实数当然包括负数,实数分正数,负数和零。而数就分实数和虚数。下面就和我一起了解一下吧,供大家参考。
实数包括负数吗 实数包括负数吗和0吗
实数包括负数吗 实数包括负数吗和0吗
实数包不包括负数
实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的点相对应的数。实数可以直观地看作有限小数与无限小数,它们能把数轴“填满”。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。
实数的概念
实数可以分为有理数和无理数两类,或代数数和超越数两类,或正实数,负实数和零三类。实数集通常用黑正体字母R表示。而表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。
实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后n位,n为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。
实数的运算法则
1、加法法则:
(1)同号两数相加,取相同的符号,并把它们的相加;
(2)异号两数相加,取大的加数的符号,并用较大的减去较小的。
可使用①加法交换律:两个数相加,交换加数的位置,和不变。
②加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,和不变。
2、减法法则:减去一个数等于加上这个数的相反数。即a-b=a+(-b)
3、乘法法则:
(1)两数相乘,同号取正,异号取负,并把相乘。
(2)n个实数相乘,有一个因数为0,积就为0;若n个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。
(3)乘法可使用①乘法交换律:两个数相乘,交换因数的位置,积不变。
②乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。
③分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
4、除法法则:
(1)两数相除,同号得正,异号得负,并把相除。
(2)除以一个数等于乘以这个数的倒数。
(3)0除以任何数都等于0,0不能做被除数。
5、乘方:所表示的意义是n个a相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数.乘方与开方互为逆运算。
6、实数的运算顺序:乘方、开方为运算,乘、除为二级运算,加、减是一级运算,如果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运算。无论何种运算,都要注意先定符号后运算。
实数,是有理数和无理数的总称。负数属于有理数,所以实数包括负数。
实数包括负数
实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的实数,点相对应的数。实数和数轴上的点一一对应。
有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。
无理数:在数学中,无理数是所有不是有理数字的实数,也称为无限不循环小数,不能写作两整数之比。
负数的计算法则
负数的加法法则
负数1+负数2=-(负数1+负数2)=负数
负数+正数=符号取较大的加数的符号,数值取“用较大的减去较小的 ”的所得值
负数的减法法则
负数1-负数2=负数1+(负数2)=负数1加上负数2的相反数,再按负数加正数的方法算
负数-正数=-(正数+负数)=负数 异号两数相减,等于其相加
负数的乘法法则
负数1×负数2=(负数1×负数2) =正数
负数×正数=-(正数×负数)=负数
负数的除法法则
负数1÷负数2=(负数1÷负数2) =正数
负数÷正数=-(负数÷正数) =负数
什么是负数
负数是数学术语,比0小的数叫做负数,负数与正数表示意义相反的量。负数都比零小,则负数都比正数小。零既不是正数,也不是负数。
负数中没有最小的数,也没有的数。去除负数前的负号等于这个负数的。
分数也可做负数,如:-2/5。的负整数为:-1,没有最小的负整数。
实数包括负数吗 实数包括负数吗和0吗
实数包括负数。实数包括正实数、零、负实数。实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的实数,点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。
实数发展历史
在公元前500年左右,以毕达哥拉斯为首的希腊数学家们认识到有理数在几何上不能满足需要,但毕达哥拉斯本身并不承认无理数的存在。直到17世纪,实数才在欧洲被广泛接受。18世纪,微积分学在实数的基础上发展起来。1871年,德国数学家康托尔次提出了实数的严格定义。
实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后n位,n为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。
版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。