高考数学文科每日一道 高考数学每日经典一题

热门职校 2025-01-04 10:18:35

文科高考数学必背公式

一、高中数学诱导公式全集:

高考数学文科每日一道 高考数学每日经典一题高考数学文科每日一道 高考数学每日经典一题


高考数学文科每日一道 高考数学每日经典一题


高考数学文科每日一道 高考数学每日经典一题


常用的诱导公式有以下几组:

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα (k∈Z)

cos(2kπ+α)=cosα (k∈Z)

tan(2kπ+α)=tanα (k∈Z)

cot(2kπ+α)=cotα (k∈Z)

公式二:

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

公式三:

任意角α与 -α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=cos(3π/2+α)=sinα-tanα

cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:

π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

cot(3π/2-α)=tanα

(以上k∈Z)

注意:在做题时,将a看成锐角来做会比较好做。

诱导公式记忆口诀

※规律总结※

上面这些诱导公式可以概括为:

对于π/2k ±α(k∈Z)的三角函数值,

①当k是偶数时,得到α的同名函数值,即函数名不改变;

②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.

(奇变偶不变)

然后在前面加上把α看成锐角时原函数值的符号。

(符号看象限)

sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。

当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。

所以sin(2π-α)=-sinα

上述的记忆口诀是:

奇变偶不变,符号看象限。

公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α

所在象限的原三角函数值的符号可记忆

水平诱导名不变;符号看象限。

#各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”.

这十二字口诀的意思就是说:

象限内任何一个角的四种三角函数值都是“+”;

第二象限内只有正弦是“+”,其余全部是“-”;

第三象限内切函数是“+”,弦函数是“-”;

第四象限内只有余弦是“+”,其余全部是“-”.

上述记忆口诀,一全正,二正弦,三内切,四余弦

#还有一种按照函数类型分象限定正负:

函数类型 象限 第二象限 第三象限 第四象限

正弦 ...........+............+............—............—........

余弦 ...........+............—............—所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosaco............+........

正切 ...........+............—............+............—........

余切 ...........+............—............+............—........

同角三角函数基本关系

同角三角函数的基本关系式

倒数关系:

sinα ·cscα=1

cosα ·secα=1

商的关系:

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα

平方关系:

sin^2(α)+cos^2(α)=1

1+tan^2(α)=sec^2(α)

1+cot^2(α)=csc^2(α)

同角三角函数关系六角形记忆法

六角形记忆法:(参看或参考资料链接)

(1)倒数关系:对角线上两个函数互为倒数;

(2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。

(主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。

(3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

两角和公式

两角和与的三角函数公式

sin(α+β)=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

二倍角公式

二倍角的正弦、余弦和正切公式(升幂缩角公式)

sin2α=2sinαcosα

cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan2α=2tanα/[1-tan^2(α)]

半角公式

半角的正弦、余弦和正切公式(降幂扩角公式)

sin^2(α/2)=(1-cosα)/2

cos^2(α/2)=(1+cosα)/2

tan^2(α/2)=(1-cosα)/(1+cosα)

另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)

公式我们把两式相加就得到sin(a+b)+sin(a-b)=2sinaco

公式

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

公式推导

sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......,

(因为cos^2(α)+sin^2(α)=1)

再把分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α))

然后用α/2代替α即可。

同理可推导余弦的公式。正切的公式可通过正弦比余弦得到。

三倍角公式

三倍角的正弦、余弦和正切公式

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]

三倍角公式推导

tan3α=sin3α/cos3α

=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)

=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)

tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))

=2sinαcos^2(α)+(1-2sin^2(α))sinα

=2sinα-2sin^3(α)+sinα-2sin^3(α)

=3sinα-4sin^3(α)

=(2cos^2(α)-1)cosα-2cosαsin^2(α)

=2cos^3(α)-cosα+(2cosα-2cos^3(α))

=4cos^3(α)-3cosα

即sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

三倍角公式联想记忆

★记忆方法:谐音、联想

正弦三倍角:3元 减 4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”))

余弦三倍角:4元3角 减 3元(减完之后还有“余”)

★另外的记忆方法:

正弦三倍角: 山无司令 (谐音为 三无四立) 三指的是"3倍"sinα, 无指的是减号, 四指的是"4倍", 立指的是sinα立方

余弦三倍角: 司令无山 与上同理

和化积公式

三角函数的和化积公式

sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]

积化和公式

三角函数的积化和公式

sinα ·cosβ=0.5[sin(α+β)+sin(α-β)]

cosα ·sinβ=0.5[sin(α+β)-sin(α-β)]

cosα ·cosβ=0.5[cos(α+β)+cos(α-β)]

sinα ·sinβ=-0.5[cos(α+β)-cos(α-β)]

和化积公式推导

首先,我们知道sin(a+b)=sinaco+cosasinb,sin(a-b)=sinaco-cosasinb

同理,若把两式相减,就得到cosasinb=(sin(a+b)-sin(a-b))/2

同样的,我们还知道cos(a+b)=cosaco-sinasinb,cos(a-b)=cosaco+sinasinb

所以我们就得到,cosaco=(cos(a+b)+cos(a-b))/2

同理,两式相减我们就得到sinasinb=-(cos(a+b)-cos(a-b))/2

这样,我们就得到了积化和的四个公式:

sinaco=(sin(a+b)+sin(a-b))/2

cosasinb=(sin(a+b)-sin(a-b))/2

cosaco=(cos(a+b)+cos(a-b))/2

sinasinb=-(cos(a+b)-cos(a-b))/2

好,有了积化和的四个公式以后,我们只需一个变形,就可以得到和化积的四个公式.

我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2

把a,b分别用x,y表示就可以得到和化积的四个公式:

sinx-siny=2cos((x+y)/2)sin((x-y)/2)

cosx+cosy=2cos((x+y)/2)cos((x-y)/2)

cosx-cosy=-2sin((x+y)/2)sin((x-y)/2)

求高考文科生必备的数学公式

sin3α=sin(2α+α)=sin2αcosα+cos2αsinα

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根与系数的关系 X1+X2=-b/a X1X2=c/a 注:韦达定理

判别式

b2-4ac=0 注:方程有两个相等的实根

b2-4ac>0 注:方程有两个不等的实根

b2-4ac<0 注:方程没有实根,有共轭复数根

三角函数公式

两角和公式

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

和化积

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

某些数列sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA前n项和

1+2+3+4+5+6+7+8+9+...+n=n(n+1)/2 1+3+5+7+9+11+13+15+...+(2n-1)=n2

2+4+6+8+10+12+14+...+(2n)=n(n+1) 12+22+32+42+52+62+72+82+...+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+...n3=n2(n+1)2/4 12+23+34+45+56+67+...+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角

圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标

抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积 S=ch 斜棱柱侧面积 S=c'h

正棱锥侧面积 S=1/2ch' 正棱台侧面积 S=1/2(c+c')h'

圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积2.理解(作):要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识作正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题作比较、判别、讨论,具备利用所学知识解决简单问题的能力,这一层次所涉及的主要行为动词有:描述,说明,表达、表示,推测、想象,比较、判别、判断,初步应用等。 S=4pir2

圆柱侧面积 S=ch=2pih 圆锥侧面积 S=1/2cl=pirl

弧长公式 l=ar a是圆心角的弧度数r >0 扇形面积公式 s=1/2lr

锥体体积公式 V=1/3SH 圆锥体体积公式 V=1/ir2h

斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长

柱体体积公式 V=sh 圆柱体 V=pir2h

我高考考了2次 次数学77 第二次数学119 距就是对题目的熟悉感,我不知道你是哪个省,但是只要随意一本高考资料上面都有考试的总结,题海是可以解决这个问题的办法,建议 从最简单的数学书上的题开始做起,我记得我高三的时候都是在做习题集,学校发的一本,上课老师就只讲解那么一本习题集了。每次提前一定要做完,不知道的或者错了的重新做一遍,拿纸贴旁边。数学说穿了 就是类型题, 每种题型 都有解题方法配套的。记住方法,然后多做题 ,公式基本的该背的一定要记得。能说的只有这么多了,高中好久以前的事情了,反正多做题 ,总结方法,数学还是很容易拿分的。

这是的出题思路,选择题包括求不等式的解集,虚数,概率,三视图,曲线方程,程序框图,函数图像,线性归划,向量,这是必会的,填空题包括二项式,几何,参数方程,抽样,一道是给信定义让你判断对错。大题题是函数或三角函数,第二道,概率,第三道几个立体图证明,第四道导数,一道数列… 希望这些对你也有点帮助。你们不做训练吗?你可以通过平常考试总结一下啊,出题思应该是一样的,你把这些知识点弄会了,多做题,就能考好,祝你成功!

高考文科数学必知必背必考公式

例如:

一、高中数学诱导公式全集: 常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα (k∈Z) cos(2kπ+α)=cosα (k∈Z) tan(2kπ+α)=tanα (k∈Z) cot(2kπ+α)=cotα (k∈Z) 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈Z) 注意:在做题时,将a看成锐角来做会比较好做。诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为: 对于π/2k ±α(k∈Z)的三角函数值, ①当k是偶数时,得到α的同名函数值,即函数名不改变; ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan. (奇变偶不变) 然后在前面加上把α看成锐角时原函数值的符号。 (符号看象限) 例如: sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。 当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。 所以sin(2π-α)=-sinα 上述的记忆口诀是: 奇变偶不变,符号看象限。 公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α 所在象限的原三角函数值的符号可记忆 水平诱导名不变;符号看象限。 # 各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”. 这十二字口诀的意思就是说: 象限内任何一个角的四种三角函数值都是“+”; 第二象限内只有正弦是“+”,其余全部是“-”; 第三象限内切函数是“+”,弦函数是“-”; 第四象限内只有余弦是“+”,其余全部是“-”. 上述记忆口诀,一全正,二正弦,三内切,四余弦 # 还有一种按照函数类型分象限定正负: 函数类型 象限 第二象限 第三象限 第四象限 正弦 ...........+............+............—............—........ 余弦 ...........+............—............—............+........ 正切 ...........+............—............+............—........ 余切 ...........+............—............+............—........同角三角函数基本关系 同角三角函数的基本关系式 倒数关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系: sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α)同角三角函数关系六角形记忆法 六角形记忆法:(参看或参考资料链接) 构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。 (1)倒数关系:对角线上两个函数互为倒数; (2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。 (主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。 (3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。两角和公式 两角和与的三角函数公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tan(α+β)=(tanα+tanβ)/(1-tanαtanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)二倍角公式 二倍角的正弦、余弦和正切公式(升幂缩角公式) sin2α=2sinαcosα cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan2α=2tanα/[1-tan^2(α)]半角公式 半角的正弦、余弦和正切公式(降幂扩角公式) sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) 另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)公式 公式 sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)]公式推导 附推导: sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......, (因为cos^2(α)+sin^2(α)=1) 再把分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α)) 然后用α/2代替α即可。 同理可推导余弦的公式。正切的公式可通过正弦比余弦得到。三倍角公式 三倍角的正弦、余弦和正切公式 sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]三倍角公式推导 附推导: tan3α=sin3α/cos3α =(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα) =(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα) 上下同除以cos^3(α),得: tan3α=(3tanα-tan^3(α))/(1-3tan^2(α)) sin3α=sin(2α+α)=sin2αcosα+cos2αsinα =2sinαcos^2(α)+(1-2sin^2(α))sinα =2sinα-2sin^3(α)+sinα-2sin^3(α) =3sinα-4sin^3(α) cos3α=cos(2α+α)=cos2αcosα-sin2αsinα =(2cos^2(α)-1)cosα-2cosαsin^2(α) =2cos^3(α)-cosα+(2cosα-2cos^3(α)) =4cos^3(α)-3cosα 即 sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα三倍角公式联想记忆 ★记忆方法:谐音、联想 正弦三倍角:3元 减 4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”)) 余弦三倍角:4元3角 减 3元(减完之后还有“余”) ☆☆注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。 ★另外的记忆方法: 正弦三倍角: 山无司令 (谐音为 三无四立) 三指的是"3倍"sinα, 无指的是减号, 四指的是"4倍", 立指的是sinα立方 余弦三倍角: 司令无山 与上同理和化积公式 三角函数的和化积公式 sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]积化和公式 三角函数的积化和公式 sinα ·cosβ=0.5[sin(α+β)+sin(α-β)] cosα ·sinβ=0.5[sin(α+β)-sin(α-β)] cosα ·cosβ=0.5[cos(α+β)+cos(α-β)] sinα ·sinβ=-0.5[cos(α+β)-cos(α-β)]和化积公式推导 附推导: 首先,我们知道sin(a+b)=sinaco+cosasinb,sin(a-b)=sinaco-cosasinb 我们把两式相加就得到sin(a+b)+sin(a-b)=2sinaco 所以,sinaco=(sin(a+b)+sin(a-b))/2 同理,若把两式相减,就得到cosasinb=(sin(a+b)-sin(a-b))/2 同样的,我们还知道cos(a+b)=cosaco-sinasinb,cos(a-b)=cosaco+sinasinb 所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosaco 所以我们就得到,cosaco=(cos(a+b)+cos(a-b))/2 同理,两式相减我们就得到sinasinb=-(cos(a+b)-cos(a-b))/2 这样,我们就得到了积化和的四个公式: sinaco=(sin(a+b)+sin(a-b))/2 cosasinb=(sin(a+b)-sin(a-b))/2 cosaco=(cos(a+b)+cos(a-b))/2 sinasinb=-(cos(a+b)-cos(a-b))/2 好,有了积化和的四个公式以后,我们只需一个变形,就可以得到和化积的四个公式. 我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2 把a,b分别用x,y表示就可以得到和化积的四个公式: sinx+siny=2sin((x+y)/2)cos((x-y)/2) sinx-siny=2cos((x+y)/2)sin((x-y)/2) cosx+cosy=2cos((x+y)/2)cos((x-y)/2) cosx-cosy=-2sin((x+y)/2)sin((x-y)/2)

全国卷高考文科数学考试试卷结构

其实根本不用背的,只要知道了原理,还有。。。留下你邮箱,我发给你。就可以在用的时候信手拈来,易如探囊取物,反掌观纹

高考文科数学卷子大题

18题是概率统计居多,

19是立体几何居多,

cot(π+α)=cotα20基本上是圆锥曲线

21是导sinx+siny=2sin((x+y)/2)cos((x-y)/2)数

2乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)2.23.24三选1

帮我详细解答一下2009年海南(文科)数学的高考题,第五道选择题....谢谢了..由于不能题目,麻烦各位

附推导:

因为2个圆关于直线y3、要提高自我调控的“适教”能力=x-1对称,所以2个圆心也关于该直线对称,即两圆心中点在该直线上,因为O1为(-1,1),从选项中可以看出只有(2,-2)满足,所以选B,此方法带有投机性质,但对付选择题还是不错的

第17题一般是三角函数或数列居多

全国卷高考文科数学必考哪些题型

试题按其难度分为容易题、中等难度题和难题.难度在0.7以上的试题为容易题,难度为0.4—0.7的试题是中等难度题,难度在0.4以下的试题界定为难题.三种难度的试题应控制合适的分值比例,试卷总体难度适中.

一、试卷结构

6、要养成良好的预习习惯,提高自学能力

全卷分为第Ⅰ卷和第Ⅱ卷两部分。

tanα ·cotα=1

1.试题类型

试题分为选择题、填空题和解答题三种题型.选择题是四选一型的单项选择题;填空题只要求直接填写结果,不必写出计算或推证过程;解答题包括计算题、证明题,解答题要写出文字说明、演算步骤或推证过程.三种题型分数的百分比约为:选择题40%左右,填空题10%左右,解答题50%左右。

2.难度控制

二.全国卷高考文科数学考核目标与要求

(一)知识要求

知识是指《普通高中数学课程标准(实验)》所规定的必修课程、选修课程系列1和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算,处理数据、绘制图表等基本技能.

对知识的要求由低到高分为三个层次,依次是知道(了解、模仿)、理解(作)、掌握(运用、迁移),且高一级的层次要求包括低一级的层次要求.

1.知道(了解、模仿):要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它,这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等.

3.掌握(运用、迁移):要求能够对所列的知识内容能够推导证明,利用所学知识对问题能够进行分析、研究、讨论,并且加以解决,这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等。

(二)能力要求

能力是指空间想像能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识。

1.空间想像能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质。

2.抽象概括能力:对具体的、生动的实例,在抽象概括的过程中,发现研究对象的本质;从给定的大量信息材料中,概括出一些结论,并能应用于解决问题或作出新的判断。

3.推理论证能力:根据已知的事实和已获得的正确数学命题,论证某一数学命题真实性的初步的推理能力.推理包括合情推理和演绎推理,论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法.一般运用合情推理进行猜想,再运用演绎推理进行证明。

4.运算求解能力:会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算。

5.数据处理能力:会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息,并作出判断.数据处理要依据统计或统计案例中的方法对数据进行整理、分析,并解决给定的实际问题。

6.应用意识:能综合应用所学数学知识、 思想和方法解决问题,包括解决在相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题,建立数学模型;应用相关的数学方法解决问题并加以验证,并能用数学语言正确地表达和说明.应用的主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决。、

7.创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行的思考、探索和研究,提出解决问题的思路,创造性地解决问题.创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强。

(三)个性品质要求

个性品质是指考生个体的情感、态度和价值观.要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义,要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神。

(四)考查要求

数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识在各自发展过程中的纵向联系和各部分知识之间的横向联系,要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的框架结构.对数学基础知识的考查,要求既全面又要突出重点,对于支撑学科知识体系的重点内容,要占有较大的 比例,构成数学试卷的主体,注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面.要从学科的整体高度和思维价值的高度考虑问题,在知识网络交汇点设计试题,使对数学基础知识的考查达到必要的深度。数学思想和方法是数学知识在更高层次上的抽象和概括,蕴涵在数学知识发生、发展和应用的过程中,能够迁移并广泛用于相关学科和生活.因此,对数学思想和方法的考查必然要与数学知识的考查结合进行,通过对数学知识的考查,反映考生对数学思想和方法理解和掌握的程度.考查时要从学科整体意义和思想价值立意,要有明确的目的,加强针对性,注重通性通法,淡化特殊技巧,有效地检测考生对中学数学知识中所蕴涵的数学思想和方法的掌握程度。

数学是一门思维的科学,是培养理性思维的重要载体,通过空间想象、直觉猜想、归纳抽象、符号表达、运算推理、演绎证明和模式构建等诸方面,对客观事物中的数量关系和数学模式作出思考和判断,形成和发展理性思维,构成数学能力的主题.对能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料.对知识的考查侧重于理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度以及进一步学习的潜能。

对能力的考查,以思维能力为核心.全面考查各种能力,强调综合性、应用性,切合学生实际.运算能力是思维能力和运算技能的结合,它不仅包括数的运算,还包括式的运算,对考生运算能力的考查主要是对算理合逻辑推理的考查,以含字母的式的运算为主.空间想象能力是对空间形式的观察、分析、抽象的能力,考查时注意与推理相结合.实践能力在考试中表现为解答应用问题,考查的重点是客观事物的数学化,这个过程主要是依据现实的生活背景,提炼相关的数量关系,构造数学模型,将现实问题转化为数学问题,并加以解决.命题时要坚持“贴近生活,背景公平,控制难度”的原则,要把握好提出问题所涉及的数学知识和方法的深度和广度,要结合中学数学教学的实际,让数学应用问题的难度更加符合考生的水平,考试自觉地置身于现实的大环境中,关心自己身边的数学问题,促使学生在学习和实践中形成和发展数学应用的意识。

创新意识和创造能力是理想思维的高层次表现.在数学的学习和研究过程中,知识的迁移、组合、融会的程度越高,展示能力的区域就越宽泛,显现出的创造意识也就越强.命题时要注意试题的多样性,涉及考查数学主体内容,体现数学素质的题目,反映数、形运动变化的题目,研究型、探索型或开放型的题目,让考生思考,自主探索,发挥主观能动性,探究问题的本质,寻求合适的解题工具,梳理解题程序,为考生展现创新意识、发挥创造能力创设广阔的空间。

,函数与导数

主要考点:利用函数单调性比较大小、分段函数、函数周期性、函数奇偶性、函数单调性、函数零点和利用导数求值。

第二,平面向量与三角函数、三角变换及其应用

这一部分是高考的重点但不是难点,主要出一些基础题或中档题。主要考向量的运算、应用等题型。

第三,数列及其应用

这部分是高考的重点而且是难点,主要出一些综合题。主要考求数列通项、数列求或一些相关应用题型。

第四,不等式

主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。主要考不等式的解法、不等式的证明、不等式的应用等题型。

第五,概率和统计

这部分和我们的生活联系比较大,属应用题,主要出一些基础题或中档题,难度不是很大。主要考线性回归、抽样方法、二项分布等题型。

第六,空间向量与立体几何

第七,解析几何

几何是高考的难点,运算量大,一般含参数。高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。主要考直线方程、圆的方程、圆锥曲线和对称性问题等题型。

针对数学一定要全面、系统的复习基础知识,正确理解概念、定理和公式。尤其是公式一定要准确记忆,以不变应万变。

必考题有:选择题,填空题,解答题 。学校发的总复习的书上会有的。

一、选择题

二、填空题

三、解答题

选择题

填空题

解答题

选择题

填空题

解答题

去看你们省份往年的高考题目

高考数学轮复习 文科 广东

所以,sinaco=(sin(a+b)+sisin(3π/2+α)=-cosαn(a-b))/2

主要是靠多做题!但是自己主动找题是很累而且不一定,很多题可能太简单,做了也没意义。所以,的方法是平时多帮同学解答数学题。首先,人家来问你,说明这题有难度,很可能是道值得去看的题,别说你不会,即使不会也要说“我做做看”,不要认为别人问你题目是浪费你时间,与其浪费时间在茫茫题海渺茫的几率邂逅关键题,还不如让同学们帮你在茫茫题海过滤出关键题。其次,根据我的经历得出,别人问我的题,若果我帮他们解出来了,那这道题在我脑海里存留的时间是我做的其他题目的10倍以上。那么,如何让同学问你问题呢?首先要对数学有信心,人家问你题目别看都不看就说不会,其次,实在不会,就去问老师,再解给同学听。别他妈敷衍同学说“你去问老师不就行了”,那谁还问你问题啊,如果谁都喜欢去问老师,哪来那么多问题啊!多去老师那里问问题,即使混个眼熟,对你来说有利无害! 毕竟老师也是人,也是有感情的!老师是喜欢爱学习的学生的,理由嘛,嘿嘿,你不需要了解的! 当然,也不是说当没人问你问题的时候,你就没事做了,多看看例题,那很有效!

tan(3π/2-α)=cotα

自己总结下考点,,

有个整体笼统的知识点,

再根据这些点,做下题目,总结下大概会考什么题型,多做点就好啦。

考试题型都不多啦

高考数学很简单,文科复习数学复习的办法是把课本上的题全部做两到三遍(尤其是例题),有些题最少的而三种方法,高考110没问题!!!

高三文科数学有哪些内容?

空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。主要考察对定理的熟悉程度、运用程度。主要考空间向量及其运算和空间向量的应用等题型。

1、认识高中数学的特点

☆☆注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。

高中数学是初中数学的提高和深化,初中数学在教材表达上采用形象通俗的语言,研究对象多是常量,侧重于定量计算和形象思维,而高中数学语言表达抽象,逻辑严密,思维严谨,知识连贯性和系统性强。

2、正确对待学习中遇到的新困难和新问题

在开始学习高中数学的过程中,肯定会遇到不少困难和问题,同学们要有克服困难的勇气和信心,胜不骄,败不馁,有一种“初生牛犊不怕虎”的精神,愈挫愈勇,千万不能让问题堆积,形成恶性循环,而是要在老师的下,寻求解决问题的办法,培养分析问题和解决问题的能力。

一般来说,教师经过一段时间的教学实践后,因自身对教学过程的不同理解和知识结构、思维特点、个性倾向、职业经历等原因,在教学方式、方法、策略的采用上表现出一定的倾向性,形成自己独特的、一贯的教学风格或特点。作为一名学生,让老师去适应自己显然不现实,我们应该根据教师的特点,立足于自身的实际,优化学习策略,调控自己的学习行为,使自己的学法逐步适应老师的教法,从而使自己学得好、学得快。

4、要将“以老师为中心”转变为“以自己为主体,老师为主导”的学习模式

数学不是靠老师教会的,而是在老师下,靠自己主动思维活动去获取的,学习数学就是要积极主动地参与教学过程,并经常发现和提出问题,而不能跟着老师的惯性运转,被动地接受所学知识和方法。

5、要养成良好的个性品质

要树立正确的学习目标,培养浓厚的学习兴趣和顽强的学习毅力,要有足够的学习信心,实事求是的科学态度,以及思考、勇于探索的创新精神。

课前预习而“生疑”,“带疑”听课而“感疑”,通过老师的点拨、讲解而“悟疑”、“解疑”,从而提高课堂听课效果。预习也叫课前自学,预习的越充分,听课效果就越好;听课效果学校发的总复习的书上会有的越好,就能更好地预习下节内容,从而形成良性循环。

7、要养成良好的审题习惯,提高阅读能力

审题是解题的关键,数学题是由文字语言、符号语言和图形语言构成的,拿到题目要“宁

停三分”,“不抢一秒”,要在已有知识和解题经验基础上,译字逐句仔细审题,细心推敲,切忌题意不清,仓促上阵,审数学题有时须对题意逐句“翻译”,隐含条件转化为明显条件;有时需联系题设与结论,前后呼应挖掘构建题设与目标的桥梁,寻找突破点,从而形成解题思路。

8、要养成良好的演算、验算习惯,提高运算能力

学习数学离不开运算,初中老师往往一步一步在黑板上演算,因时间有限,运算量大,高中老师常把计算留给学生,这就要同学们多动脑,勤动手,不仅能笔算,而且也能口算和心算,对复杂运算,要有耐心,掌握算理,注重简便方法。

9、要养成良好的解题习惯,提高自己的思维能力

数学是思维的体,是一门逻辑性强、思维严谨的学科。而训练并规范解题习惯是提高用文字、符号和图形三种数学语言表达的有效途径,而数学语言又是发展思维能力的基础。因此要逐步夯实基础,提高自己的思维能力。

10、要养成解后反思的习惯,提高分析问题的能力

解完题目之后,要养成不失时机地回顾下述问题:解题过程中是如何分析联想探索出解题途径的?使问题获得解决的关键是什么?在解决问题的过程中遇到了哪些困难?又是怎样克服的?这样,通过解题后的回顾与反思,就有利于发现解题的关键所在,并从中提炼出数学思想和方法,如果忽视了对它的挖掘,解题能力就得不到提高。因此,在解题后,要经常总结题目及解法的规律,只有勤反思,才能“站得高山,看得远,驾驭全局”,才能提高自己分析问题的能力。

11、要养成纠错订正的习惯,提高自我评判能力

要养成积极进取,不屈不挠,耐挫折,不自卑的心理品质,对做错的题要反复琢磨,寻找错因,进行更正,养成良好的习惯,不少问题就会茅塞顿开,从而提高自我评判能力。

12、要养成善于交流的习惯,提高表达能力

在数学学习过程中,对一些典型问题,同学们应善于合作,各抒己见,互相讨论,取人之长,补己之短,也可主动与老师交流,说出自己的见解和看法,在老师的点拨中,他的思想方对你产生潜移默化的影响。因此,只有不断交流,才能相互促进、共同发展,提高表达能力。如果固步自封,就会钻牛角尖,浪费不必要的时间。

13、要养成勤学善思的习惯,提高创新能力

“学而不思则罔,思而不学则贻”。在学习数学的过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问题,进行思考,注重新旧知识的内在联系,把握概念的内涵和外延,做到一题多解,一题多变,不满足于现成的思路和结论,善于从多侧面、多方位思考问题,挖掘问题的实质,勇于发表自己的独特见解。因为只有思索才能生疑解疑,透彻明悟。一个人如果长期处于无问题状态,就说明他思考不够,学业也就提高不了。

14、要养成归纳总结的习惯,提高概括能力

每学完一节一章后,要按知识的逻辑关系进行归纳总结,使所学知识系统化、条理化、专题化,这也是再认识的过程,对进一步深化知识积累资料,灵活应用知识,提高概括能力将起到很好的促进作用。

15、要养成做笔记的习惯,提高理解力

为了加深对内容的理解和掌握,老师补充内容和方法很多,如果不做笔记,一旦遗忘,无从复习巩固,何况在做笔记和整理过程中,自己参与教学活动,加强了学习主动性和学习兴趣,从而提高了自己的理解力。

16、要养成写数学学习心得的习惯,提高探究能力

写数学学习心得,就是记载参与数学活动的思考、认识和经验教训,领悟数学的思维结果。把所见、所思、所悟表达出来,能促使自己数学经验、数学意识的形成,以及对数学概念、知识结构、方法原理进行系统分类、概括、推广和延伸,从而使自己对数学的理解从低水平上升到高水平,提高自己的探究能力。

总之,同学们要养成良好的学习习惯,勤奋的学习态度,科学的学习方法,充分发挥自身的主体作用,不仅学会,而且会学,只有这样,才能取得事半功倍之效。

高三文科复习 ::

复习的应该总体上跟着老师的步骤走,在此同时自己制定并执行。如果自己有特殊情况再加以调整。我是文科,基本上的复习是分成三轮。

轮:全面撒网式的复习。

把高中课本按顺序过一遍(语文除外)。该背的东西在这一轮复习要基本搞定,数学要把不同的章节中的基础知识巩固一遍,能把内容跨度较小的题目基本解决(如果你的要求比较高的话),英语要把高一到高三的知识点重过一遍,这个过程应该有一套比较好的题量比较大的资料。文综跟着老师的复习过程走就可以,重点还是要把基础知识巩固背熟。语文要多注意积累,字音、字形等方面需要注意,该背的古文等要背熟。这一时期大概从高二暑到高三上学期结束(不同的地方在具体时间安排上可能不同),文科生应该把更多的重点放在语数外上。

第二轮:专题性质的复习。

这一阶段在跟着老师的步骤走之外,自己再找一些适合自己的专题性质的资料。语文除了前面的基础知识之外,要对阅读题和作文加以适当注意。具体方法是多做一些试卷。可以是历年的考题综合,也可以是的高考快递题目等。数学要集中力量解决后面的综合型题目和一些难题,对于要运用的原理不要有疏漏。英语应该保持大量做题,碰到新的题目要注意总结,要注意听力和阅读。文综应该市场上有很多专题复习的资料,可以选择一些。比如说需要看一些时事材料,可以对这些材料中可能牵涉的问题加以总结。历史可以分成、经济、文化等各个方面加以复习。地理主要是把书上易考的重点当专题来复习,还要注意三科结合的题目。这一段时间大概要到高考前一两个月,重点是多做题,多总结。要适当加强对文综科目的重视。

第三轮:冲刺阶段。

主要是做综合试卷和模拟题。虽然不一定在高考中能碰到,但做一些综合试卷是对高考的一种模拟。无论从内容还是心理上。记住做完卷子之后要注意归纳自己做这套卷子的收获。在做卷子之余可以把以前背过的文综基础知识翻一翻,熟悉熟悉。

当然在高考前的调整也是必不可少的。到那个阶段可以采取以看历年高考真题为主的复习方式,多思考思考。

急!!请问有哪位高手归纳过高考文科数学后面六道大题,每道大题的题型?麻烦啦!

圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0

16题一般是解三角形

17提是几何题

1cos3α=cos(2α+α)=cos2αcosα-sin2αsinα8题是圆锥曲线

19题是二次函数

20题是概率题

2构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。1题是归纳所有的知识点综合出来的题

一般18题 20题会调换位置

但一致就这几题

我快高考那会专门请了一数学老师补课,他给我归纳的

这是全国卷的大题类型

不知道和广州的一不一样了

高考文科三道数学题求帮助

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

题=e^x+e^(-x)

上下同除以cos^3(α),得:

第二题, 【-2,0】这个区间比 (-1/2,0) 大 大不能推小 小推大 所以附推导:必要不充分

第三题 g‘(X)=1/x+2+a

2+a大于0, x>0(定义域) 所以g’(X)=1/x+2+a 在定义域上恒大于0 函数单调增

高考文科数学公式

我是学理科的。不好回答,不过建议你使用天利38套全真高考试题,每套试题你至少做两遍,次用铅笔,做错了的和自己不清楚的做个记录。做完一套后再去看,并且整理出相关的考点,便于看书本。我是这样学的。数学高考只考了130多分。

两角和公式

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cos2a=cos2a-sin2a=2cos2a-1=1-2sin2acosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

cot(A+B)=(cotAcotB-1)/(cotB+cotA)

cot(A-B)=(cotAcotB+1)/(cotB-cotA)

倍角公式

tan2A=2tanA/[1-(tanA)^2]

cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2

半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))

和化积

2sinAcosB=sin(A+B)+sin(A-B)

2cosAsinB=sin(A+B)-sin(A-B) )

2cosAcosB=cos(A+B)-sin(A-B)

-2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2

cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cos数学书上都有,把它们记下就OK了AcosB

判别式 b2-4a=0 注:方程有相等的两实根

b2-4ac>0 注:方程有一个实根

b2-4ac<0 注:方程有共轭复数根

常用数学公式表

公式分类 公式表达式

乘法与因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a

根与系数的关系 X1+X2=-b/a X1X2=c/a 注:韦达定理

判别式 b2-4a=0 注:方程有相等的两实根

b2-4ac>0 注:方程有一个实根

b2-4ac<0 注:方程有共轭复数根

三角函数公式

两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

和化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

某些数列前n项和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4 12+23+34+45+56+67+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角

圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标

抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积 S=ch 斜棱柱侧面积 S=c'h

正棱锥侧面积 S=1/2ch' 正棱台侧面积 S=1/2(c+c')h'

圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pir2

圆柱侧面积 S=ch=2pih 圆锥侧面积 S=1/2cl=pirl

弧长公式 l=ar a是圆心角的弧度数r >0 扇形面积公式 s=1/2lr

锥体体积公式 V=1/3SH 圆锥体体积公式 V=1/ir2h

斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长

柱体体积公式 V=sh 圆柱体 V=pir2h

两角和公式

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

cot(A+B)=(cotAcotB-1)/(cotB+cotA)

cot(A-B)=(cotAcotB+1)/(cotB-cotA)

顶下吧

谢谢……

版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。