高中数学知识点:等数列公式
辽宁省数学高考公式_辽宁省数学高考题
辽宁省数学高考公式_辽宁省数学高考题
辽宁省数学高考公式_辽宁省数学高考题
等数列公式an=a1+(n-1)d
乘法与因式分解a1为首项,an为第n项的通项公式,d为公
前n项和公式为:Sn=na1+n(n-1)d/2
Sn=(a1+an)n/2
若m+n=p+q则:存在am+an=ap+aq
若m+n=2p则:am+an=2ap
以上n.m.p.q均为正整数
解析:第n项的值an=首项+(项数-1)×公
前n项的和Sn=首项×n+项数(项数-1)公/2
公d=(an-a1)÷(n-1)
项数=(末项-首项)÷公+1
数列为奇数项时,前n项的和=中间项×项数
数列为偶数项,求首尾项相加,用它的和除以2
等中项公式2an+1=an+an+2其中{an}是等数列
高中数学知识点:等数列求和公式
若一个等数列的首项为a1,末项为an那么该等数列和表达式为:
S=(a1+an)n÷2
即(首项+末项)×项数÷2
前n项和公式
注意:n是正整数(相当于n个等中项之和)
等数列前N项求和,实际就是梯形公式的妙用:
上底为:a1首项,下底为a1+(n-1)d,高为n。
设首项为 , 末项为 , 项数为 , 公为 , 前 项和为 , 则有:
当d≠0时,Sn是n的二次函数,(n,Sn)是二次函数 的图象上一群孤立的点。利用其几何意义可求前n项和Sn的最值。
注意:公式一二三事实上是等价的,在公式一中不必要求公等于一。
求和推导
证明:由题意得:
Sn=a1+a2+a3+。。。+an①
Sn=an+a(n-1)+a(n-2)+。。。+a1②
①+②得:
2Sn=[a1+an]+[a2+a(n-1)]+[a3+a(n-2)]+...+[a1+an](当n为偶数时)
Sn={[a1+an]+[a2+a(n-1)]+[a3+a(n-2)]+...+[a1+an]}/2
Sn=n(A1+An)/2 (a1,an,可以用a1+(n-1)d这种形式表示可以发现括号里面的数都是一个定值,即(A1+An)
基本公式
公式Sn=(a1+an)n/2
等数列求和公式
Sn=na1+n(n-1)d/2; (d为公)
Sn=An2+Bn; A=d/2,B=a1-(d/2)
和为 Sn
首项 a1
末项 an
公d
项数n
表示方法
等数列基本公式:
末项=首项+(项数-1)×公
项数=(末项-首项)÷公+1
首项=末项-(项数-1)×公
和=(首项+末项)×项数÷2
说明
末项:一位数
首项:位数
项数:一共有几位数
和:求一共数的总和
首项=2×和÷项数-末项
末项=2×和÷项数-首项
末项=首项+(项数-1)×公:a1+(n-1)d
项数=(末项-首项)/ 公+1 :n=(an-a1)/d+1
公= d=(an-a1)/n-1
如:1+3+5+7+……99 公就是3-1
将a1推广到am,则为:
d=(an-am)/n-m
若 m、n、p、q∈N
①若m+n=p+q,则am+an=ap+aq
②若m+n=2q,则am+an=2aq(等中项)
高中数学对大部分考生来说算是一个比较有难度的学科,尤其是作为一名文科生,数学这种理科科目想必一定难倒了一大半吧!其实,高中数学里面有很多公式,掌握了这些公式,就没有那么难了。下文我给大家整理了《文科数学高考必背公式总结》。
抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py文科数学高考必背公式 一、三角形公式
正弦定理:a/sinA=b/sinB=c/sinC=2R R为三角形外接圆的半径
余弦定理:a2=b2+c2-2bccosA
sin(A+B)=sinC
sin(A+B)=sinAcosB+sinBcosA
sin(A-B)=sinAcosB+sinBcosA
sin2A=2sinAcosA
cos2A=2(cosA)2-1=(cosA)2-(sinA)2=1-2(sinA)2
tan2A=2tanA/[1-(tanA)2]
(sinA)2+(cosA)2=1
二、诱导公式
公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)
公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα
公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα
公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα
公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinα
三、函数
(1)设x1、x2[a,b],x1x2那么
f(x1)f(x2)0f(x)在[a,b]上是增函数;
f(x1)f(x2)0f(x)在[a,b]上是减函数.
(2)设函数yf(x)在某个区间内可导,若f(x)0,则f((3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。x)为增函数;若f(x)0,则f(x)为减函数.
2、函数的奇偶性
对于定义域内任意的x,都有f(-x)=f(x),则f(x)是偶函数; 对于定义域内任意的x,都有f(x)f(x),则f(x)是奇函数。 奇函数的图象关于原点对称,偶函数的图象关于y轴对称。
高考文科数学必背公式口诀 一、《与函数》
内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。
函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;
正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;
求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,
奇母偶子偶函数,偶母非奇偶函数;图象象限内,函数增减看正负。
二、《三角函数》
三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;
中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,
变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,
将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,
余弦积减正弦积,换角变形众公式。和化积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。
逆反原则作指导,升幂降次和积。条件等式的证明,方程思想指路明。
公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;
1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;
三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;
利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;
解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。
高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。
证不等式的方法,实数性质威力大。求与0比大小,作商和1争高下。
直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。
还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。
会提供一些公式的,都是那些比较难记的,复杂的公式,没有记得必要的公式。一般性的公式还是要自己记得,不要指望什么公式都有。
数学考试卷前面会提供一些公式,不过那些公式你们都是知道的,不用想那么多,高考就考那些基础的公式,这几天把那些基础的公式做个汇总,还有理科那些定理定律公式看他几遍就可以了,其他就是多休息,多散步,会有四五个简单的公式,这个也不一定,看情况,我那年给了四个不过很简单,都是我们会的。
= =,从来不提供公式(书本中的)。只有类似于创新题(一般是填空一道和大题一道)会给出新定义,新定义中有新定义公式。
根据你们教材版本来定了,一般的公式应该会提供。我们当时就提供了一些很难记的公式和那些选修的并且难记的
很多复杂的公式都会提供的。。不过。你还是自己背下 靠谱一些。。应该 你也不确定它每年会给你哪些公式。这个没有规定。。所以。。到三角函数公式 时 要到碰到一个会做的 就是不知道公式 那不悲剧了。比如说填空和选择 不会公式 直接没有分数 。你说是不?
需要用到的相关公式可能会提供。但是请不要依赖它。因为只有你背熟了公式,才能让你在看到题目的时候联想到能用的公式,而不是你将试卷上出现的公式去对照题目看那个题能用。
有古典概型和二项分布以及个别的体积公式
提供的公式不会很多,还得靠自己的
一般是不会提供的,只有创新今年辽宁高考数学题目其实并不是很难,其中选择题的难度也不是特别的大,要说花时间较长的选择题就是一道选择题,可能计算量稍微大一些,但难度其实并不是很大。然后就是填空题,填空题共4道,每道题5分,总共是20分。题有时有
高考高等数学一公式如下:
只要是考纲以内的公式,就要求你自己记,考试是不会提供的,但如果是超纲的公式,需要用到就会提供给你1、抛物线y=ax^2+bx+c(a≠0)。就是y等于a乘以x的平方加上b乘以x再加上c。
置于平面直角坐标系中,a>0时开口向上,a<0时开口向下(a=0时为一元一次函数)。c>0时函数图像与y轴正方向相交,c<0时函数图像与y轴负方向相交,c=0时抛物线经过原点,b=0时抛物线对称轴为y轴(当然a=0且b≠0时该函数为一次函数)。
2、顶点公式y=a(x+h)*2+k,(h,k)=(-b/(2a),(4ac-b^2)/(4a))。就是y等于a乘以(x+h)的平方+k。h是顶点坐标的x,k是顶点坐标的y,一般用于求值与最小值和对称轴。
一般来说前面几道题非常容易,可以把4个选项往题目里面套,看哪个符合,就是正确。据统计,选择题,ABCD任意一个选项成为正确的次数为3—5次。那么一题都不会写,也一定要全部的答满,不能全部写一样的这样会一分都没有。
只会写1-2题,剩下的题都写跟自己会写题的不一样的选项,这样至少可以得20分。例如,会写的题一题选A,一题选B,那么不懂写的15题都写C或者D。懂写3题以上,看看自己懂写的中ABCD哪个选项出现的次数少,那么不懂写的题目都写那个选项,这样至少可以得30分以上。
高考填空题和简答题的答题思路:
填空题一般出现其中有一题是0,1,2的可能性很大,实在每题都不会写,就4题都写0或1或2,但写1的概率相对0、2会高一点。如果你时间充足的话,可以把0,1,2套进可能是整数的题目里面试试,这样运气好就能做对一两题。
解答题完全不懂也不要放弃解答题的分数,解答题的特点是一层一层往下求解,最终求出一个。解答题的答题步骤,则三角形面积=abc/4r先写上解,再写依题意可得(题目中已知的数据写上去),跟上公式,计算得,写答。
高考高数二必背公式如下:
2、圆柱侧面积 S=ch=2πh。圆锥侧面积 S=1/2cl=πrl。弧长公式 l=ar a是圆心角的弧度数r >0。扇形面积公式 s=1/2lr。锥体体积公式 V=1/3SH。
圆锥体体积公式 V=1/ir2h。斜棱柱体积 V=SL 注:其中,S是直截面面积, L是侧棱长,柱体体积公式 V=sh。注意点:
对数函数基本性质:
1、过定点(1,0),即x=1时,y=0。
2、当 01时,在(0,+∞)上是增函数。
3、对数函数是非奇非偶函数(无论增函数还是减函数都一样),它的反函数指数函数同样也是非奇非偶函数。
高数:
高等数学是由微积分学、代数学、几何学以及它们之间的交叉内容所形成的一门基础学科,将其作为中小学阶段的初等数学与大学阶段的高等数学的过渡。其主要内容包括数列、极限、微积分、空间解析几何与线性代数、级数、常微分方程,也是工科、理科、财经类研究生考试的基础科目。
在理工科各类专业的学生,学的数学较难,课本常称“高等数学”;文史科各类专业的学生,学的数学稍微浅一些,课本常称“微积分”。理工科的不同专业,文史科的不同专业,深浅15.[转化思想]切线长l=√(d2-r2)d表示圆外一点到圆心得距离,r为圆半径,而d最小为圆心到直线的距离。程度又各不相同。研究变量的是高等数学,可高等数学并不只研究变量。至于与“高等数学”相伴的课程通常有:线性代数,概率论与数理统计。
2023年辽宁高考数学不难。
-2sinAsinB=cos(A+B)-cos(A-B)填空题相对选择题的难度可能稍大一些,毕竟没有蒙的机会,而今年填空题的难度设置的相对来说也是比较小,但也有区分能力的题目,比如一道填空题,如果不是特别熟练的同学,可能会出错或者做不出来。
辽宁高考语文、数学、外语用的是新高考全国卷Ⅱ,其他科目为本省自命题。考生文化总成绩由统一高考的语文、数学、外语成绩和选择性考试科目成绩构成,总分为750分。其中,语文和数学以原始分计入总成绩,满分均为150分。
外语科目满分150分,其中听力部分30分,笔试部分120分;听力成绩不计入外语成绩,外语成绩以考生外语笔试成绩的1.25倍计入,按照四舍五入的原则取整。
选择性考试中历史、物理2门科目以原始分计入考生总成绩,每科满分为100分;化学、生物学、思想、地理4门再选科目以转换通项公式:公×项数+首项-公后的等级分计入考生总成绩,每科满分为100分。
高考考场答题技巧
1、一慢一快,慢中求快。审题要慢要细,做题要快。题目本身是解题方法、技巧的信息源,特别是每卷必有的选择题中的题干中有许多解答该题的规定性。考卷大多是容易的,在大家容易的情况下就看谁更细心,而细心最主要的就是审题时要慢要细心。当找到解决问题的思路和方法后,答题时速度应快。
2、规范应答、关注细节。这是贯穿答题过程的根本,应特别注意,包括各类题型的基本格式,理科计算题的公式、步骤、结果呈现形式等,如物理学科的“已知、求、解、答”,每个算式的三等四项(字母=公式=数字代入式=结果),化学科分子式、化学方程式的规范书写,数学科的规范作图、几何证明题书写规范等,避免不必要的丢分。
3、认真检查,减少丢分。答题过程中,尽量立足于一次成功,不出错。但百密不免一疏,如果自己的考试时间还有些充裕,那么根不可匆忙交卷,而应作耐心的复查,将模棱两可的及未做的题目要进行检查、作答,特别是填空题、选择题不要留空白。时间允许的情况下,理科可以尝试用另外的方法求解再核对结果,或者已未知条件互换求解,以确保万无一失。
很多人想知道高三的有哪些吧必背的重要知识点,下面我为大家整理了一些高中数学必背知识,供参考!
高中数学公式是高考数学复习至关重要的知识点,为了帮助高三考生进行高考数学的复习。下面我给你分享高中必背数学公式,欢迎阅读。高三数学必背公式知识点大全 乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
正棱锥侧面积 S=1/2ch'三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根与系数的关系 X1+X2=-b/a X1X2=c/a 注:韦达定理
判别式
b2-4ac=0 注:方程有两个相等的实根
b2-4ac>0 注:方程有两个不等的实根
b2-4ac<0 注:方程没有实根,有共轭复数根
两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 12+23+34+45+56+67+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱侧面积 S=ch 斜棱柱侧面积 S=c'h
正棱锥侧面积 S=1/2ch' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pir2
圆柱侧面积 S=ch=2pih 圆锥侧面积 S=1/2cl=pirl
弧长公式 l=ar a是圆心角的弧度数r >0 扇形面积公式 s=1/2lr
锥体体积公式 V=1/3SH 圆锥体体积公式 V=1/ir2h
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=sh 圆柱体 V=pir2h
高考数学答题方法19条规律 1、函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。
2、如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;
3、面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是……;
4、选择与填空中出现不等式的题目,优选特殊值法;
5、求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;
6、恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;
7、圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;
8、求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);
9、求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;
10、三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;
11、数列的题目与和有关,优选和通公式,优选作的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;
12、立体几何问如果是为建系服务的,一定用传统做法完成,如果不是,可以从问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;
13、导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;
14、概率的题目如果出解答题,应该先设,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;
15、遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;
16、注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;
17、问题优先选择去,去优先选择使用定义;
18、与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;
19、关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。
辽宁高考赋分规则如下:
公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα辽宁新高考“3+1+2”模式中,3是指语文、数学、外语,1是指从物理、历史中选择一科作为考试科目,2是指从化学、生物、地理、四科中选择两门作为考试科目。
11.空间立体几何中:以下命题均错。高考具体分值为语文、数学、外语150分,物理100分,历史100分。这些科目按原分数计入高考总分。
即物理90分的话,90分计入高考总分。化学、生物、地理、初试成绩均为100分,计入高考总成绩的最终成绩不以考试初试成绩计入高考总成绩,而是采取分配具体分数的方式。
选考复试科目评分规则。每科原本分为100分,换算时以30分作为成绩换算起点,满分100分。每次选考的考生复试科目原始成绩由高到低分为A、B、C、D、E五个等级,各等级人数比例分别约为15%、35%、35%、13%、2%。换算基数是实际参加选考科目的人数。
当选修科目成绩计入考生总成绩时,A至E级考生的原始成绩将按比例换算规则分别换算成100 ~ 86、85 ~ 71、70 ~ 56、55 ~ 41、40 ~ 30五个成绩区间,考生的年级成绩按线性换算公式计算,每个年级一个年级,年级成绩和考生原始成绩的排名保持不变。
高考数学二项式定理公式结论:令a= 1,b=x,有:(1 +x)n= Ci+ Chx+ Chx2 +.+ Cnx" +...+ CHxn令a= 1,b=-x, 有:(1+x)n= Cn- Clx+ Cix2-.+ Cnx" +...+ (-1)"Cnxn由此可得贝努力不等式。当x>-1时,有:n≥1时,(1+x)n≥1+nx;0≤n≤1时,(1 +x)∩≤1+nx。
1、基本概念。
①二项式展开式:等式右边的多项式叫作(a+ b)"的二项展开式。
②二项式系数::展开式中各项的系数中的C%(r = 0,1,2, ..n)。
③项数:展开式第r+1项,是关于a, b的齐次多项式。
④通项:展开式的第r+1项,记作Tr+1= C%an-rb"(r= 0.1.2..n) 。
①项数:展开式共有n+1项。
②顺序:注意正确选择a与b,2、几个提醒。其顺序不能更改,即:(a+b)n和(b+a)n是不同的。
③指数:a的指数从n到0, 降幂排列;b的指数从0到n,升幂排列。各项中a,b的指数之和始终为n。
④系数:正确区分二项式系数与项的系数:二项式系数指各项前面的组合数;项的系数指各项中除去变量的部分(含二项式系数)。
二项式定理介绍:
二项式定理(Binomial theorem,牛顿二项式定理)是艾萨克·牛顿于1664年、1665年间研究提出。二项式定理指出两个数之和的整数次幂诸如展开为类似项之和的恒等式,该定理可以推广到任意实数次幂。
二项式定理最初用于开高次方。在,成书于1世纪的《九章算术》提出了世界上最早的多位正整数方、开立方的一般程序。11世纪中叶,贾宪在其 高中必背数学公式:图形周长、面积、体积公式《释锁算书》中给出了“开方作法本原图,满足了三次以上开方的需要。
此图即为直到六次幂的二项式系数表,但是,贾宪并未给出二项式系数的一般公式,因而未能建立一般正整数次幂的二项式定理。13世纪,杨辉在其《详解九章算法》中引用了此图,并注明了此图出自贾宪的《释锁算书》。
贾宪的著作已经失传,而杨辉的著作流传至今,所以今称此图为“贾宪三角”或“杨辉三角”。14世纪初,朱世杰在其《四元玉鉴》中复载此图,并增加了两层,添上了两组平行的斜线。
1、函数的单调性高中必背数学公式:一元二次方程的解
-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a
根与系数的关系x1+x2=-b/ax1x2=c/a注:韦达定理
判别式b2-4a=0注:方程有相等的两实根
b2-4ac>0注:方程有两个不相等的个实根
b2-4ac<0注:方程有共轭复数根
高中必背数学公式:立体图形及平面图形的公式
圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标
圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0
直棱柱侧面积S=ch斜棱柱侧面积S=c'h
正棱锥侧面积S=1/2csin(-α)=-sinαh'正棱台侧面积S=1/2(c+c')h'
圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pir2
圆柱侧面积S=ch=2pih圆锥侧面积S=1/2cl=pirl
弧长公式l=ara是圆心角的弧度数r>0扇形面积公式s=1/2lr
锥体体积公式V=1/3SH圆锥体体积公式V=1/ir2h
斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长
柱体体积公式V=sh圆柱体V=pir2h
正方形的周长=边长×4
长方形的面三、《不等式》积=长×宽
正方形的面积=边长×边长
三角形的面积
已知三角形底a,高h,则S=ah/2
已知三角形三边a,b,c,半周长p,则S=√[p(p-a)(p-b)(p-c)](海伦公式)(p=(a+b+c)/2)
和:(a+b+c)(a+b-c)1/4
已知三角形两边a,b,这两边夹角C,则S=absinC/2
设三角形三边分别为a、b、c,内切圆半径为r
则三角形面积=(a+b+c)r/2
设三角形三边分别为a、b、c,外接圆半径为r
版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。