
追及时间=追及距离÷速度
速度=追及距离÷追及时间
流水问题
(1)一般公式:
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
(2)两船相向航行的公式:
(3)两长方体的体积=长×宽×高 公式:V=abh船同向航行的公式:
后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×=(售出价÷成本-1)×
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-5%)
工程问题
(1)一般公式:
工作效率×工作时间=工作总量
工作总量÷工作时间=工作效率
工作总量÷工作效率=工作时间
(2)用设工作总量为“1”的方法解工程问题的公式:
1÷单位时间能完成的几分之几=工作时间
小学数学公式记忆法 方法一:图形结合记忆法
小学公式中,会存在大量平面几何的公式,比如三角形周长及面积公式,或是长方形周长及面积公式,圆形周长及面积公式等等,对于这类平面几何公式,可以孩子结合相应的图形具象地记忆,比如等腰三角形周长就是由两条相等的腰加上底边的长度,通过绘图可以更加直观地看出如何相加。通过图像结合来记忆小学数学公式的平面几何公式,对于孩子来说会有比较直接的收效。
方法二:在练习中加强记忆
如果只是靠背诵记忆大量的小学数学公式的话,短时间内小朋友可能会有较深的印象,但是时间一久可能就会逐渐忘记,因此,除了通过背诵记忆公式外,还可以通过反复练习的方法去加强记忆,比如数学公式中的和问题或是和倍问题等等,在记忆的过程中还可以加快解题速度和正确率,在作业和考试时可以达到更好的效果。
方法三:联想记忆法
小学数学公式是入门的基础公式,在生活中,有很多场合都会利用到这样的公式,就像要测量一块积木的大小,就得先知道积木的长宽高,进而考查的就是长方体的体积公式,在学习的过程中,可以通过这样联想的方式来进行记忆,多想多思,多联系生活实际,那样记忆起公式来就显得不那么枯燥无味。
2.表示方法①列举法
②描述法
③韦恩图
④数轴法
⑴A∩(B∪C)=(A∩B)∪(A∩C)
⑵Cu(A∩B)=CuA∪CuB
Cu(A∪B)=CuA∩CuB
4.的性质
⑴n元的子集数:2n
真子集数:2n-1;非空真子集数:2n-2
高中数学概念总结
一、
函数
1、
若A中有n
个元素,则A的所有不同的子集个数为
,所有非空真子集的个数是
。二次函数
的图象的对称轴方程是
,顶点坐标是
。用待定系数法求二次函数的解析式时,解析式的设法有三种形式,即
,和
(顶点式)。
2、
幂函数
,当n为正奇数,m为正偶数,m 函数 的大致图象是 由图象知,函数的值域是 ,单调递增区间是 ,单调递减区间是 。二、 三角函数 1、 以角 的顶点为坐标原点,始边为x轴正半轴建立直角坐标系,在角 的终边上任取一个异于原点的点 ,点P到原点的距离记为 ,则sin =,cos =,tg =,ctg =,sec =3、,csc =。 2、同角三角函数的关系中,平方关系是: ,, ;倒数关系是: ,, ,。 3、诱导公式可用十个字概括为:奇变偶不变,符号看象限。如: ,= ,。 4、 函数 的值是 ,最小值是 ,周期是 ,频率是 ,相位是 ,初相是 ;其图象的对称轴是直线 ,凡是该图象与直线 的交点都是该图象的对称中心。 三角函数 1、 以角 的顶点为坐标原点,始边为x轴正半轴建立直角坐标系,在角 的终边上任取一个异于原点的点 ,点P到原点的距离记为 ,则sin =,cos =,tg =,ctg =,sec =,csc =。 2、同角三角函数的关系中,平方关系是: ,, ;倒数关系是: ,, ,。 3、诱导公式可用十个字概括为:奇变偶不变,符号看象限。如: ,= ,。 4、 函数 的值是 ,最小值是 ,周期是 ,频率是 ,相位是 ,初相是 ;其图象的对称轴是直线 ,凡是该图象与直线 的交点都是该图象的对称中心。 圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py -b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a 根与系数的关系 X1+X2=-b/a X1X2=c/a 注:韦达定理 判别式 b2-4a=0 注:方程有相等的两实根 b2-4ac>0 注:方程有一个实根 b2-4ac<0 注:方程有共轭复数根 数学的公式是要记但我告诉你个记忆的好方法啊 就是做联系那样你就可以小数×倍数=大数记很多公式. 比如三角的.和化积,积化和.半角公式,公式. 还有椭圆和圆,还有抛物线,双曲线的常用公式. 如果要具体的可以加我的QQ. 最重要的是三角函数和立体几何的向量法那些公式,高考是必考的. 小学数学常用公式有哪些?一至六年级的小学数学公式有哪些?下文我给大家整理了小学数学公式大全,供参考! 小学1~6年级数学公式汇总 一、小学一年级数学公式: (一)小学数学加减运算公式 加数 + 加数 = 和(交换加数的位置和不变)。 被减数–减数 = 。 和 = 加数 + 加数 = 被减数–减数。 和–加数 = 另一个加数被减数– = 减数。 + 减数 = 被减数。 被减数 = + 减数。 求大数比小数多多少,用减法(-)计算。 求小数比大数少多少,用减法(-)计算。 大数=小数+多出来的数小数=大数—多出来的数多出来的数=大数—小数。 在“︸”下面就是求总数,用加法(+)计算。 在“︸”上面就是求部分,用减法(-)计算。 (三)时针与分针(时针短,分针长) 1时=60分 60分=1时 1刻=15分。 分针指着12是整时,时针指着数字几就是几时。 分针指着6是半时,时针过数字几就是几时半。 (四)元角分 1元=10角。 1角=10分。 1元=100分。 (五)图文应用题 先找出已知条件和问题,再确定用加法或减法计算,记得要写答。 求一共是多少,用加法(+)计算。 求还有、还剩、剩下是多少,用减法(-)计算。 二、小学二年级数学公式 (一)被除数、除数、商 被除数÷除数=商 被除数÷商=除数 商×除数=被除数 除数×商+余数=被除数.比 (二)四则运算定律 加法交换律:a+b=b+a, 加法结合律:(a+b)+c=a+(b+c) 乘法交换律:ab=ba, 乘法结合律:(ab)c=a(bc) 乘法分配律:(a±b)c=ac±bc (三)四则混合运算 在四则运算中,加法和减法称为级运算,乘法和除法称为第二级运算。 在有括号的算式里,要先算括号里面的,如果既有小括号又有中括号,要先算小括号里面的,再算中括号里面的,算括号外面的。 (四)小学数学减法的基本性质 a-(b+c)=a-b-c a-b-c=a-(b+c) 三、小学三年级数学公式 每份数×份数=总数 总数÷每份数=份数 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 速度×时间=路程 路程÷速度=时间 路程÷时间=速度 单价×数量=总价 总价÷单价=数量 总价÷数量=单价 工作效率×工作时间=工作总量 工作总量÷工作时间=工作效率 因数×因数=积 积÷一个因数=另一个因数 被除数÷除数=商 被除数÷商=除数 商×除数=被除数 周长:围成一个封闭图形的所有边长的总和叫做周长 正方形周长:边长+边长+边长+边长=周长或边长*4=周长 正方形的特点:四条边相等,四个直角 长方形周长:长+长+宽+宽=周长 (长+宽)*2=周长 长方形的特点:对边平行且相等四个直角 平行四边形的特点:对边平行且相等容易变形没有直角且对角相等 四、小学4~6年级数学公式 (一)正方形面积(周长C、面积S、边长a) 周长=边长×4 C=4a 面积=边长×边长 S=a×a (二)正方体体积(体积V 、棱长a) 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a (三)长方形面积(周长C、面积S、边长a) 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab (四)长方体体积(体积V 、棱长a、长a、宽b、高h) (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh (五)三角形(面积s、底a、高h) s面积 a底 h高 面积=底×高÷2 s=ah÷2 三角形高=面积×2÷底 三角形底=面积×在没有括号的算式里,如果只含有同一级运算,要从左往右一次计算;如果含有两级运算,要先做第二级运算,再做级运算。2÷高 (六)平行四边形(面积s、底a、高h) 面积=底×高 s=ah (七)梯形(面积s、上底a、底b、高h) s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 (八)圆形(S面积 C周长∏ d=直径 r=半径) 1.周长=直径×∏=2×∏×半径 C=∏d=2∏r 2.面积=半径×半径×∏ (九)圆柱体(v:体积 h:高 s;底面积 r:底面半径 c:底面周长) 1.侧面积=底面周长×高 2.表面积=侧面积+底面积×2 3.体积=底面积×高 4.体1.元素具有①确定性②互异性③无序性积=侧面积÷2×半径 (十)小学数学相遇问题的公式 相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 (十一)追及问题 追及距离=速度×追及时间 追及时间=追及距离÷速度 速度=追及距离÷追及时间 (十二)小学数学算术方面公式 1.等式:等号左边的数值与等号右边的数值相等的式子叫做等式 等式的基本性质: 等式两边同时加上(或减去)一个相同的数,等式仍然成立 等式两边同时乘以(或除以)一个相同的数(0除外),等式仍然成立。 2.方程式:含有未知数的等式叫方程式。 3.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。 4.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。 异分母的分数相加减,先通分,然后再加减。 5.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。 异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。 6.真分数:分子比分母小的分数叫做真分数。 8.带分数:把分数写成整数和真分数的形式,叫做带分数。 9.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。 掌握数学公式,对你的考试是有所帮助的。下面是学习啦小编网如果只是靠背诵弯辩消记忆大量的小学数学公式的话,短时间内小朋友可能会有较深的印象,但是时间一久可能就会逐渐忘记,因此,可以通过反复练习的方法去加强记忆,在记忆的过程中还可以加快解题速度和正确率,在作业和考试时可以达到更好的效果。络整理的2016高考必备数学公式以供大家学习。 2016高考必备数学公式(一) 通项公式的求法: (1)构造等比数列:凡是出现关于后项和前项的一次递推式都可以构造等比数列求通项公式; (2)构造等数列:递推式不能构造等比数列时,构造等数列; (3)递推:即按照后项和前项的对应规律,再往前项推写对应式。 已知递推公式求通项常见方法: ①已知a1=a,an+1=qan+b,求an时,利用待定系数法求解,其关键是确定待定系数λ,使an+1 +λ=q(an+λ)进而得到λ。 ②已知a1=a,an=an-1+=(m3+1)(m12+m6++1)f(n)(n≥2),求an时,利用累加法求解,即an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)的方法。 ③已知a1=a,an=f(n)an-1(n≥2),求an时,利用累乘法求解。 一、小学数学几何形体周长 面积 体积计算公式 正方形的周长=边长×4 C=4a 长方形的面积=长×宽 S=ab 三角形的面积=底×高÷2 S=ah÷2 平行四边形的面积=底×高 S=ah 梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2 圆的面积=圆周率×半径×半径 三角形的面积=底×高÷2。 公式 S= a×h÷2 正方形的面积=边长×边长 公式 S= a×a 长方形的面积=长×宽 公式 S= a×b 平行四边形的面积=底×高 公式 S= a×h 梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2 内角和:三角形的内角和=180度。 长方体(或正方体)的体积=底面积×高 公式:V=abh 正方体的体积=棱长×棱长×棱长 公式:V= 圆的周长=直径×π 公式:L=πd=2πr 圆的面积=半径×半径×π 公式:S=πr^2 圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh 圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。 公式:S=ch+2s=ch+2πr^2 圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh 圆锥的体积=1/3底面×积高。公式:V=1/3Sh 分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。 分数的乘法则:用分子的积做分子,用分母的积做分母。 分数的除法则:除以一个数等于乘以这个数的倒数。 二、单位换算 (1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米 (2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 (3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米 (4)1吨=1000千克 1千克= 1000克= 1公斤 = 2市斤 (5)1公顷=10000平方米 1亩=666.666平方米 (6)1升=1立方分米=1000毫升 1毫升=1立方厘米 (7)1元=10角1角=10分1元=100分 (8)1世纪=100年 1年=12月 大月(31天)有:135781012月 小月(30天)的有:461月 平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时 1时=60分 三、数量关系计算公式方面 1、每份数×份数=总数 总数÷每份数=份数总数÷份数=每份数 2、1倍数×倍数=几倍数 几倍数÷1倍数=倍数几倍数÷倍数=1倍数 3、速度×时间=路程 路程÷速度=时间 路程÷时间=速度 4、单价×数量=总价 总价÷单价=数量 总价÷数量=单价 5、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率 6、加数+加数=和 和-一个加数=另一个加数 7、被减数-减数= 被减数-=减数 +减数=被减数 9、被除数÷除数=商 被除数÷商=除数 商×除数=被除数 四、算术方面 1.加法交换律:两数相加交换加数的位置,和不变。 2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第 三个数相加,和不变。 3.乘法交换律:两数相乘,交换因数的位置,积不变。 4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。 5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5。 6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。0除以任何不是0的数都得0。 7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。 9.一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。 学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。 10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。 11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。 12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。 13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。 14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。 15.分数除以整数(0除外),等于分数乘以这个整数的倒数。 16.真分数:分子比分母小的分数叫做真分数。 17.分数:分子比分母大或者分子和分母相等的分数叫做分数。分数大于或等于1。 18.带分数:把分数写成整数和真分数的形式,叫做带分数。 19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。 20.一个数除以分数,等于这个数乘以分数的倒数。 21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数。 五、特殊问题 和问题的公式 (和+)÷2=大数 (和-)÷2=小数 和倍问题 和÷(倍数+1)=小数 (或者 和-小数=大数) 倍问题 ÷(倍数-1)=小数 (或 小数+=大数) 植树问题 1 非封闭线路上的植树问题主要可分为以下三种情形: (1)如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1) (2)如果在非封闭线路的一端要植树,另一端不要植树,那么: 全长=株距×株数 株距=全长÷株数 (3)如果在非封闭线路的两端都不要植树,那么:水流速度=(顺流速度-逆流速度)÷2 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 2 封闭线路上的植树问题的数量关系如下 全长=株距×株数 株距=全长÷株数 盈亏问题 (盈+亏)÷两次分配量之=直径=半径×2 d=2r 半径=直径÷2 r= d÷2参加分配的份数 (大盈-小盈)÷两次分配量之=参加分配的份数 (大亏-小亏)÷两次分配量之=参加分配的份数 相遇问题 相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 追及问题 追及距离=速度×追及时间 追及时间=追及距离÷速度 速度=追及距离÷追及时间 流水问题 (1)一般公式: 顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺流速度+逆流速度)÷2 (2)两船相向航行的公式: (3)两船同向航行的公式: 后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度 浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 利润与折扣问题 利润=售出价-成本 利润率=利润÷成本×=(售出价÷成本-1)× 涨跌金额=本金×涨跌百分比 折扣=实际售价÷原售价×(折扣<1) 利息=本金×利率×时间 税后利息=本金×利率×时间×(1-5%) 工程问题 (1)一般公式: 工作效率×工作时间=工作总量 工作总量÷工作时间=工作效率 工作总量÷工作效率=工作时间 (2)用设工作总量为“1”的方法解工程问题的公式: 1÷单位时间能完成的几分之几=工作时间 一、小学数学几何形体周长 面积 体积计算公式 正方形的周长=边长×4 C=4a 长方形的面积=长×宽 S=ab 三角形的面积=底×高÷2 S=ah÷2 平行四边形的面积=底×高 S=ah 梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2 圆的面积=圆周率×半径×半径 三角形的面积=底×高÷2。 公式 S= a×h÷2 正方形的面积=边长×边长 公式 S= a×a 长方形的面积=长×宽 公式 S= a×b 平行四边形的面积=底×高 公式 S= a×h 梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2 内角和:三角形的内角和=180度。 长方体(或正方体)的体积=底面积×高 公式:V=abh 正方体的体积=棱长×棱长×棱长 公式:V= 圆的周长=直径×π 公式:L=πd=2πr 圆的面积=半径×半径×π 公式:S=πr^2 圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh 圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。 公式:S=ch+2s=ch+2πr^2 圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh 圆锥的体积=1/3底面×积高。公式:V=1/3Sh 分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。 分数的乘法则:用分子的积做分子,用分母的积做分母。 分数的除法则:除以一个数等于乘以这个数的倒数。 二、单位换算 (1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米 (2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 (3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘 小学数学公式大全(完整版2),数学学得好不好全靠它了! 太长了!抄一天都抄不完 如正方体的体积=棱长×棱长×棱长 公式:V=下: 1、均值不等式:均值不等式,又称为平均值不等式、平3.的运算均不等式,是数学中的一个重要公式。公式内容为Hn≤Gn≤An≤Qn,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数。 2、伯努利不等式:对任意的正整数n>1,以及任意的x>-1,有证明:采用数学归纳法:n=1时,不等式明显成立,我们设当n=k-1时,不等式成立。 3、不等式公式:在不等式应用中,经常涉及质量、面积、体积等,也涉及某些数学对象(如实数、向量)的大小或。它们都是通过非负数来度量的。公式:||a|-|b|| ≤|a±b|≤|a|+|b|。 4、二项式展开式:二项展开式是依据二项式定理对(a+b)n进行展开得到的式子,由艾萨克·牛顿于1664-1665年间提出。二项展开式是高考的一个重要考点。 在二项式展开式中,二项式系数是一些特殊的组合数,与术语“系数”是有区别的。二项式系数的项是中间项,而系数的项却不一定是中间项。 高中数学对大部分考生来说算是一个比较有难度的学科,尤其是作为一名文科生,数学这种理科科目想必一定难倒了一大半吧!其实,高中数学里面有很多公式,掌握了这些公式,就没有那么难了。下文我给大家整理了《文科数学高考必背公式总结》。 文科数学高考必背公式 一、三角形公式 正弦定理:a/sinA=b/sinB=c/sinC=2R R为三角形外接圆的半径 余弦定理:a2=b2+c2-2bccosA sin(A+B)=sinC sin(A+B)=sinAcosB+sinBcosA sin(A-B)=sinAcosB+sinBcosA sin2A=2sinAcosA cos2A=2(cosA)2-1=(cosA)2-(sinA)2=1-2(sinA)2 tan2A=2tanA/[1-(tanA)2] (sinA)2+(cosA)2=1 二、诱导公式 公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z) 公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα 公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα 公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα 公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα 公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinα 三、函数 1、函数的单调性 (1)设x1、x2[a,b小学数学公式大全],x1x2那么 f(x1)f(x2)0f(x)在[a,b]上是增函数; f(x1)f(x2)0f(x)在[a,b]上是减函数. (2)设函数yf(x)在某个区间内可导,若f(x)0,则f(x)为增函数;若f(x)0,则f(x)为减函数. 2、函数的奇偶性 对于定义域内任意的x,都有f(-x)=f(x),则f(x)是偶函数; 对于定义域内任意的x,都有f(x)f(x),则f(x)是奇函数。 奇函数的图象关于原点对称,偶函数的图象关于y轴对称。 高考文科数学必背公式口诀 一、《与函数》 内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。 复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。 指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。 函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数; 正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。 两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴; 求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。 幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数, 奇母偶子偶函数,偶母非奇偶函数;图象象限内,函数增减看正负。 二、《三角函数》 三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。 同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割; 中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角, 变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变, 将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值, 余弦积减正弦积,换角变形众公式。和化积须同名,互余角度变名称。 计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。 逆反原则作指导,升幂降次和积。条件等式的证明,方程思想指路明。 公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用; 1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范; 三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围; 利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集; 三、《不等式》 解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。 高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。 证不等式的方法,实数性质威力大。求与0比大小,作商和1争高下。 直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。 还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。 很多人想知道在高中数学的学习上有哪些需要背的公式,高考数学中必背的重点公式有哪些呢?下面我为大家介绍一下! 高中数学重点公式大全 1、一元二次方程的解 -b+√(b2-4ac)/2a-b-√(b2-4ac)/2a 根与系数的关系x1+x2=-b/ax1x2=c/a注:韦达定理 判别式b2-4a=0注:方程有相等的两实根 b2-4ac>0注:方程有两个不相等的个实根 b2-4ac<0注:方程有共轭复数根 2、立体图形及平面图形的公式 圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标 圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0 抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py 直棱柱侧面积S=ch斜棱柱侧面积S=c'h 正棱锥侧面积S=1/2ch'正棱台侧面积S=1/2(c+c')h' 圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pir2 圆柱侧面积S=ch=2pih圆锥侧面积S=1/2cl=pirl 弧长公式l=ara是圆心角的弧度数r>0扇形面积公式s=1/2lr 锥体体积公式V=1/3SH圆锥体体积公式V=1/ir2h 斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长 柱体体积公式V=sh圆柱体V=pir2h 3、图形周长、面积、体积公式 长方形的周长=(长+宽)×2 正方形的周长=边长×4 长方形的面积=长×宽 正方形的面积=边长×边长 三角形的面积 已知三角形底a,高h,则S=ah/2 已知三角形三边a,b,c,半周长p,则S=√[p(p-a)(p-b)(p-c)](海伦公式)(p=(a+b+c)/2) 和:(a+b+c)(a+b-c)1/4 已知三角形两边a,b,这两边夹角C,则S=absinC/2 则三角形面积=(a+b+c)r/2 设三角形三边分别为a、b、c,外接圆半径为r 则三角形面积=abc/4r 高中数学常用公式汇总 1、两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotA溶质的重量÷溶液的重量×=浓度cotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 2、倍角公式 tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a sinα+sin(α+2π/n)+sin(α+2π2/n)+sin(α+2π3/n)+……+sin[α+2π(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π2/n)+cos(α+2π3/n)+……+cos[α+2π(n-1)/n]=0 以及 sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0 3、半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA)) 4、和化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB cotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB 5、某些数列前n项和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 2+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6 1^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 12+23+34+45+56+67+…+n(n+1)=n(n+1)(n+2)/3 6、正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径 7、余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角 8、乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 9、三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b 10、|a-b圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr|≥|a|-|b| -|a|≤a≤|a| 高中数学所有公式大全 一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a 根与系数的关系 x1+x2=-b/a x1x2=c/a 注:韦达定理 判别式 b2-4a=0 注:方程有相等的两实根 b2-4ac>0 注:方程有两个不相等的个实根 b2-4ac0 抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py 直棱柱侧面积 S=ch 斜棱柱侧面积 S=c'h 正棱锥侧面积 S=1/2ch' 正棱台侧面积 S=1/2(c+c')h' 圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pir2 圆柱侧面积 S=ch=2pih 圆锥侧面积 S=1/2cl=pirl 弧长公式 l=ar a是圆心角的弧度数r >0 扇形面积公式 s=1/2lr 锥体体积公式 V=1/3SH 圆锥体体积公式 V=1/ir2h 斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长 柱体体积公式 V=sh 圆柱体 V=pir2h 一些高中数学学习网站 如果时间不够,自己选择可看可不看 十字交叉双乘法没有公式,下面说一下: 那就是利用x^2+(p+q)x+pq=(x+q)(x+p)其中PQ为常数。x^2是X的平方 1.因式分解 即和化积,其结果要分解到不能再分为止。而且可以肯定一个多项式要能分解因式,则结果,因为:数域F上的次数大于零的多项式f(x),如果不计零次因式的异,那么f(x)可以的分解为以下形式: f(x)=aP1k1(x)P2k2(x)…Piki(x),其中α是f(x)的次项的系数,P1(x),P2(x)……Pi(x)是首1互不相等的不可约多项式,并且Pi(x)(I=1,2…,t)是f(x)的Ki重因式。 ()或叫做多项式f(x)的典型分解式。证明:可参见《高代》P52-53 初等数学中,把多项式的分解叫因式分解,其一般步骤为:一提二套三分组等 要求为:要分到不能再分为止。 2.方法介绍 2.1提公因式法: 如果多项式各项都有公共因式,则可先考虑把公因式提出来,进行因式分解,注意要每项都必须有公因式。 例15x3+10x2+5x 解析显然每项均含有公因式5x故可考虑提取公因式5x,接下来剩下x2+2x+1仍可继续分解。 解:原式=5x(x2+2x+1) =5x(x+1)2 2.2公式法 即多项式如果满足特殊公式的结构特征,即可采用套公式法,进行多项式的因式分解,故对于一些常用的公式要求熟悉,除教材的基本公式外,数学竞赛中常出现的一些基本公式现整理归纳如下: a2-b2=(a+b)(a-b) a2±2ab+b2=(a±b)2 a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) a3±3a2b+3ab2±b2=(a±b)3 a2+b2+c2+2ab+2bc+2ac=(a+b+c)2 a12+a22+…+an2+2a1a2+…+2an-1an=(a1+a2+…+an)2 a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-ac-bc) an+bn=(a+b)(an-1-an-2b+…+bn-1)(n为奇数) 说明由因式定理,即对一元多项式f(x),若f(b)=0,则一定含有一次因式x-b。可判断当n为偶数时,当a=b,a=-b时,均有an-bn=0故an-bn中一定含有a+b,a-b因式。 例2分解因式:①64x6-y12②1+x+x2+…+x15 解析各小题均可套用公式 解①64x6-y12=(8x3-y6)(8x3+y6) =(2x-y2)(4x2+2xy2+y4)(2x+y2)(4x2-2xy2+y4) ②1+x+x2+…+x15= 注多项式分解时,先构造公式再分解。 当多项式的项数较多时,可将多项式进行合理分组,达到顺利分解的目的。当然可能要综合其他分法,且分组方法也不一定。 例1分解因式:x15+m12+m9+m6+m3+1 解原式=(x15+m12)+(m9+m6)+(m3+1) =m12(m3+1)+m6(m3+1)+(m3+1) =(m3+1)[(m6+1)2-m6] =(m+1)(m2-m+1)(m6+1+m3)(m6+1-m3) 例2分解因式:x4+5x3+15x-9 解析可根据系数特征进行分组 解原式=(x4-9)+5x3+15x =(x2+3)(x2-3)+5x(x2+3) =(x2+3)(x2+5x-3) 2.4十字相乘法 对于形如ax2+bx+c结构特征的二次三项式可以考虑用十字相乘法, 即x2+(b+c)x+bc=(x+b)(x+c)当x2项系数不为1时,同样也可用十字相乘进行作。 例3分解因式:①x2-x-6②6x2-x-12 解①1x2 1x-3 原式=(x+2)(x-3) ②2x-3 3x4 原式=(2x-3)(3x+4) 注:“ax4+bx2+c”型也可考虑此种方法。 2.5双十字相乘法 在分解二次三项式时,十字相乘法是常用的基本方法,对于比较复杂的多项式,尤其是某些二次六项式,如4x2-4xy-3y2-4x+10y-3,也可以运用十字相乘法分解因式,其具体步骤为: (1)用十字相乘法分解由前三次组成的二次三项式,得到一个十字相乘图 (2)把常数项分解成两个因式填在第二个十字的右边且使这两个因式在第二个十字中交叉之积的和等于原式中含y的一次项,同时还必须与个十字中左端的两个因式交叉之积的和等于原式中含x的一次项 例5分解因式 ①4x2-4xy-3y2-4x+10y-3②x2-3xy-10y2+x+9y-2 ③ab+b2+a-b-2④6x2-7xy-3y2-xz+7yz-2z2 解①原式=(2x-3y+1)(2x+y-3) 2x-3y1 2xy-3 ②原式=(x-5y+2)(x+2y-1) x-5y2 x2y-1 ③原式=(b+1)(a+b-2) 0ab1 ab-2 ④原式=(2x-3y+z)(3x+y-2z) 2x-3yz 3x-y-2z 说明:③式补上oa2,可用双十字相乘法,当然此题也可用分组分解法。 如(ab+a)+(b2-b-2)=a(b+1)+(b+1)(b-2)=(b+1)(a+b-2) ④式三个字母满足二次六项式,把-2z2看作常数分解即可: 2.6拆法、添项法 对于一些多项式,如果不能直接因式分解时,可以将其中的某项拆成二项之或之和。再应用分组法,公式法等进行分解因式,其中拆项、添项方法不是,可解有许多不同途径,对题目一定要具体分析,选择简捷的分解方法。 例6分解因式:x3+3x2-4 解析法一:可将-4拆成-1,-3即(x3-1)+(3x2-3) 法二:添x4,再减x4,.即(x4+3x2-4)+(x3-x4) 法三:添4x,再减4x即,(x3+3x2-4x)+(4x-4) 法四:把3x2拆成4x2-x2,即(x3-x2)+(4x2-4) 法五:把x3拆为,4x2-3x3即(4x3-4)-(3x3-3x2)等 解(选择法四)原式=x3-x2+4x2-4 =x2(x-1)+4(x-1)(x+1) =(x-1)(x2+4x+4) =(x-1)(x+2)2 2.7换元法 换元法就是引入新的字母变量,将原式中的字母变量换掉化简式子。运用此 种方法对于某些特殊的多项式因式分解可以起到简化的效果。 例7分解因式: (x+1)(x+2)(x+3)(x+4)-120 解析若将此展开,将十分繁琐,但我们注意到 (x+1)(x+4)=x2+5x+4 (x+2)(x+3)=x2+5x+6 故可用换元法分解此题 解原式=(x2+5x+4)(x2+5x+6)-120 令y=x2+5x+5则原式=(y-1)(y+1)-120 =y2-121 =(y+11)(y-11) =(x2+5x+16)(x2+5x-6) =(x+6)(x-1)(x2+5x+16) 注在此也可令x2+5x+4=y或x2+5x+6=y或x2+5x=y请认真比较体会哪种换法更简单? 2.8待定系数法 待定系数法是解决代数式恒等变形中的重要方法,如果能确定代数式变形后的字母框架,只是字母的系数高不能确定,则可先用未知数表示字母系数,然后根据多项式的恒等性质列出n个含有特殊确定系数的方程(组),解出这个方程(组)求出待定系数。待定系数法应用广泛,在此只研究它的因式分解中的一些应用。 例7分解因式:2a2+3ab-9b2+14a+3b+20 分析属于二次六项式,也可考虑用双十字相乘法,在此我们用待定系数法 解设可设原式=(2a-3b+m)(a+3b+n) =2a2+3ab-9b2+(m+2n)a+(3m-3n)b+mn…………… 比较两个多项式(即原式与式)的系数 m+2n=14(1)m=4 3m-3n=-3(2)=> mn=20(3)n=5 ∴原式=(2x-3b+4)(a+3b+5) 注对于()式因为对a,b取任何值等式都成立,也可用令特殊值法,求m,n 令a=1,b=0,m+2n=14m=4 => 令a=0,b=1,m=n=-1n=5 2.9因式定理、综合除法分解因式 对于整系数一元多项式f(x)=anxn+an-1xn-1+…+a1x+a0 由因式定理可先判断它是否含有一次因式(x-)(其中p,q互质),p为首项系数an的约数,q为末项系数a0的约数 若f()=0,则一定会有(x-)再用综合除法,将多项式分解 例8分解因式x3-4x2+6x-4 解这是一个整系数一元多项式,因为4的正约数为1、2、4 ∴可能出现的因式为x±1,x±2,x±4, ∵f(1)≠0,f(1)≠0 但f(2)=0,故(x-2)是这个多项式的因式,再用综合除法 21-46-4 2-44 1-220 所以原式=(x-2)(x2-2x+2) 当然此题也可拆项分解,如x3-4x2+4x+2x-4 =x(x-2)2+(x-2) =(x-2)(x2-2x+2) 分解因式的方法是多样的,且其方法之间相互联系,一道题很可能要同时运用多种方法才可能完成,故在知晓这些方法之后,一定要注意各种方法灵活运用,牢固掌握! 没必要自己弄,书店一本(数理化大全)全有,才十元。又详细,又好。小学数学公式大全1~6年级完整版
总数÷份数=每份数高考数学常用公式及结论
株数=段数=全长÷株距小学数学公式大全
先分解2a2+3ab+9b2=(2a-3b)(a+3b)高考数学不等式常考哪些公式?
工作总量÷工作效率=工作时间文科数学高考必背公式总结
甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度高中数学必背公式大全 高考数学重点公式总结
=(1+x)(1+x2)(1+x4)(1+x8)总结一下高考数学基本公式
;相除关系是:
版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。