三角函数高考答题理科 三角函数高考解答题

热门职校 2025-01-23 10:18:36

高考数学选择题怎么拿高分?

“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情。如何能让学生程度的消化知识,提高这时候必须告诫他们以学习为主,从高三逆推到高一,不断的问自己这块内容掌握了没有,最终他们发现高一简单的知识还行,从高二开始由于之前学习不好,就没什么学。于是我建议他们系统的看课本,不建议他们马上跟着其他人做题。看一点,做几道题,直到课本上的题会做为止,我就认为他的基础打牢了。千万不要怕花时间在回顾基础上,高考基础分占绝大的比例。高三首轮复习的意义就在于基础。这也是我们暑期到高三上学期进行高三知识梳理,《专项突破》训练的意义所在。学习热情是教者必须思考的问题。

16道,每道5分,共80分。占总分的大半。

三角函数高考答题理科 三角函数高考解答题三角函数高考答题理科 三角函数高考解答题


三角函数高考答题理科 三角函数高考解答题


三角函数高考答题理科 三角函数高考解答题


送分题、基础题较多,以书上性质、公式的运用为主。

、复数:默认送分题。

平面向量:能建系尽量建系做。

计数原理:以二次项定理与分配问题居多。

统计与概率:可能会在读题上挖坑。

其他:命题、各章基本概念、计算(不等式或者比大小)……

中题会以几何或函数为主,可能会考新定义题。

几何:解三角形、立体几何、解析几何。

函数:函数(指对幂、正余切)的性质(单调奇偶对称周期)与图像(识别和变换)、简单求导、构造函数(常见于指对数比大小)。

新定义题:近年来高考的趋势,题干给出一个新的定义(高中课本里没学过的),然后让你利用其解题。难度一般都不会太大,只要严格按照题干描述一步一步做就行。

相对来说选填技巧较多,注意对答题时间的把控,争取做到又快又准!

解答题

6道,每道12分左右,共70分,涉及板块比较固定,一般3基础2中等1难。(新高考取消了选答题,6道都是必答题)

数列:数列知识点比较集中,通常高考不会与其他知识点交叉。基本就是考一问求通项,二问求和,最值问题出现频率较低。

三角:三角涉及的板块很多,但恒等变换是基础,基础公式必须熟练掌握。通常以解三角形为主,有时会掺杂一些三角函数的知识点。

三角函数:注意恒等变换的应用及正弦型函数的性质。

统计与概率:这部分知识点很杂,就不一一列举了。不过除了涉及排列组合的概率题都不难(大部分也可以通过穷举解决),公式什么理解了会看图表就没啥问题。

以上三道常在高考中作为基础难度题出现,想上90必须熟练常规解题思路,形成规范的解题流程,争取读完题马上有思路。(严禁读完题原地发呆!!!)

中等题通常由两道几何题担任:

立体几何:立体难在空间想象能力,很多同学看不懂图。通常一问垂直平行的证明;二问求空间角正余弦。

解析几何:解析的知识点很多,难点在如何将题设条件转化成等量关系。背景以椭圆、抛物线为主(江湖传闻不考双曲,但八省联考打脸了)。通常一问通过曲线性质求方程或离心率;二问以考察与直线位置关系为主。

(真正在考场上遍算错,基本就没机会算对了,除非你心态真的特别好。而且心态一般的同学不建议做一道检查一道,很容易卡某一道题上被直接带走。)

是高中数学的大轴,导数:导数真的很难,但基本的公式该记还是得记,因为选填也有可能考。一问没思路的话就上去求个导肯定没毛病。二问不多说了,大家自己慢慢体会吧。

三角函数定义域高考考吗

这两道几何题二问的计算量都不小,费时费力,还容易出错,做题慢的同学会面临时间不够的尴尬。想冲120的同学要注意练习计算的准确率,以及总结一些计算技巧,争取一遍就能算P76-77 练习 3对。

考。三角函数定义域高考考的,是会有相类似的题目的。三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极。

高中数学解三角形解题方法

(3) 在 有 4 个零点

高中数学解三角形的开放型题型的解法研究也是很重要的只有解决了解三角形的难题,数学成绩才会整体上升,高考成绩也会有所提高。下面是我为大家整理的关于高中数学解三角形解题 方法 ,希望对您有所帮助。欢迎大家阅读参考学习!

1高中数学解三角形解题方法

解三角形,要求记忆三角函数公式,不仅要熟练记忆,牢牢掌握解三角形的解题技巧,还要能够将已经掌握的知识灵活运用。开放型题型更是需要结合题目要求开拓新思路,以一个全新的思考方式去思考解决问题,这也就是开放型题型的新颖之处,也是开放型题型的难点。一般开放型题型在题目阅读中增加了难度,相应来说,解题的难度就会减少,那么只要能够读懂题目,了解题目要求,理清楚解题的思路就可以轻松的完成三角函数题目的解答。

但是对于高中生来说对于解三角形函数的了解已经很深入了,只是高中生一般就掌握了解三角形的基本解题思路,对照相应的题型进行练习解答,这么一来,高中生也就变成了解题机器,只会一种思路,一种思考方式,不会变通,如果在这时候遇到了开放型题型,就会完全傻了眼。这时候,在大形势趋向于开放型题型,高中生只能在自己掌握的知识基础上,多练练开放型题型,运用自己了解的三角函数知识根据开放型题型的题目要求去解答问题。

高中生对于三角函数的知识已经掌握的很熟练了,只是对于这些开放型题型就是缺少练习,多找一些开放型题型来练习,增加高中生对开放型题型题目的理解程度,因为题目要求难度增加,对应的解题难度就会减少,这样一来只要能够多练习开放型题型,熟练掌握解题思路,能够读懂题目要求,就会很简单的解答这方面的问题。

2高中数学解三角形的技巧

●教学目标。知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。

过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践作。

情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。

●解: x是第三或第四象限角。教学重点。正弦定理的探索和证明及其基本应用。

●教学难点。已知两边和其中一边的对角解三角形时判断解的个数。

在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在RtΔABC中,设BC=a,AC=b,AB=c,根据锐角三角函数中正弦函数的定义,有ac=sinA,bc=sinB,又sinC=1=cc,则asinA=bsinB=csinC=c

从而在直角三角形ABC中,asinA=bsinB=csinC

(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:

如图1.1-3,当ΔABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,有CD=asinB=bsinA,则asinA=bsinB,同理可得csinC=bsinB,从而asinA=bsinB=csinC。

思考:是否可以用 其它 方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。

余弦定理

●教学目标。知识与技能:掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题。

过程与方法:利用向量的数量积推出余弦定理及其推论,并通过实践演算掌握运用余弦定理解决两类基本的解三角形问题

情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一。

●教学重点。余弦定理的发现和证明过程及其基本应用;

●教学难点。勾股定理在余弦定理的发现和证明过程中的作用。

例1.在ΔABC中,已知a=23,c=6+2,B=60°,求b及A

(1)解:∵b2=a2+c2-2accsoB=(23)2+(6+2)2-2?23?(6+2)cos45°=12+(6+2)2-43

(3+1)8

∴b=22.

求A可以利用余弦定理,也可以利用正弦定理:

∵cosA=b2+c2-a22bc=(22)2+(6+2)2-(23)22×22×(6+2)=12,∴,A=60°.

解三角形的进一步讨论

●教学目标。知识与技能:掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;三角形各种类型的判定方法;三角形面积定理的应用。

过程与方法:通过学生分析,解答三个典型例子,使学生学会综合运用正、余弦定理,三角函数公式及三角形有关性质求解三角形问题。

情感态度与价值观:通过正、余弦定理,在解三角形问题时沟通了三角形的有关性质和三角函数的关系,反映了事物之间的必然联系及一定条件下相互转化的可能,从而从本质上反映了事物之间的内在联系。

●教学重点。在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;

三角形各种类型的判定方法;三角形面积定理的应用。

●教学难点。正、余弦定理与三角形的有关性质的综合运用。

●教学过程。讲授新课

例.在ΔABC中,A=60°,b=1,面积为32,求a+b+csinA+sinB+sinC的值

分析:可利用三角形面积定理S=12absinC=12acsinB=12bcsinA以及正弦定理asinA=bsinB=csinC=a+b+csinA+sinB+sinC

解:由S=12bcsinA=32得c=2,则a2=b2+c2-2bccsoA=3,即a=3,从而a+b+csinA+sinB+sinC=asinA=2。

3高中数学尖 学习方法

首先是分析,我所说的分析并不是对知识结构的分析,而是先从自己的程度做一个分析。这方面 总结 起来可以这么说:找到问题的根源。比如说有网友问我若基础怎么办?那么基础薄弱的根源在哪里先找出来,毕竟高三时间就这么点,我们要从实际出发,找到属于自己能够将分数提高最快的地方,而不是不切实接的去做题。我去年在深圳教高三的时候有好几个学生,高三学期初几乎没有基础,数学、物理、化学基本上程度较低。

其次是解读:解读包括如何看课本、如何看题。之前也说过了,这里再大略提到一下:文科的看什么知识点可以用来出题,哪些将可能成为考点。理科注重公式的推导过程,各种定理的推导手法,其中用了哪些转换推导方式,以及课本内案例的解题步骤及思路。尤其注重课本中公式定理以及推论是怎么来的,用来研究什么显现(数学现象、物理现象、化学现象等),比如圆锥曲线椭圆的定义是研究动点与固定点的轨迹方程,三角函数公式研究的几何目的是什么。

如果大家不会理解,举个例子,物理中s=at^2这个公式研究的是物体匀加速直线运动。它的物理意义在于不考虑质量,只考虑条件:匀加速、直线。那么做题时凡是符合直线、匀加速(匀加速是衡力的体现)两个条件,即能用上这个公式。当大家都带着这种思想去学习、整理课本知识体系,那么对知识本源的理解,将大大提高,同时在做题与考试上,思路将清晰的多。所以我们始终强调,学习与做题一定要讲究方法,有的放矢。在有限的高三复习期间,无目的、无规则的看书复习,无疑是在极大地浪费时间。

4高中 数学学习方法 有哪些

数学是高考科目之一,故从初一开始就要认真地学习数学。进入高中以后,往往有不少同学不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈。出现这样的情况,原因很多。但主要是由于同学们不了解高中数学教学内容特点与自身学习方法有问题等因素所造成的。

有不少同学把提高数学成绩的希望寄托在大量做题上。我认为这是不妥当的,我认为,“不要以做题多少论英雄”,重要的不在做题多,而在于做题的效益要高。做题的目的在于检查你学的知识,方法是否掌握得很好。如果你掌握得不准,甚至有偏,那么多做题的结果,反而巩固了你的缺欠,因此,要在准确地把握住基本知识和方法的基础上做一定量的练习是必要的。

其次要掌握正确的学习方法。锻炼自己学数学的能力,转变学习方式,要改变单纯接受的学习方式,要学会采用接受学习与探究学习、合作学习、体验学习等多样化的方式进行学习,要在教师的指导下逐步学会“提出问题—实验探究—开展讨论—形成新知—应用 反思 ”的学习方法。

这样,通过学习方式由单一到多样的转变,我们在学习活动中的自主性、探索性、合作性就能够得到加强,成为学习的主人。

高中数学解三角形解题方法相关 文章 :

1. 高中数学选择题做题方法及重难点归纳总结

2. 高中数学解题技巧有哪些

3. 高中数学几何题解题技巧

4. 高中数学50个解题小技巧

5. 高中数学解答题8个答题模板与做大题的方法

6. 高二数学立体几何大题的八大解题技巧

7. 50个高考数学解题技巧

8. 2020届高三数学解答题8个答题模板

9. 高考数学不同题型的答题技巧

高考数学应如何安排答题时间?

锐角三角函数概念的形成。

根据自己的经验来安排的是的,但是我个人建议在选择题和填空题上不能花太多时间,其实高考数学题是很有规律的题目,有时候根本不需要动笔算就得出,关键就是看你自己把握了,如果一道很简单不需要动笔的题目、显而易见的题目,你动笔算了,那就浪费了很多时间。选择题的前五题对与数学还不错的人来说,应该就是要一眼把看出来,这样在选择填空题里你节约了时间,就会有充分的 时间去考虑后面的大题目,当然,如果今年的数学题比较难的话,你就要好好的把握选择题了,多花点时间在选择题上,所以高考数学应如何安排答题时间,要根据自身的情况和卷子的难易程度来判断。我想建议你的一点就是,高考数学选择题的一道题一般都是很有规律的题目,如果你找不出那个规律,尽量不要在刚考试不久的时候花大把时间去计算它,那样可能会浪费了时间,又得不到,等有时间的时候在去算也不迟

解三角形:通常一问边角互化,二问平面几何计算。(也有可能考几何计算。)

选择题在三十到四十分钟之间。不要超过四十五分钟,如果不是数学十分拔尖的话,不要小于二十五分钟,两道题的时间适量多一些

填空题在二十五到三十分钟,不要超过四十分钟,一般在或其他位置会有1道拔高或比较麻烦的题,要有心理准备,留出时间

解答题会有50到65分钟,最少也有三十五分钟。前面的几何题数列之类十五分钟左右,后两道大题要给充足的时间

但不是固定的,在发下试卷写好名字后还会有几分钟,将卷子大体浏览一遍,对难易程度难易分布心中有数,根据实际调整用时,遇见不会的在心中给自己定个时,考场都有表,一旦不会果断跳过,不要“虎头蛇尾”,在前面浪费太多时间,后面可能很简单

也切忌用最短的时间把会的做错,剩下的时间思考不会的

时间分配要看个人情况,如果基础好的话就要在保证准确率的情况下把选择和填空提速,留下时间做后面的提分题。如果基础不是太好的话就更得保证前面题的准确率,大题可以放一放,有时间就做,没时间就果断舍去!好运!

选择题时间在10——15分钟左右,大约就是一个题1分钟的时间填空题时间在10——15分钟左右,大约就是一个题3分钟的时间个大题8——10分钟第二个大题8——10分钟第三个大题10——15分钟第四个大题10——15分钟第五个大题15——20分钟第六个大题15——20分钟

考前一个晚上睡足八个小时,早晨吃好清淡早餐,按清单带齐一切用具, 应该考前20分钟到达考场,太迟了会来不及安心定神。一方面可以消除新异,稳定情绪,从容进场,另一方面也留有时间提前进入“角色”——让大脑开始简单的数学活动,进入单一的数学情境。 进入考试角色的心理准备时间太短,有可能导致整个考试在慌乱中度过,造成不必要的失误。

刚拿到试卷,一般心情比较紧张,不忙匆匆作答,可先从头到尾、正面反面通览全卷,尽量从卷面上获取最多的信息,为实施正确的解题策略作全面调查 ,通览全卷是克服“前面难题做不出,后面易题没时间做”的有效措施,也从根本上防止了“漏做题”。

数学高考题的容量在120分钟时间内完成大小二十几个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。

数学选择题大约有70%的题目都是直接法,要注意对符号、概念、公式、定理及性质等的理解和使用,例如函数的性质、数列的性质就是常见题目。

一般来说,选择题的两题,填空题的一题,解答题的两题是难题。当然,题目的难易只能由自己确定。一般来说,小题思考1分钟还没有建立解答方案,则应采取“暂时性放弃”,把自己可做的题目做完再回头解答。

不要在一两个小题上纠缠,杜绝小题大做,如果确实没有思路,也要坚定信心,“题可以不会,但是要做对”,即使是“蒙”也有25%的胜率。

尽量保证证明过程及计算方法大众化.解题时,使用通用符号,不易吃亏.有些考生为图简便使用一些特殊方法,可一旦结果有错,就会影响得分.

高考数学全国卷客观题:三角函数的图像与性质

(3)做到三个心中有数。对全卷一共几页,一共大小几道题心中有数,防止漏做题,发现漏印题;对每道题得几分心里有数,并粗略地分配一下各题的解答时间,既注重了每道题的少丢分,更注重全卷多得分;对学科体系的分量心中有数,即大致分一下哪些属代数题,哪些属三角题、哪些属立体几何题,哪些属解析几何题,为实施“先同后异”作准备。

(2)

在 上, 的反函数称作反余弦函数,

4.若 ,则

(5)若 ,则

5.已知角 的顶点与原点重合,始边与 轴的正半轴重合,终边在直线 上,则

9.若 是第三象限的角,则

(9)已知 ,函数 在 单调递减,则 的取值范围是

(15)设当 时,函数 取得值,则 .

(14)函数 的值为 .

(6)如图,圆 的半径为 , 是圆上的定点, 是圆上的动点,角 的始边为射线 ,终边为射线 ,过点 作直线 的垂线,垂足为 . 将点 到直线 的距离表示成 的函数 ,则 在 的图像大致为

(8)设 ,且 ,则

(8)函数 的部分图像如图所示,则 的单调递减区间为

(14)函数 的图像可由函数 的图像至少向右平移 个单位长度得到.

(7)若将函数 的图像向左平移 个单位长度,则平移后图像的对称轴为

(9)若 ,则

6.设函数 ,则下列结论错误的是

的一个周期为

的图像关于直线 对称

的一个零点为

在 单调递减

14.函数 的值是 .

9.已知曲线 ,则下面结论正确的是

A.把 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移 个单位长度,得到曲线

B.把 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移 个单位长度,得到曲线

C.把 上各点的横坐标缩短到原来的 倍,纵坐标不变,再把得到的曲线向右平移 个单位长度,得到曲线

D.把 上各点的横坐标缩短到原来的 倍,纵坐标不变,再把得到的曲线向左平移 个单位长度,得到曲线

10.若 在 是减函数,则 的值是

15.已知 则 .

9.下列函数中,以 为周期且在 区间单调递增的是

10.已知 ,则

5.函数 在 的图像大致为

11.关于函数 有下述四个结论:

(1) 是偶函数

(2) 在区间 单调递增

(4) 的值为 2

A.①②④

B.②④

C.①④

D.①③

设函数 . 若存在 的极值点 满足 ,则 的取值范围是

设函数 ,已知 在 有且5个零点,下述四个结论:

① 在 有且3个极大值点

② 在 有且2个极大值点

③ 在 单调递增

④ 的取值范围是

A.①④

B.②③

C.①②③

D.①③④

三角函数教案

注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。

三角函数教案 篇1 一、指导思想与理论依据

数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。

二、教材分析

三角函数的诱导公式是普通高中课程标准实验教科书(人教a版)数学必修四,章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六)。本节是课时,教学内容为公式(二)、(三)、(四)。教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角 与终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四)。同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。为此本节内容在三角函数中占有非常重要的地位。

三、学情分析

本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容。

(1)、基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;

(2)、能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;

(3)、创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;

(4)、个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观。

五、教学重点和难点

1、教学重点

理解并掌握诱导公式。

2、教学难点

正确运用诱导公式,求三角函数值,化简三角函数式。

六、教法学法以及预期效果分析

“授人以鱼不如授之以鱼”, 作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法, 如何实现这一目的,要求我们每一位教者苦心钻研、认真探究。下面我从教法、学法、预期效果等三个方面做如下分析。

1、教法

数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质。

在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发、共同探究、综合应用等教学模式,还给学生“时间”、“空间”, 由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦。

2、学法

在本节课的教学过程中,本人学生的学法为思考问题 共同探讨 解决问题 简单应用 重现探索过程 练习巩固。让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习。

3早起早睡 ,、预期效果

本节课预期让学生能正确理解诱导公式的发现、证明过程,掌握诱导公式,并能熟练应用诱导公式了解一些简单的化简问题。

七、教学流程设计

(一)创设情景

1、复习锐角300,450,600的三角函数值;

2、复习任意角的三角函数定义;

3、问题:由 ,你能否知道sin2100的值吗?引如新课。

设计意图

自信的鼓励是增强学生学习数学的自信,简单易做的题加强了每个学生学习的热情,具体数据问题的出现,让学生既有好像会做的心理但又有迷惑的茫然,去发掘潜力期待寻找机会证明我能行,从而思考解决的办法。

(二)新知探究

1、 让学生发现300角的终边与2100角的终边之间有什么关系;

2、让学生发现300角的终边和2100角的终边与单位圆的交点为 、 的坐标有什么关系;

3、sin2100与sin300之间有什么关系。

设计意图

由特殊问题的引入,使学生容易了解,实现教学过程的平淡过度,为同学们探究发现任意角 与 的三角函数值的关系做好铺垫。

(三)问题一般化

三角函数教案 篇2

目标:

1、 理解锐角三角函数的定义,掌握锐角三角函数的表示法;

2、 能根据锐角三角函数的定义计算一个锐角的各个三角函数的值;

3、 掌握 Rt △中的锐角三角函数的表示:

sinA= , cosA= , tanA=

4 、掌握锐角三角函数的取值范围;

5 、通过经历三角函数概念的形成过程,培养学生从特殊到一般及数形结合的思想方法。

教学重点:

锐角三角函数相关定义的理解及根据定义计算锐角三角函数的值。

教学难点:

教学过程:

一、创设情境:

鞋跟多高合适?

美国人体工程学研究人员卡特·克雷加文调查发现, 70 %以上的女性喜欢穿鞋跟高度为 6 至 7 厘米左右的高跟鞋。但专家认为穿 6 厘米以上的高跟鞋腿肚、背部等处的肌肉非常容易疲劳。

据研究,当高跟鞋的鞋底与地面的夹角为 11 度左右时,人脚的感觉。设某成年人脚前掌到脚后跟长为 15 厘米,不难算出鞋跟在 3 厘米左右高度为。

问:你知道专家是怎样计算的吗?

显然,高跟鞋的鞋底、鞋跟与地面围城了一个直角三角形,回顾直角三角形的已学知识,引出课题。

二、探索新知:

1 、下面我们一起来探索一下。

实践一:作一个 30 °的∠ A ,在角的边上任意取一点 B ,作 BC ⊥ AC 于点 C 。

⑴计算,,的值,并将所得的结果与你同伴所得的结果进行比较。∠ A=30 °时学生 1 结果 学生 2 结果 学生 3 结果 学生 4 结果 ⑵将你所取的 AB 的值和你的同伴比较。

实践二:作一个 50 °的∠ A ,在角的边上任意取一点 B ,作 BC ⊥ AC 于点 C 。

( 1 )量出 AB , AC , BC 的长度(到 1mm )。

( 2 )计算BC / AB ,AC / AB,的值(结果保留 2 个有效数字),并将所得的结果与你同伴所得的结果进行比较。∠ A=50 °时 AB AC BC 学生 1 结果 学生 2 结果 学生 3 结果 学生 4 结果 ( 3 )将你所取的 AB 的值和你的同伴比较。

2 、经过实践一和二进行猜测

猜测一:当∠ A 不变时,三个比值与 B 在 AM 边上的位置有无关系?

猜测二:当∠ A 的大小改变时,相应的三个比值会改变吗?

3、 用理论推理

如图, B 、 B 1 是一边上任意两点,作 BC ⊥ AC 于点 C , B 1 C 1 ⊥ AC 1 于点 C 1 ,

判断比值与,与,与是否相等,并说明理由。

4 、归纳总结得到新知:

⑴三个比值与 B 点在的边 AM 上的位置无关;

⑵三个比值随的变化而变化,但(0 °﹤∠α﹤90 ° )确定时,三个比值随之确定;

比值,,都是锐角的函数

比值叫做的正弦, sinα =

比值叫做的余弦, cos α=

比值叫做的正切, tanα =

( 3 )注意点: sin α, cos α, tan α都是一个完整的符号,单独的 “ sin ”没有意义,其中前面的“∠”一般省略不写。

强化读法,写法;分清各三角函数的自变量和应变量。

三、深化新知

1 、三角函数的定义

在 Rt △ ABC 中,如果锐角 A 确定,那么∠ A 的对边与斜边的比、邻边与斜边的比也随之确定 ,则有

sinA =

cosA=

2 、提问:根据上面的三角函数定义,你知道正弦与余弦三角函数值的取值范围吗?

(点拨)直角三角形中,斜边大于直角边。

生:思考,尝试回答,交流结果。

明确:锐角的三角函数值的范围: 0 < sin α< 1 , 0 < cos α< 1。

四、巩固新知

例 1. 如图 , 在 Rt △ ABC 中 , ∠ C=90 °, AB=5,BC=3,

( 1 )求∠ A 的正弦、余弦和正切 。

( 2 )求∠ B 的正弦、余弦和正切。

分析:由勾股定理求出 AC 的长度,再根据直角三角形中锐角三角函数值与三边之间的关系求出各函数值。

提问:观察以上计算结果 , 你发现了什么 ?

明确: sinA=cosB , cosA=sinB , tanA · tanB=1

五、升华新知

例 2 . 如图 : 在 Rt △ ABC, ∠ B=90 ° ,AC=200,sinA=0.6 ,求 BC 的长 。

由例 2 启发学生解决情境创设中的问题。

六、课堂小结:谈谈今天的收获

1 、内容总结

( 1 )在 Rt Δ ABC 中 , 设∠ C=90 ° ,∠α为 Rt Δ ABC 的一个锐角,则

∠α的正弦,∠α的余弦,

∠α的正切

2 、方法归纳

在涉及直角三角形边角关系时,常借助三角函数定义来解

四、布置作业

三角函数教案 篇3

教材: 已知三角函数值求角(反正弦,反余弦函数)

目的: 要求学生初步(了解)理解反正弦、反余弦函数的意义,会由已知角的正弦值、余弦值求出 范围内的角,并能用反正弦,反余弦的符号表示角或角的。

过程:

一、简单理解反正弦,反余弦函数的意义。

由1在R上无反函数。

2在 上, x与y是一一对应的,且区间 比较简单

在 上, 的反函数称作反正弦函数,

记作 ,(奇函数)。

同理,由

记作

二、已知三角函数求角

首先应弄清:已知角求三角函数值是单值的。

已知三角函数值求角是多值的。

例一、1、已知 ,求x

解: 在 上正弦函数是单调递增的,且符合条件的角只有一个

(即 )

2、已知

解: , 是或第二象限角。

即( )。

3、已知

(即 或 )

这里用到 是奇函数。

例二、1、已知 ,求

解:在 上余弦函数 是单调递减的,

且符合条件的角只有一个

2、已知 ,且 ,求x的值。

解: , x是第二或第三象限角。

3、已知 ,求x的值。

解:由上题: 。

介绍:∵

上题

例三、(见课本P74-P75)略。

三、小结:求角的多值性

法则:1、先决定角的象限。

2、如果函数值是正值,则先求出对应的锐角x;

如果函数值是负值,则先求出与其对应的锐角x,

3、由诱导公式,求出符合条件的其它象限的角。

四、作业:

习题4.11 1,2,3,4中有关部分。

三角函数教案 篇4

教学目标

1、知识与技能

(1)理解并掌握正弦函数的定义域、值域、周期性、(小)值、单调性、奇偶性;

(2)能熟练运用正弦函数的性质解题。

2、过程与方法

通过正弦函数在R上的图像,让学生探索出正弦函数的性质;讲解例题,总结方法,巩固练习。

3、情感态度与价值观

通过本节的学习,培养学生创新能力、探索归纳能力;让学生体验自身探索成功的喜悦感,培养学生的自信心;使学生认识到转化“矛盾”是解决问题的有效途经;培养学生形成实事求是的科学态度和锲而不舍的钻研精神。

教学重难点

重点:正弦函数的性质。

难点:正弦函数的性质应用。

教学工具

投影仪

教学过程

创设情境,揭示课题

同学们,我们在数学一中已经学过函数,并掌握了讨论一个函数性质的几个角度,你还记得有哪些吗?在上一次课中,我们已经学习了正弦函数的y=sinx在R上图像,下面请同学们根据图像一起讨论一下它具有哪些性质?

探究新知

让学生一边看投影,一边仔细观察正弦曲线的图像,并思考以下几个问题:

(1)正弦函数的定义域是什么?

(2)正弦函数的值域是什么?

(3)它的最值情况如何?

(4)它的正负值区间如何分?

(5)?(x)=0的解集是多少?

师生一起归纳得出:

1.定义域:y=sinx的定义域为R

2.值域:回忆单位圆中的正弦函数线,结论:|sinx|≤1(有界性)

再看正弦函数线(图象)验证上述结论,所以y=sinx的值域为[-1,1]

三角函数教案 篇5

一. 教学内容: 三角函数

二、高考要求

(一)理解任意角的概念、弧度的意义、正确进行弧度与角度的换算;掌握任意角三角函数的定义、会利用单位圆中的三角函数线表示正弦、余弦、正切。

(二)掌握三角函数公式的运用(即同角三角函数基本关系、诱导公式、和及倍角公式)

(三)能正确运用三角公式进行简单三角函数式的化简、求值和恒等式证明。

(四)会用单位圆中的三角函数线画出正弦函数、正切函数的图线、并在此基础上由诱导公式画出余弦函数的图象、会用“五点法”画出正弦函数、余弦函数及Y=Asin(ωx φ)的简图、理解A、ω、 的物理意义。

三、热点分析

1. 近几年高考对三角变换的考查要求有所降低,而对本章的内容的.考查有逐步加强的趋势,主要表现在对三角函数的图象与性质的考查上有所加强。

2. 对本章内容一般以选择、填空题形式进行考查,且难度不大,从1993年至2002年考查的内容看,大致可分为四类问题

(1)与三角函数单调性有关的问题;

(2)与三角函数图象有关的问题;

(3)应用同角变换和诱导公式,求三角函数值及化简和等式证明的问题;

(4)与周期有关的问题

3. 基本的解题规律为:观察异(或角,或函数,或运算),寻找联系(借助于熟知的公式、方法或技巧),分析综合(由因导果或执果索因),实现转化。解题规律:在三角函数求值问题中的解题思路,一般是运用基本公式,将未知角变换为已知角求解;在最值问题和周期问题中,解题思路是合理运用基本公式将表达式转化为由一个三角函数表达的形式求解。

4. 立足课本、抓好基础。从前面叙述可知,我们已经看到近几年高考已逐步抛弃了对复杂三角变换和特殊技巧的考查,而重点转移到对三角函数的图象与性质的考查,对基础知识和基本技能的考查上来,所以在复习中首先要打好基础。在考查利用三角公式进行恒等变形的同时,也直接考查了三角函数的性质及图象的变换,可见高考在降低对三角函数恒等变形的要求下,加强了对三角函数性质和图象的考查力度。

四、复习建议

本章内容由于公式多,且习题变换灵活等特点,建议同学们复习本章时应注意以下几点:

(1)首先对现有公式自己推导一遍,通过公式推导了解它们的内在联系从而培养逻辑推理能力。

(2)对公式要抓住其特点进行记忆。有的公式运用一些顺口溜进行记忆。

(3)三角函数是中学阶段研究的一类初等函数。故对三角函数的性质研究应结合一般函数研究方法进行对比学习。如定义域、值域、奇偶性、周期性、图象变换等。通过与函数这一章的对比学习,加深对函数性质的理解。但又要注意其个性特点,如周期性,通过对三角函数周期性的复习,类比到一般函数的周期性,再结合函数特点的研究类比到抽象函数,形成解决问题的能力。

(4)由于三角函数是我们研究数学的一门基础工具,近几年高考往往考查知识网络交汇处的知识,故学习本章时应注意本章知识与其它章节知识的联系。如平面向量、参数方程、换元法、解三角形等。(2003年高考应用题源于此)

(5)重视数学思想方法的复习,如前所述本章试题都以选择、填空题形式出现,因此复习中要重视选择、填空题的一些特殊解题方法,如数形结合法、代入检验法、特殊值法,待定系数法、排除法等。另外对有些具体问题还需要掌握和运用一些基本结论。如:关于对称问题,要利用y=sinx的对称轴为x=kπ+(k∈Z),对称中心为(kπ,0),(k∈Z)等基本结论解决问题,同时还要注意对称轴与函数图象的交点的纵坐标特征。在求三角函数值的问题中,要学会用勾股数解题的方法,因为高考试题一般不能查表,给出的数都较特殊,因此主动发现和运用勾股数来解题能起到事半功倍的效果。

(6)加强三角函数应用意识的训练,1999年高考理科第20题实质是一个三角问题,由于考生对三角函数的概念认识肤浅,不能将以角为自变量的函数迅速与三角函数之间建立联系,造成思维障碍,思路受阻。实际上,三角函数是以角为自变量的函数,也是以实数为自变量的函数,它产生于生产实践,是客观实际的抽象,同时又广泛地应用于客观实际,故应培养实践的观点。总之,三角部分的考查保持了内容稳定,难度稳定,题量稳定,题型稳定,考查的重点是三角函数的概念、性质和图象,三角函数的求值问题以及三角变换的方法。

(8)在复习中,应立足基本公式,在解题时,注意在条件与结论之间建立联系,在变形过程中不断寻找异,讲究算理,才能立足基础,发展能力,适应高考。

在本章内容中,高考试题主要反映在以下三方面:其一是考查三角函数的性质及图象变换,尤其是三角函数的值与最小值、周期。多数题型为选择题或填空题;其次是三角函数式的恒等变形。如运用三角公式进行化简、求值解决简单的综合题等。除在填空题和选择题出现外,解答题的中档题也经常出现这方面内容。

另外,还要注意利用三角函数解决一些应用问题。

高考数学答题技巧及常用高中数学解题方法

1、圆锥曲线中题往往联立起来很复杂导致k算不出,这时你可以取特殊值法强行算出k过程就是先联立,后算代尔塔,用下伟达定理,列出题目要求解的表达式,就可以了。

2、选择题中如果有算锥体体积和表面积的话,直接看选项面积找到2倍的小的就是,体积找到3倍的小的就是,屡试不爽!

4、空间几何证明过程中有一步实在想不出把没用过的条件直接写上然后得出想不出的那个结论即可。如果题真心不会做直接写结论成立则第二题可以直接用!用常规法的同学建议先随便建立个空间坐标系,做错了还有2分可以得!

5、立体几何中第二问叫你求余弦值啥的一般都用坐标法!如果求角度则常规法简单!

6、选择题中考线面关系的可以先从D项看选择+填空(8单4多4填)起前面都是来浪费你时间的。

7、选择题中求取值范围的直接观察从每个选项中取与其他选项不同的特殊点带入能成正弦定理立的就是。

8、线性规划题目直接求交点带入比较大小即可。

9、遇到选项A.1/2,B.1,C.3/2,D.5/2这样的话一般是D因为B可以看作是2/2前面三个都是出题者凑出来的如果在前面3个的话D应该是2(4/2)。

高考数学应试的策略及答题技巧

下面是我整理的高考数学应试的策略及答题技巧的相关内容,希望对即将考试的你有所帮助。

高考数学应试的策略 1、通览全卷。刚拿到试卷,一般心情比较紧张,不要匆忙作答,可先从头到尾、正面、反面浏览一遍,通览全卷不是“眼看手勿动”,一般可在不到十分钟完成四件事:

(1)填卷首、看说明、三涂两四、教学目标写。

(2)顺手解答、粗略分类。顺手解答那些一眼看得出结论的简单选择题、填空题,而只要解答出一两道题(称为热身运动),情绪就会迅速稳定下来,并且“旗开得胜”愉悦感还有一种增力作用,鼓舞我们去作更充分的发挥,同时,通览全卷也是克服“前面难题就攻不下,后面易题无暇顾及”的有效措施。

2、答题要领。一大二循环,一头一尾是两个小循环,各用十分钟左右,中间是一个大循环,用100分钟。

在通览全卷过程中,先做简单题的遍解答是个小循环同时把情绪稳定下来,将思考推向。

接下来的100分钟时状态的发挥或收获果实的黄金季节,我们叫做答题的大循环。在此阶段应充分发挥自己的水平,基本完成全卷,会做的都做了。在这个过程中要有全局意识,做整体把握,并执行“四先四后”“一慢一快”的方针。

高考数学的答题小技巧 一、三角函数题

二、数列题

1、证明一个数列是等(等比)数列时,下结论时要写上以谁为首项,谁为公(公比)的等(等比)数列;

2、一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,15.函数 在 的零点个数为 .当n=k+1时,一定利用上n=k时的设,否则不正确。利用上设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;

3、证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。

三、立体几何题

1、证明线面位置关系,一般不需要去建系,更简单;

2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;

3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。

四、概率与统计

仔细审题,正确判断随机变量的取值。

1、若题中有或关键信息:相互,互不影响,已知概率等,则考或二项分布

2、若题中有关键信息:已知概率且概率相等,直接求期望,实验次数多,实验具有重复性,则考重复试验(二项分布)

3、与统计相结合的概率题目解题技巧:分层抽样与性检验结合,系统抽样与频率分布直方图相结合,有“频率视为概率”则考二项分布,有“在(从)...选取...”则考古典概型或超几何分布)

高一必修4数学三角函数的解题公式怎样才能灵活运用

练习册上没有例题吗?只要平时有认真听课,课后有去做相关的练习就应该可以记住60%吧,我也是这样学数学的。如果你真的不会的不如去推导出来...自己实在没办法其中所有正(7)变为主线、抓好训练。变是本章的主题,在三角变换考查中,角的变换,三角函数名的变换,三角函数次数的变换,三角函数式表达形式的变换等比比皆是,在训练中,强化“变”意识是关键,但题目不可太难,较特殊技巧的题目不做,立足课本,掌握课本中常见问题的解法,把课本中习题进行归类,并进行分析比较,寻找解题规律。针对高考中的题目看,还要强化变角训练,经常注意收集角间关系的观察分析方法。另外如何把一个含有不同名或不同角的三角函数式化为只含有一个三角函数关系式的训练也要加强,这也是高考的重点。同时应掌握三角函数与二次函数相结合的题目。确结论的编号是解决就去请教身边的老师同学吧,要灵活运用身边的资源啊!!!

首先得熟悉基本公式,其他的公式都是在基本公式上推导的;其次就是,公式运用当然得随具体情况而定,只有多做题目了,理科性的东西,只有五个字:多写多总结

高考数学必考题型及答题技巧是什么

3、三角函数第二题,如求a(cosB+cosC)/(b+c)coA之类的思考:那么对于任意的三角形,以上关系式是否仍然成立?先边化角然后把题算的比如角A等于60度直接设B和C都等于60°带入求解。省时省力!

高中数学是比较难的,想要学好高中数学,必须认真听讲,认真做题,我整理了高考数学必考题型和答题技巧,来看一下!

高考数学必考题型是什么

题型一

运用同三角函数关系、诱导公式、和、、倍、半等公式进行化简求值类。

题型二

运用三角函数性质解题,通常考查正弦、余弦函数的单调性、周期性、最值、对称轴及对称中心。

题型三

解三角函数问题、判断三角形形状、正余弦定理的应用。

题型四

数列的通向公式的求法。

高考数学答题技巧有哪些

1、函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。

2、如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;

3、面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是……;

4、选择与填空中出现不等式的题目,优选特殊值法;

5、求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;

6、恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;

7、圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;

版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。