数学高考题型全归纳如下:
每年高考数学都是哪些类型_每年高考数学必考的内容
每年高考数学都是哪些类型_每年高考数学必考的内容
每年高考数学都是哪些类型_每年高考数学必考的内容
每年高考数学都是哪些类型_每年高考数学必考的内容
,函数与导数。
主要考查运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
第二,平面向量与三角函数、三角变换及其应用。
这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
第三,数列及其应用。
这部分是高考的重点而且是难点,主要出一些综合题。
第四,不等式。
主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。
第五,概率和统计。
这部分和我们的生活联系比较大,属应用题。
第六,空间位置关系的定性与定量分析。
主要是证明平行或垂直,求角和距离。主要考察对定理的熟悉程度、运用程度。
第七,解析几何。
高考的难点,运算量大,一般含参数。
高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。
针对数学高考强调对基础知识与基本技能的考查我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能。以不变应万变。
1.选择题十大速解方法:
排除法、增加条件法、以小见、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法。
2.填空题四大速解方法:
直接法、特殊化法、数形结合法、等价转化法。
3.解答题答题模板:
三角变换与三角函数的性质问题
①不同角化同角
②降幂扩角
③化f(x)=Asin(wx+)+h
④结合性质求解
构建答题模板
①化简:三角函数式的化简,一般化成y= Asin(wx+)+ h的形式,即化为“一角、一次、一函数”的形式。
②整体代换:将wx+看作一个整体,利用y=sin x,y=cos x的性质确定条件。
③求解:利用wx+$的范围求条件解得函数y=Asin(wx+)+h的性质,写出结果。
④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。
解三角形问题
(1)解题路线图
①a化简变形; b用余弦定理转化为边的关系; c变形证明。
②a用余弦定理表示角; b用基本不等式求范围; c确定角的
取值范围。
(2)构建答题模板
①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
②定工具:即根据条件和所求,合理选择转化的工具,实角之间的互化。
③求结果。
④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。
数列的通项、求和问题
(1)解题路线图
①空间向量的坐标运算。
用向量工具求空间的角和距离。
(2)构建答题模板
①找垂直:找出(或作出)具有公共交点的三条两两垂直的直线
②写坐标:建立空间直角坐标系,写出特征点坐标。
③求向量:求直线的方向向量或平面的法向量。
④求夹角:计算向量的夹角。
⑤得结论:得到所求两个平面所成的角或直线和平面所成的角
圆锥曲线中的范围问题
(1)解题路线图
①设方程。
②解系数。
③得结论。
(2)构建答题模板
①提关系:从题设条件中提取不等关系式。
②找函数:用一个变量表示目标变量,代入不等关系式。
③得范围:通过求解含目标变量的不等式,得所求参数的范围。
④再回顾:注意目标变量的范围所受题中其他因素的制约。
解析几何中的探索性问题
(1)解题路线图
①一般先设这种情况成立(点存在、直线存在、位置关系存
在等)
②将上面的设代入已知条件求解。
③得出结论。
(2)构建答题模板
①先定:设结论成立。
②再推理:以设结论成立为条件,进行推理求解。
③下结论:若推出合理结果,经验证成立则肯。定设; 若推出矛盾则否定设。
④再回顾:查看关键点,易错点(特殊情况、隐含条件等),审视解题规范性。
离散型随机变量的均值与方
(1)解题路线图
①a标记;b对分解;c计算概率。
②a确定ξ取值; b计算概率; c得分布列; d求数学期望。
(2) 构建答题模板
①定元:根据已知条件确定离散型随机变量的取值。
②定性:明确每个随机变量取值所对应的。
③定型:确定的概率模型和计算公式。
④计算:计算随机变量取每一个值的概率。
⑤列表:列出分布列。
⑥求解:根据均值、方公式求解其值。
函数的单调性、极值、值问题
①a先对函数求导;b计算出某一点的斜率; c得出切线方程
②先对函数求导;b谈论导数的正负性;c列表观察原函 值; d得到原函数的单调区间和极值。
(2) 构建答题模板
①求导数:求f(x)的导数f'(x)。(注意 f(x)的定义域)
②解方程:解f'(x)=0,得方程的根。
③列表格:利用f‘(X)=0的根将f(X)定义域分成若干个小开区间,并列出表格。
④得结论:从表格观察f(x)的单调性、极值、值等。
⑤再回顾:对需讨论根的大小问题要特殊注意,另外观察f(x) 的间断点及步骤规范性。
总分150,单选十二个,60分,填空4道,20分,涉及解析几何,函数,数列等等
其余为计算题偶尔会出一道证明题,17题一般是三角函数之类的‘、
18,19题一般是空间几何,概率题
21题解析几何
22题不等式,数列函数,往往后一道较难,可以按步骤给分。
此题型是河南省的,全国统考试卷的题型,但大部分地区都不多。
不同省份设置不同。
一般分选做与必做部分
具体题型一般是选择,填空,和解答
选择解答填空
高考数学以全国卷为例,题型分为选择题12题(每题5分,共60分),填空题4题(每题5分,共20分),解答题5题(每题12分,共60分),选考题1题(10分)。
其中选择题和填空题中:
类1题;复数类1题;程序框图1题;统计学1题;三视图1题;(该五类题基本固定出现)。
根据高中各个模块分析,每年高考题目分布情况:
三角函数:选择填空共2题或者解答题1题;
数列:选择填空共2题或者解答题1题;
立体几何:选择填空类三视图,球类各1题,解答题1题;
统计学:选在填空类1题,解答题1题;
解析几何:选择填空1至2题,解答题1题;
导函数:选择填空1题,解答题1题;
参数方程(选考):选考1题;<选择>
不等式方程(选考):选考1题;
应用题是高考中的重点之一,几乎每个省市,每年的高考试卷都有应用题出现,因此,总结高考数学应用题的常见类型,分析其解题模式,对学生有针对性地备战高考具有十分重要的意义。
一、函数、不等式类
此种类型是高考应用题的重点之一,依托函数多为分段函数、指数函数、二次函数及不等式组等。主要应用问题为极值问题,例如,生产成本的小化、建筑材料的少化、利润的化等。历年高考真题有2011四川理科卷第9题,2011湖北理科卷第11题,2000年全国卷等21题等。
解答此类应用题的关键和切入点是准确建立函数模型,这要求学生首先要明确实际问题的取值范围,认真分析题目中的重点词汇及数量关系,对题干中给出的已知量、未知量及常量进行归类有梳理,从而建立函数或不等式模式,进而解答试题。
二、概率型
此种类型应用题数量在高考数学试卷中所占比例,但难度不大,主要考查基本的概率知识,所涉及的应用问题非常多,例如,密码破译、不同等级产品的概率、的点数等。例如,2010年江苏卷第22题,2011年全国卷第19题,2012陕西理科卷第20题等。
此类问题一般较为简单,主要考查学生对概率相关概念的掌握程度及公式的运用技巧。基本思路是在认真阅读题干的基础上分析出试题所考查的是何种变量或,然后运用此种变量或的公式去解答即可。此外,还应注意逆向思维的运用和结果的验证。
三、数列型
此种类型是应用题中难的一类,尤其是与不等式问题结合之后。所考查的数列基本知识有初始项的提取、通项公式的求取、递推公式及前n项的和与某一项的关系等。所依托的实际问题涉及金融、平均增长率、等量增减等多个方面。例如,2005年春季上海第20题,2004年福建高考理科卷第20题等。
解答此类问题的关键是确定数列的类型,在此基础上根据题意构建数列的通项公式或递推公式,然后利用选定系数法或递推关系求解。
四、几何型
此种类型也是高考中的“大户”,借助的数学知识主要为三角函数,依托的实际问题涉及物理、测量、天文、航海等多个领域。例如,2010年江苏卷第17题,2010陕西高考理科第17题,2010福建高考理科第19题。
解答此类型应用题的关键是抽取数学模型,若没有示意图的应首先根据题意画出示意图,然后运用三角函数等相关知识解答即可。
此外,高考中数学应用题型还有型、立体几何型、解析几何型等,限于篇幅在此不做介绍。其实无论何种类型,应用题都应遵循审题—建模—求解—还原的基本思路。
选择、填空题预测: 一、(注意交集、并集、补集运算的理解,细节上注意区间端点问题的取舍。) 二、简易逻辑(特称、全称、且、或的相关否定及命题判断,重点考察与立体几何、三角函数等命题的融合。) 三、函数(3年来只出过两道单纯考察函数的小题,高考更注重考生对函数思想的理解。今年注意奇偶性与单调性的简单应用、数形结合。) 四、导数的应用(已知切点与未知切点,求切线方程的两类题型,高考考察点更趋向函数解析式的求导运算,出现了求导解析式运算量加大的趋向,考生应注意熟练分式求导及不特殊的对数、指数求导公式。) 五、积分(简单求解面积问题,适当注意书后习题中的一类复合形式的三角函数求积分问题。) 六、数列(等等比基本公式,尤其注意等比中q为1的讨论,注意下角标性质、片段和性质以及列项求和。不要求复杂数列递推的题型,不建议加深难度。适当注意等比中项的充分性以及和均值不等式的综合。) 七、三角函数(必考内容,是由三角函数图像推导解析式,注意练习常见的三种三角求值问题。) 八、向量(趋向向量的数形结合,注意几何意义、图形运算、投影概念。) 九、解三角形(17题若是数列则小题一定会有简单的解三角形或应用问题;否则不会在小题中考察。) 十、不等式(三种基本不等式融合于其它知识点出题、注意线性规划中目标函数为分式形式的问题。) 十一、直线与圆(未出过小题,主要在选作中考察,注意位置关系与垂径定理的应用) 十二、圆锥曲线(两小题一大题,小题注意抛物线的定义、焦半径、焦点弦、准线;双曲线的渐近线;相关性质如通径、焦点三角形面积等需要背。由于双曲线和椭圆的第二定义在新教材中被删除,所以涉及两种曲线的准线问题可以不用复习,从侧面也更突出了保留的抛物线涉及准线问题的地位,今年应重点注意抛物线涉及准线问题,包括短距离问题、焦点弦问题等等。) 十三、立体几何(两小题一大题,小题有一中档题和一难题,注意三视图表面积、运动下几何体相关量的变化范围问题、与球的相关组合体、体积分割问题;注意长方体载体的应用。) 十四、排列组合(一道小题,注意基本模型的掌握,不宜训练难题。) 十五、二项式定理(未考过,适当注意基本求解常数项等问题即可。) 十六、概率统计(一小题一大题。小题注意统计中的边缘概念如相关指数、相关系数等,建议考前系统阅读一遍教材2和教材3。) 十七、复数(基本运算,运算量逐年加大。) 十八、算法(注意程序语言;注意与列项求和、与统计过程、与实际测量为载体的解三角形以及与二分法的整合。) 解答题预测: 一、17题:1.简单数列注意等比运算中q与1的讨论;2.三角函数应用问题注意(必修4)62页例4,了解五点法画图;例3,空间中解三角形的应用。 二、18题立体几何,注意训练开放性问题如已知二面角大小探求相应点位置以及建系的三种不同类型。 三、19题概率统计:以统计为背景的二项分布问题、注意训练从大量阅读信息中快速提取数据的能力,方的概率公式要求记忆。适当注意由等高条形图等提取二联表中数据,进而性检验的步骤。 四、解析几何:问注意求轨迹的三种题型。第二问注意椭圆中以向量为载体的动中有定问题;注意抛物线的求导切线问题。高考可能有淡化韦达定理的趋向可适当关注相应题目训练。 五、导数:问注意三种基本问题;第二问注意高等数学、竞赛数学为背景的不等量问题的证明。例如函数零点与相应导函数零点之间的关系、琴生不等式、杨氏不等式的证明。解答押轴一问时应考虑到必会应用问的结论或处理问时用到的方法,可按此思路寻找解题策略。 六、选作:建议极坐标参数方程注意常规问题外还要注意求轨迹问题。不等式的解法与值应适当掌握作为保底选择,柯西与排序不等式今年不会考察,可不用复习。
2021年高考数学考试已经结束,“2021年高考数学试卷有几套呢、2021年高考数学难不难”成为了众多高中学子关注的问题,那么以下老师将为大家一一解答。
一、2021年高考数学试卷有几套
2021年考试中心命制了全国甲、乙卷的文、理科数学试卷,新高考Ⅰ卷、Ⅱ卷的数学试卷(不分文理),共6套数学试卷。天津、、上海、浙江采用的是自主命题试卷,因此2021年高考数学试卷总的来说一共有10套。
二、2021年高考数学考点题型全归纳
根据教育报发布的2021年高考数学试题评析得知:
2021年高考数学试题运用我国建设和科技发展的重大成就作为试题情境,深入挖掘我国经济建设和科技发展等方面的学科素材,学生关注我国现实与经济、科技进步与发展,增强民族自豪感与自信心,增强认同,增强理想信念与爱国情怀。
2021年高考数学考点题型全归纳如下:
1、新高考Ⅱ卷第4题以我国航天事业的重要成果北斗三号全球卫星导航系统为试题情境设计 立体几何问题 ,考查考生的空间想象能力和阅读理解、数学建模的素养。
2、乙卷理科第6题以冬奥会志愿者的培训为试题背景,考查 逻辑推理能力和运算求解 能力。
3、新高考Ⅰ卷第18题以“”知识竞赛为背景,考查了考生对 概率统计基本知识的理解与应用 。
4、甲卷文、理科第2题以我国在脱贫攻坚工作取得全面胜利和农村振兴为背景,通过图表给出了某地农户家庭收入情况的抽样调查结果,以此设计问题,考查考生 分析问题和数据处理的能力 。
5、乙卷理科第9题以魏晋时期我国数学家刘徽的著作《海岛算经》中的测量方法为背景,考查考生 综合运用知识解决问题的能力 ,让考生充分感悟到我国古代数学家的聪明才智。
6、新高考Ⅰ卷第16题以我国传统文化剪纸艺术为背景,让考生体验从特殊到一般的探索数学问题的过程,重点考查考生 灵活运用数学知识分析问题 的能力。
版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。