对于高考的数学,数列知识点是高考数学的基础知识,高考的数学中欧也经常会出现数列的大题,下面我为大家整理了一些高考数列的经典题型。
高考数学数列常考大题题型汇总(建议收藏)
高考数学数列常考大题题型汇总(建议收藏)
高考数学数列常考大题题型汇总(建议收藏)
高考数学数列经典大题 (1)已知正数组成的等数列{an},前20项和为100,则a7?a14的值是()
A.25B.50C.100D.不存在
(2)在等数列{an}中,a1=-2013,其前n项和为Sn,若S1212-S1010=2,则S2013的值为()
A.-2011B.-2012C.-2010D.-2013
破题切入点(1)根据等数列的性质,a7+a14=a1+a20,S20=20(a1+a20)2可求出a7+a14,然后利用基本不等式.
(2)等数列{an}中,Sn是其前n项和,则Snn也成等数列.
(1)A(2)D
解析(1)∵S20=a1+a202×20=100,∴a1+a20=10.
∵a1+a20=a7+a14,∴a7+a14=10.
∵an>0,∴a7?a14≤a7+a1422=25.
当且仅当a7=a14时取等号.
故a7?a14的值为25.
根据等数列的性质,得数列Snn也是等数列,根据已知可得这个数列的首项S11=a1=-2013,公d=1,故S20132013=-2013+(2013-1)×1=-1,所以S2013=-2013.
如何学习数学?史上强高考励志书《高考蝶变》教你怎样提高成绩,淘宝搜索《高考蝶变》购买。
数学数列知识点掌握技巧 数列。以等等比数列为载体,考察等等比数列的通项公式,求和公式,通项公式和求和公式的关系,求通项公式的几种常用方法,求前n项和的几种常用方法,这些知识点需要掌握。
数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等数列、等比数列,求极限和数学归纳法综合在一起。探索性问题是高考的热点,常在数列解答题中出现。
高考关于数列方面的命题主要有以下三个方面;
(1)数列本身的有关知识,其中有等数列与等比数列的概念、性质、通项公式及求和公式。
(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。
(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为后一题难度较大。
数学高考六道大题题型为:三角函数,概率,立体几何,函数,数列,解析几何。三角函数,概率,立体几何相对较容易。函数,数列,解析几何类经常做压轴题,相对较难。
一、三角函数题
注意归一公式、诱导公式的正确性。转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变,符号看象限)时,很容易因为粗心,导致错误。
二、数列题
1、证明一个数列是等数列时,后下结论时要写上以谁为首项,谁为公的等数列。
2、证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。
三、立体几何题
求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系。
四、圆锥曲线问题
注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得多,方法上有直接法、定义法、交轨法、参数法、待定系数法。
不会做的题,带做,实在不行揍也行
篇幅较大,不好放在中。
1、求Sn:(1)通项分解法形如:an=(2n-1)+(1/2^n)
(2)倒序相加法:适用于首尾对影响的和相等
(3)错位相减法:适用于An=bn×Cn(bn是Ap Cn是GP)
(4)裂相相消法:小学奥数不解释了很简单!
2、求an:(1)公式法:sn=S1 Sn=Sn-Sn-1(2)累加法a(n+1)-an=f(n)递推关系(3)累乘法:a(n+1)除以an=f(n)(4)构造法:a(n+1)=pan+q(p q为常数)
希望对你有帮助 …………
版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。