对数函数高考教学视频 对数函数视频教学视频

各省高考 2024-11-18 10:06:03

对数函数高考占多少分

五、平面向量(12课时,8个)

10分。

对数函数高考教学视频 对数函数视频教学视频对数函数高考教学视频 对数函数视频教学视频


对数函数高考教学视频 对数函数视频教学视频


对数函数高考教学视频 对数函数视频教学视频


对数函数高考教学视频 对数函数视频教学视频


高考函数类题型占到45分左右,高中阶段接触到的函数有对数函数、指数函数、幂函数、三角函数及正反比例函数等,其中对数函数占高考的10分。

对数函数是以幂为自(2)一般方程变量,指数为因变量底数为常量的函数。

高考数学的学习方法

1.的值是 ( )

:从记忆开始,梳理知识结构,熟看典型例题,学习期间多与任课老师接触,问问题,培养学习兴趣。

(1)按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。

第二:做套题,只练填空选择和前三道大题,一开始可能一星期才能练一套,慢慢就可以一星期2~3套,当你练到第12套后,成绩就有质的改变。

学习贵在坚持,希望你能成功。

其实高考的数学是很简单的,想要考到120的分数都是很简单的。数学最重要的是理解和运用。高中的数学要听老师讲,高考其实跑不出那些题型的,如果跑出了,那完全不用担心了,大多数人都拿不到。老师讲得理解了,再做点题目,练习一下,然后一定要重视那些简单的题目,千万不要出错,计算错误要避免。

当然认真听讲什么的不必说,大家都知道。个人认为最重要的还是做一个错题本,把自己做错的题抄一遍,然后写出详细的解题过程,并时常翻看一下。我敢确定,一定会提高数学。我高中时的方法。

就是上课认真听讲,好好的写作业,然后这样的学习效率高。做题然后总结解题技巧和方法。改错题然后查漏补缺啊

就抓书本吧,跟着老师复习基础知识,做书上的练习。

题不要做太多 要认真复习错题 这样才能转化为分数

把基础打牢,各个知识点一定要弄明白,然后多做一些基础的题,一定要多练多做

打好基础,勤于思考,善于总结,逐步提高。

基础极就补基础啊,别忘了还有处理问题的能力。能力和基础是不一样的。有基础不一定有能力。

【高考复习】数学(高手进来):对数函数。附图(点击小图看大图)

单调性 在(0,+∞)上单调递减 在(0,+∞)上单调递增

不2、圆的方程是说了0

高中新课标学案与测评·高考总复习 数学 考点演练 第三节 对数与对数函数

大多同学没学好对数知识,主要原因是觉得对数的公式太多,杂乱无章。其中要注意的是:

偶也不知道啊 混分的高一数学同步测试(9)—对数与对数函数

指数函数和对数函数是高考考查的重点,必须记住常见的指对数函数,

一,选择题:

A. B.1 C. D.2

2.若log2=0,则x,y,z的大小关系是 ( )

A.z8.已知f(ex)=x,则f(5)等于 ( )

A.e5 B.5e C.ln5 D.log5e

9.若的图像是 ( )

A B C D

10.若在区间上是增函数,则的取值范围是( )

A. B. C. D.

11.设等于 ( )

A. B.

C. D.

12.函数的反函数为 ( )

A. B.

C. D.

13.计算:log2.56.25+lg+ln+= .

14.函数y=log4(x-1)2(x1,试比较(lgm)0.9与(lgm)0.8的大小 .

16.函数y =(logx)2-logx2+5 在 2≤x≤4时的值域为_____ _ .

17.已知y=loga(2-ax)在区间{0,1}上是x的减函数,求a的取值范围.

18.已知函数f(x)=lg[(a2-1)x2+(a+1)x+1],若f(x)的定义域为R,求实数a的取值范围.

19.已知f(x)=x2+(lga+2)x+lgb,f(-1)=-2,当x∈R时f(x)≥2x恒成立,求实数a的值,并求此时f(x)的最小值

20.设0

21.已知函数f(x)=loga(a-ax)且a>1,

(1)求函数的定义域和值域;

(2)讨论f(x)在其定义域上的单调性;

(3)证明函数图象关于y=x对称.

22.在对数函数y=log2x的图象上(如图),有A,B,C三点,它们的横坐标依次为a,a+1,a+2,其中a≥1,求△ABC面积的值.

一,选择题: ADBCB CDCBA AB

二,填空题:13.,14.y=1-2x(x∈R), 15. (lgm)0.9≤(lgm)0.8,16.

17.解析:先求函数定义域:由2-ax>0,得ax0且a≠1,∴x1,∴a1

∴1当a2-1≠0时,其充要条件是:

解得a

又a=-1,f(x)=0满足题意,a=1,不合题意.

所以a的取值范围是:(-∞,-1]∪(,+∞)

∴=10,a=10b.

又由x∈R,f(x)≥2x恒成立.知:x2+(lga+2)x+lgb≥2x,即x2+xlga+lgb≥0,对x∈R恒成立,

由Δ=lg2a-4lgb≤0,整理得(1+lgb)2-4lgb≤0

即(lgb-1)2≤0,只有lgb=1,不等式成立.

即b=10,∴a=100.

∴f(x)=x2+4x+1=(2+x)2-3

当x=-2时,f(x) min=-3.

20.解法一:作法

|loga(1-x)|-|loga(1+x)|=| |-||=(|lg(1-x)|-|lg(1+x)|)

∵0∴上式=-[(lg(1-x)+lg(1+x)]=-·lg(1-x2)

由0∴|loga(1-x)|>|loga(1+x)|

解法二:作商法

=|log(1-x)(1+x)|

∴0解法三:平方后比较大小

∵loga2(1-x)-loga2(1+x)=[loga(1-x)+loga(1+x)][loga(1-x)-loga(1+x)]

=loga(1-x2)·loga=·lg(1-x2)·lg

∵0∴lg(1-x2)<0,lgloga2(1+x),即|loga(1-x)|>|loga(1+x)|

解法四:分类讨论去掉

当a>1时,|loga(1-x)|-|loga(1+x)|=-loga(1-x)-loga(1+x)=-loga(1-x2)

∵0<1-x<1<1+x,∴0<1-x2<1

∴loga(1-x2)0

当0∴当a>0且a≠1时,总有|loga(1-x)|>|loga(1+x)|

21.解析:(1)定义域为(-∞,1),值域为(-∞,1)

(2)设1>x2>x1

∵a>1,∴,于是a-则loga(a-a)即f(x2)∴f(x)在定义域(-∞,1)上是减函数

(3)证明:令y=loga(a-ax)(x<1),则a-ax=ay,x=loga(a-ay)

∴f-1(x)=loga(a-ax)(x<1)

故f(x)的反函数是其自身,得函数f(x)=loga(a-ax)(x<1=图象关于y=x对称.

22.

解析:根据已知条件,A,B,C三点坐标分别为(a,log2a),(a+1,log2(a+1)),(a+2,log2(a+2)),则△ABC的面积

S=

我会做~~

高1对数函数难么?

4、指数型和对数型的复合函数

其实也不难,

主要先记住基(2)求函数y=af(x)的单调区间,应先求出f(x)的单调区间,然后根据y=au的单调性来求出函数y=af(x)的单调区间.求函数y=logaf(x)的单调区间,则应先求出f(x)的单调区间,然后根据y=logau的单调性来求出函数y=logaf(x)的单调区间.本运算法则,定义域和值域;

注意,对数函数和指数函数为反函数,关于X=Y对称。

给你一些知识点:

对数函数 (a>0且a≠1)的图象和性质

性质: 定义域 (0,+∞) (0,+∞)

值域 R R

不难.只要你用心学.这是最基础的.以后的数列,函数,导数等章节都要用滴!

同意ls,高中数学和初中异很大,只作题是不够的,必须学会思考,总结方法和解题技巧。还有很重要的一点就是注重细节,这对日后的总复习有很大的帮助。

指数和对数在高中并不是难点,所以我认为做好3点就足够了

1。熟记相应的公式

2。利用好数型结合,可以加深印象

3。多做点题来加深公式的题型和理解,体会什么样的题用什么方法

不难,只要记住基本性质,图像还有公式就行了。放心吧。但要灵活应用

不难,就几个公式一定要记住,高考占五六分

怎么学习函数!

二,填空题:

1,首先把握定义和题目的叙述 2,记住一次函数与坐标轴的交点坐标,必须很熟 3,掌握问题的叙述,通法通则是连立方程(当然是有交点的情况) 函数其实在初中的时候就已经讲过了,当然那时候是最简单的一次和二次,而整个高中函数最富有戏剧性的函数实际上也就是二次函数,学好函数总的策略是掌握每一种函数的性质,这样就可以运用自如,有备无患了。函数的性质一般有单调性、奇偶性、有界性及周期性。能够完美体现上述性质的函数在中学阶段只有三角函数中的正弦函数和余弦函数。以上是函数的基本性质,通过奇偶性可以衍生出对称性,这样就和二次函数联系起来了,事实上,二次函数可以和以上所有性质联系起来,任何函数都可以,因为这些性质就是在大量的基本函数中抽象出来为了更加形象地描述它们的。我相信这点你定是深有体会。剩下的幂函数、指数函数对数函数等等本身并不复杂,只要抓住起性质,例如对数函数的定义域,指数函数的值域等等,出题人可以大做文章,答题人可以纵横捭阖畅游其中。性质是函数最本质的东西,世界的本质就是简单,复杂只是起三、数列(12课时,5个)外在的表现形式,函数能够很好到体现这点。另外,高三还要学导数,学好了可以帮助理解以前的东西,学不好还会扰乱人的思路,所以,我建议你去预习,因为预习不会使你落后,我最核心的学习经验就是预习,这种方法使我的数学远远领先其它同学而立于不败之地。 综上,在学习函数的过程中,你要抓住其性质,而反馈到学习方法上你就应该预习(有能力的话能够自学) 。函数是高考重点中的重点,也就是高考的命题当中确实含有以函数为纲的思想,怎样学好函数主要掌握以下几点。,要知道高考考查的六个重点函数,一,指数函数;二,对数函数;三,三角函数;四,二次函数;五,最减分次函数;六,双勾函数Y=X+A/X(A>0)。要掌握函数的性质和图象,利用这些函数的性质和图象来解题。另外,要总结函数的解题方法,函数的解题方法主要有三种,种方法是基本函数法,就是利用基本函数的性质和图象来解题;第二种方法是构造辅助函数;第三种方法是函数建模法。要特别突出函数与方程的思想,数形结合思想 .你还说做题不知道怎样入手,其实函数有很多工具,函数的图像、单调性、奇偶性、周期性、极值,最值、导数等等,这些都是研究函数的工具,也是解题的入手点,先把这些地方的基础题(就是直接要你求单调区间,定义域,值域,周期、奇偶性,导数这一类的题)做好,在相应地做一些应用到这些知识的综合题、类型题,做完之后总结一下,就能发现命题规律与解题思路技巧。 请采纳 谢谢了

高考数学必考知识点2022

数学解题过程中,会涉及到一道题目有多种解题方法的现象。

数学是一切科学的基础,一不小心就容易出错,在高考上出错可就不好了.接下来是我为大家整理的高考数学必考知识点2022,希望大家喜欢!

[1]吴兰珍.高中数学函数教学渗透数学思想方法浅探[J].广西教育学院学报,2004(5).

目录

高考数学必考知识点一

高考数学必考知识点二

高考数学必考知识点三

高考数学必考知识点四

高考数学必考知识点一

一、、简易逻辑(14课时,8个)

1.;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件。

二、函数(30课时,12个)

1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例。

1.数列;2.等数列及其通项公式;3.等数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式。

四、三角函数(46课时,17个)

1.角的概念的推广;2.弧度制;3.任意角的三角函数;4.单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式;7.两角和与的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16.余弦定理;17.斜三角形解法举例。

1.向量;2.向量的加法与减法;3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移。

六、不等式(22课时,5个)

1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含的不等式。

七、直线和圆的方程(22课时,12个)

1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题;9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程。

八、圆锥曲线(18课时,7个)

九、直线、平面、简单何体(36课时,28个)

1.平面及基本性质;2.平面图形直观图的画法;3.平面直线;4.直线和平面平行的判定与性质;5.直线和平面垂直的判定与性质;6.三垂线定理及其逆定理;7.两个平面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线所成的角;13.异面直线的公垂线;14.异面直线的距离;15.直线和平面垂直的性质;16.平面的法向量;17.点到平面的距离;18.直线和平面所成的角;19.向量在平面内的射影;20.平面与平面平行的性质;21.平行平面间的距离;22.二面角及其平面角;23.两个平面垂直的判定和性质;24.多面体;25.棱柱;26.棱锥;27.正多面体;28.球。

十、排列、组合、二项式定理(18课时,8个)

1.分类计数原理与分步计数原理;2.排列;3.排列数公式;4.组合;5.组合数公式;6.组合数的两个性质;7.二项式定理;8.二项展开式的性质。

十一、概率(12课时,5个)

1.随机的概率;2.等可能的概率;3.互斥有一个发生的概率;4.相互同时发生的概率;5.重复试验。

选修Ⅱ(24个)

十二、概率与统计(14课时,6个)

1.离散型随机变量的分布列;2.离散型随机变量的期望值和方;3.抽样 方法 ;4.总体分布的估计;5.正态分布;6.线性回归。

十三、极限(12课时,6个)

1.数学归纳法;2.数学归纳法应用举例;3.数列的极限;4.函数的极限;5.极限的四则运算;6.函数的连续性。

十四、导数(18课时,8个)

1.导数的概念;2.导数的几何意义;3.几种常见函数的导数;4.两个函数的和、、积、商的导数;5.复合函数的导数;6.基本导数公式;7.利用导数研究函数的单调性和极值;8.函数的值和最小值。

十五、复数(4课时,4个)

1.复数的概念;2.复数的加法和减法;3.复数的乘法和除法;4.复数的一元二次方程和二项方程的解法。

〈〈〈

高考数学必考知识点二

1、圆的定义:

平面内到一定点的距离等于定长的点的叫圆,定点为圆心,定长为圆的半径。

(1)标准方程,圆心,半径为r;

当时,表示一个点;当时,方程不表示任何图形。

(3)求圆方程的方法:

一般都采用待定系数法:先设后求。确定一个圆需要三个条件,若利用圆的标准方程,

需求出a,b,r;若利用一般方程,需要求出D,E,F;

另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。

3、直线与圆的位置关系:

直线与圆的位置关系有相离,相切,相交三种情况:

(1)设直线,圆,圆心到l的距离为,则有

(2)过圆外一点的切线:

①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程

(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2

4、圆与圆的位置关系:

通过两圆半径的和(),与圆心距(d)之间的大小比较来确定。

设圆,

两圆的位置关系常通过两圆半径的和(),与圆心距(d)之间的大小比较来确定。

当时两圆外离,此时有公切线四条;

当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;

当时两圆相交,连心线垂直平分公共弦,有两条外公切线;

当时,两圆内切,连心线经过切点,只有一条公切线;

当时,两圆内含;当时,为同心圆。

注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线

圆的辅助线一般为连圆心与切线或者连圆心与弦中点

〈〈〈

高考数学必考知识点三

一、随机

主要掌握好(三四五)

(1)的三种运算:并(和)、交(积)、;注意A-B可以表示成A与B的逆的积。

(2)四种运算律:交换律、结合律、分配律、德莫根律。

(3)的五种关系:包含、相等、互斥(互不相容)、对立、相互。

二、概率定义

(1)统计定义:频率稳定在一个数附近,这个数称为的概率;(2)古典定义:要求样本空间只有有限个基本,每个基本出现的可能性相等,则A所含基本个数与样本空间所含基本个数的比称为的古典概率;

(3)几何概率:样本空间中的元素有无穷多个,每个元素出现的可能性相等,则可以将样本空间看成一个几何图形,A看成这个图形的子集,它的概率通过子集图形的大小与样本空间图形的大小的比来计算;

(4)公理化定义:满足三条公理的任何从样本空间的子集到[0,1]的映射。

三、概率性质与公式

(1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特别地,如果A与B互不相容,则P(A+B)=P(A)+P(B);

(2):P(A-B)=P(A)-P(AB),特别地,如果B包含于A,则P(A-B)=P(A)-P(B);

(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互,则P(AB)=P(A)P(B);

(4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,

贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;

如果一个B可以在多种情形(原因)A1,A2,....,An下发生,则用全概率公式求B发生的概率;如果B已经发生,要求它是由Aj引起的概率,则用贝叶斯公式.

(5)二项概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有A与A的逆可能发生,各次试验结果相互)时,要考虑二项概率公式.

〈〈〈

高考数学必考知识点四

先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,,将这些子样本合起来构成总体的样本。

两种方法

1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。

2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,用系统抽样的方法抽取样本。

分层标准

(1)以调查所要分析和研究的主要变量或相关的变量作为分层的标准。

(2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。

(3)以那些有明显分层区分的变量作为分层变量。

分层的比例问题

(2)不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次的子总体进行专门研究或进行相互比较。如果要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。

〈〈〈

高考数学必考知识点2022相关 文章 :

★ 高三数学二轮复习策略2022

★ 高三上册数学教学总结2022

★ 2022年期末考试反思总结十篇

★ 高三数学期末知识点

★ 2022年安徽高考时间

★ 2022湖北高考时间安排

★ 2022高中数学教学工作精选10篇

★ 高三数学教学工作范本2022

★ 2022年天津高考具体时间

★ 湖南高考时间2022具体时间 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

高中数学函数教学的方法

高中数学函数教学的方法【1】

【摘要】针对初中高中数学函数教学的现状,探索如何让学生充分参与到函数教学课堂中,如何调动学生学习函数的积极性,以达到良好的函数教学效果.尤其高中函数数学,正是高中学生由简单数学逐渐向难度较大过渡阶段.作为一名高中数学教师,关键在于如何调动高中学生在数学函数课堂上的积极性与主动性,如何启发学生的数学思维,调动学生学习函数的兴趣度,帮助学生自觉和主动地参与函数教学的课堂活动.

【】高中数学;函数教学;教学方法;情景教学;案例教学;创新思维

数学思想是对数学事实、概念和理论的本质认识,是数学知识的高度概括.数学方法是数学思想在数学认识活动中的具体反映和体现,是处理探索解决数学问题、实现数学思想的手段和工具.因此,要求教师必须具备较高而灵活的高中数学函数的教学技巧.随着高中数学课程不断改革与素质教育的实施,教学方法的探索与创新,数学教学中要积极学生参与课堂,让学生在实践中去感受函数,丰富学生的情感体验,逐步形成正确的良好数学学习行为习惯.

函数是高中数学教学的核心内容,在解决很多数学问题时几乎都要用到函数这一工具,函数的教学在于启发学生的思维,为数理化的学习打下基础,逐渐在解决生活中的问题时建立起数学建模的思想. 可以看出高中函数教学在数学学习中的重要,为以后解决问题建立数学思维奠定基础.

一、高中数学函数教学方法的探究

(一)情景教学

要做到把函数问题生活化,创设简单明了的生活情景,把函数问题生活化,使学生从生活中理解认识并喜欢函数,进而喜欢数学.高中数学函数教学是提高学生数学综合思维的关键.作为一名高中数学教师,关键要激发学生学习数学的愿望,给学生打造一个锻炼思维和表达的平台.据调查,一节有效的课堂关键在于学生思维高度集中,调动学生思维发展.思辨能力的提高关键在于激发思维,教师要设计具有较好的思辨能力的高中数学函数的教学方式,以有利于提高学生的综合数学思维创造能力.

现代多媒体的发展已经普及,在教师课堂上已经成为不可或缺的一部分,多媒体教学是现代教学主要工具,而中学生的思维以浅性思维为主,依据学生的个性需求、利用多媒体的特点,去调动学生的积极性,营造情境,有利于创造浓厚课堂氛围,使学生对所学函数知识产生学习愿望,不仅可以调动学生的学习兴趣,而且可以吸引学生的注意力,激发学生的想象力,大大地提高了学生学习的积极性和主动性,从而带来了良好的教学效果.

(二)案例教学

高中数学函数教学不仅仅局限于使学生掌握基本的函数知识,而要拓展培养学生思考、解决并实际运用知识的数学能力.因此,要求数学教师在教学别注意对函数教学的案例引入与启发.通过案例的教学方式,让学生和教师处于相对平等的教与学的地位,使学生更能积极接受相关知识,营造一种积极的氛围.教师教学案例方式,可以扩大学生接受知识的兴趣,很好地将理论知识与实践有效结合.

在日常的数学函数授课过程中,教师传道授业解惑,积极用自己的知识去武装每一名学生的函数头脑,使他们能够进入一种积极的学习状态.如已知一个矩形的周长是60 m,一边长是L m,写出这个矩形的面积S(m2)与这个矩形的一边长L之间的函数关系式;或者比较直观案例,如已知圆的面积是S cm2,圆的半径是R cm,写出圆的面积S与半径R之间的函数关系式.这些函数案例都非常容易地把二次函数思维教学引入课堂之中.

(三)创新数学思维的锻炼

函数和方程思想是中学数学重要的思想方法之一,在不等式教学中巧妙地融合函数与方程的思想解题,使学生于潜移默化中克服思维定式,领会不等式、方程与函数之间的转化,激发学生思维的灵活性.高中数学函数教学要与函数与方程(不等式)有效的结合,使学生体会到函数、方程、不等式的统一关系,进一步体现出新教材中数形结合的思想,使学生体会到数学知识之间的连续性.可以看出函数与方程、函数与不等式密不可分,紧密联系.如利用kx+b=0或ax2+bx+c=0可以求函数与x轴的交点坐标问题,利用Δ与0的关系可以判定二次函数与x轴的交点个数等.具体案例为:

若直线y=2x+b与x轴的交点坐标是(2,0),则关于x的方程2x+b=0的解即x的值是多少?

高中数学教学需要学生具有综合性思维,而不是简单浅性思维,这需要高中数学教师不断创新数学教学方式以逐渐培养学生的数学综合思维,要学生从开始就要树立函数本身的思维要求,结合当下新课程改革提出的素质新要求,必须提高学生应用数学函数的能力,使学生不仅掌握扎实的数学函数理论知识,而且具有实际应用数学的能力,这就要求教师教学出发点要创新,学生的思维才能形成,这样高中数学函数知识在以后的数学知识学习中可以轻松应对.

二、结语

数学函数知识贯穿于高中数学学习的始终,这需要学生从接触函数知识就要产生兴趣,关键在于教师的与创新.文章针对高中数学教学方法的探究,通过对函数教学方式的研究,提出了情景教学和案例教学的方法,以对高中数学教学效果具有一定作用.此外,任何数学知识都是一个体系,是一个有机整体,不是孤立的,这就要求教师创新学生思维锻炼,如函数教学时函数、不等式和方程必须相互联系,这也是高考数学考试的重点,这就需要教师必须加强学生的数学综合性思维的养成.

【参考文献】

[2]邱强生.新课改下高中数学函数教学浅谈[J].校外教育,2012(4).

[3]关于高中数学教学方法的问题的探讨.

高中数学函数教学方法【2】

摘要:新课程标准中明确提出教学中要加强学生对基本概念和基本思想的理解与掌握,对一些核心概念和基本思想要贯穿高中数学教学的始终,帮助学生加深对数学知识的理解。

函数既然是数学教学的.基础模块,其基本性质基本概念的教学理应受到重视。

教师在学生牢牢掌握基础知识的同时,应该以函数为基础工具,努力开展其他数学模块的教学。

:高中数学;函数;教学方法

1.把握函数基本性质,理解函数核心概念

高中数学二次函数教学对于学生而言,的确是一个难点。

就函数概念而言包括定义、定义域、值域、反函数等。

函数的如例题: 如果函数 f( x) = | 4x - x2| + a 的函数与 x 轴有 4 个不同交点,求参数 a的取值范围。性质包括单调性、奇偶性以及周期性。

1.1 教学初步,认识函数概念与性质。

数学函数概念的提出,应该结合教学实际,提出问题、创设情境。

通过例举与概念相符、直观性较强的例子,让学生在学习抽象的函数概念时,能够形成较为感性的认识。

在以往的教学中,课堂教学方法虽然能很好地界定函数概念的内涵与外延,可是由于函数本身过于抽象,函数教学初步中,学生对函数基本概念的认识过于简单。

比如,函数基本三要素: 定义域、值域、对应法则的理解。

定义域是函数自变量的取值范围; 对应法则则是函数最直接的发现方式。

1.2 教学深入, 理解函数概念与性质。

在挖掘函数概念与性质的基础上理解概念和性质是对已经认知的概念的发展与完善。

新课程标准中要求学生要体验数学概念与性质的产生过程,理解与掌握的基础上能够真正运用其概念与性质。

函数教学中,函数单调性与周期性的研究是函数课堂教学一直涉及的问题。

比如指对数函数的单调性教学中,要根据函数的底数的范围( 0,1) 或者是( 1,+ ∞ ) 来判断其单调性,还有函数的单调性则要根据函数图像的拐点来划分单调区间。

二次函数的三种基本形式:1: 一 般 式:y=ax2+bx+c(a ≠ 0,a,b,c 为常数 ), 则称 y 为 x 的二次函数。

顶点坐标(-b/2a,4ac-b2/4a );2:顶点式:y=a(x-h)2+k 或y=a(x+m)2+k,顶点坐标为(h,k)或(-m,k);3:交点式(与 x 轴):y=a(x-x1)(x-x2) 重要概念: a,b,c 为常数,a ≠ 0,且 a 决定二次函数图象的开口方向,a>0 时,开口向上,a<0 时,开口向下。

a 的还可以决定开口大小 , a 的越大开口就越小 , a 的越小开口就越大3.结束语。

高中阶段对二次函数定义是:从一个 A(定义域)到 B(值域)上的映射?:A → B,使得 B 中的元素y=ax2+bx+c(a ≠ 0,a,b,c 为常数 ) 与 A 的元素 X 对应,记为?(x)= ax2+bx+c (a ≠ 0,a,b,c 为常数 ) 这里ax2+bx+c 表示对应法则,又表示定义域中的元素 X 在值域中的象,为了让学生掌握函数值的记号,我们可以作如下处理:

①:已知 f(x)= 2x2+x+2,求 f(a),f(a+1)这里不能把f(a+1) 理解为x=a+1 时的函数值,只能理解为自变量为a+1 的函数值。

一般有两种方法:解法 1:把所给表达式 x+1 作为一个整体进行配方:f(x+1)=x2-4x+1=(x+1)2-6(x+1)+6, 再 用 x 替 换 x+1 得f(x)= x2-6x+6解法 2:换元法:这是常用的方法对一般函数都适用。

令t=x+1,则 x=t-1∴f(t)=(t-1)2- 4(t-1)+1=t2-6t+6 从 而 ?(x)= x2-6x+6。

这样处理后对二次函数的定义就有了较清晰的认识了。

2.紧扣函数主导思想,解放单一解题模式

2.1 数形结合,巧妙解题。

特别是一些关于参数的问题,可以从几何学角度来考虑。

数形结合思想是数学教学的重要思想之一,"以形助数,以数解形"的思想能够使抽象的题目变得直观化、简单化。

如果用数形结合的函数思想来解决该问题会有意想不到的效果,观察上式可知,函数的图像是由二次函数经过翻折变换,再平移而得,则本题可看作 y = - a 与 y = |4x - x2| 的图像相交公共点的个数即可讨论 a 的范围。

2.2 分类讨论,化繁为简。

凡是数学结论,其必有使其成立的条件,数学方法的使用也没有完全的性,也必有其适用范围。

数学研究的很多问题中,它们的结论也不是确定的。

将繁复的理解过程分解为几个类别,再按照不同情况进行讨论研究这就是数学教学中的分类讨论思想。

面对结果不明问题或者参数问题都可以运用分类讨论思想。

一方面分类讨论思想可以将复杂问题分解成简单的小问题,另一方面也可避免漏解,从而提高学生解题能力与严谨的数学素养。

函数虽然是高中数学教学中的重难点,但是并非是不可攻克的。

只要掌握正确的教学方法,让学生认识函数、了解函数进而喜欢函数和应用函数。

函数作为一项重要的工具,将会为学生解决很多问题,数理化中遇到的很多问题,都可以用函数的方法解决。

当学生在其他学科学习中,发现函数的用处,会切身体会到函数的用处,从而自主自觉的用心学好函数。

函数的学习能够帮助学生建立起初步的建模思想,这是以后学生在深造的过程中需要具备的重要的解决问题的思想。

在高中时期学好数学也是为日后深造打好基础。

参考文献

[1] 王呼. 高中函数教学研究[D].西北师范大学,2006.

[2] 张久鹏. 新课改下高中函数教学研究[D].苏州大学,2010.

[3] 常莪. 高中函数教学研究与实践[D].云南师范大学,2009.

关于对数比较大小的问题,望各位老师解答

∵0由0∴0<(1-x)(1+x)1-x>0

先化成指数式log2底4 2^x=4

log3底4 3^x=4当时,方程表示圆,此时圆心为,半径为

很轻易的可以看出 个的值=2 然后你可以用2带入②式里 变成3^2=9 3的2次才等于9 4<9 可以看出log2底4比较大

对数函数的公式怎么记呢?

三,解答题:

(loga(x))'=1/(xlna)

(7)对于某些特殊的指数方程或对数方程可通过作函数图象来求其近似解.

特别地(lnx)'=1/x

对数和对数函数是高中数学的重要内容,是高考的必考知识,需要同学们无条件地掌握。但是很多同学在高一时就没有掌握好对数知识,以至于成为整个高中阶段数学学习的绊脚石。

加(减)法则:[f(x)+g(x)]'=f(x)'+g(x)'

乘法法则:[f(x)g(x)]'=f(x)'g(x)+g(x)'f(x)

除法法则:[f(x)/g(x)]'=[f(x)'g(x)-g(x)'f(x)]/g(x)^2

log函数对数注意

对数起初是为了解决天文学中的计算问题而产生的,因为实际应用性强,所以应用范围更广。特别是,在自然科学中,自然对数lnx应用更加普遍。

在高考中,对数问题比比皆是,尤其是函数与导数压轴题中,经常出现自然对数函数f(x)=lnx及复合函数。因而,对数函数是复习函数的重中之重。

大家认为对数函数的判定方法是什么? y=-log 2 x是对数函数吗?若是,y=log 1/2 x与它相等,有怎么解释。

是对数函数,凡是能写成y=logaX的都是对19,解析:由f(-1)=-2 ,得:f(-1)=1-(lga+2)+lgb=-2,解之lga-lgb=1,数函数,log前可以有正负号,不能有数字

有公式 log(a的n次方)X=(1/n)loga②:设f(x+1)= x2-4x+1,求 f(x)这是个复合函数问题,求对应法则。X

所以log(1/2)X=log(2的负一次方)X=-log2X

版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。