数学故事专辑/荒岛历险 李毓佩 少年出版社 《数学家的眼光》张景中 少年出版 《帮你学数学》张景中 少年出版 《童趣逻辑》陈宗明贝新祯 《果戈尔数字奇遇记》谈祥柏 上海科学技术出版社 数学故事专辑/《爱克斯探长数学,顾名思义,要按照自己的目前的年级来做出选择 如果有能力可以做一些奥数题》李毓佩 少年出版社 《数学魔术师》刘后
师范院校数学史教材书籍 师范数学系
师范院校数学史教材书籍 师范数学系
师范院校数学史教材书籍 师范数学系
《数学史通论》(翻译版)共分四大部分:6世纪前的数学;中世纪的数学(500-1000);早期近代数学(1400-1700);近代数学(1700-2000).《数学史通论》主要特色如下:1.灵活的编排:尽管《数学史通论》主要是按年代顺序编排的,但每一时期则是围绕某一专题展开的.读者通过查阅详尽的标题,就能对该时期历史的全程进行跟踪.2.不同时期的重要教材:《数学史通论》每一章中都会讨论一种或几种那个时期的重要教材,通过它们,不仅能学习那些伟大数学家的思想,今天的学生还能看到某些论题在过去是怎样被处理的.3.非西方数学:《数学的发现:对解题的理解研究和讲授》是美国数学家乔治·波利亚的力作.在书中,作者通过对各种类型生动而有趣的典型问题(有些是非数学的)进行细致剖析,提出它们的本质特征,从而总结出各种数学模型.作者以平易浅显的语言,应用启发式的叙述方法,讲述了有高度数学概括性的原理,使得各种水平的读者,都获益匪浅.这种以简驭繁,寓华于朴,平易而生动的讲授,充分反映了一位教育的风格特征.本书各章末尾的习题与评注,是正文的延续,它们都是经过作者的精心选择安排,与正文紧密关联的不可分割的部分.这些练习,为读者提供了一个进行创造性工作的极好机会,它将激起你的好胜心和主动精神,并使你品尝到数学工作的乐趣.《数学史通论》相当多的材料是关于、印度及世界的数学的;在插入章中还比较了大约在14世纪初各主要文明的数学.4.人物传记和评注:《数学史通论》配有100多张纪念历代数学家及其工作的邮票和,并着重用框图给出数学家的小传.
数学与艺此外,《数学史通论》在习题配置、专题讨论、内容的前后呼应等方面都有许多特色.《数学史通论》可供综合大学、师范院校以及理工科各专业的学生作为数学史课程的教材,也可供广大数学工作者和一般科学爱好者阅读参考.相信中学师生也会从中学数学的数学史《数学史通论》中获益.术
《数学史通论》(翻译版)共分四大部分:6世纪前的数学;中世纪的数学(500-1000);早期近代数学(1400-1700);近代数学(1700-2000).《数学史通论》主要特色如下:1.灵活的编排:尽管《数学史通论》主要是按年代顺序编排的,但每一时期则是围绕某一专题展开的.读者通过查阅详尽的标题,就能对该时期历史的全程进行跟踪.2.不同时期的重要教材:《数学史通论》每一章中都会讨论一种或几种那个时期的重要教材,通过它们,不仅能学习那些伟大数学家的思想,今天的学生还能看到某些论题在过去是怎样被处理的.3.非西方数学:《数学史通论》相当多的材料是关于、印度及世界的数学的;在插入章中还比较了大约在14世纪初各主要文明的数学.4.人物传记和评注:《数学史通论》配有100多张纪念历代数学家及其工作的邮票和,并着重用框图给出数学家的小传.
此外,《数学史通论》在习题配置、专题讨论、内容的前后呼应等方面都有许多特色.《数学史通论》可供综合大学、师范院校以及理工科各专业的学生作为数学史课程的教材,也可供广大数学工作者和一般科学爱好者阅读参考.相信中学师生也会从《数学史通论》中获益.数学与艺术
数学对艺术的影响由来已久,在文艺复兴时期艺术家利用原理创作出不朽的名作,在20世纪荷兰艺术家埃舍尔对无限拼图的探索给人以启迪,萨尔瓦多·达利利用四维立方体的展开图画出了使人震撼的作品.艺术家们从斐波那契数列、最小曲面、麦比乌斯带中得到启发,数学家们利用睢塑来宣扬数学的成就.
高《数学的发现:对解题的理解研究和讲授》是美国数学家乔治·波利亚的力作.在书中,作者通过对各种类型生动而有趣的典型问题(有些是非数学的)进行细致剖析,提出它们的本质特征,从而总结出各种数学模型.作者以平易浅显的语言,应用启发式的叙述方法,讲述了有高度数学概括性的原理,使得各种水平的读者,都获益匪浅.这种以简驭繁,寓华于朴,平易而生动的讲授,充分反映了一位教育的风格特征.本书各章末尾的习题与评注,是正文的延续,它们都是经过作者的精心选择安排,与正文紧密关联的不可分割的部分.这些练习,为读者提供了一个进行创造性工作的极好机会,它将激起你的好胜心和主动精神,并使你品尝到数学工作的乐趣.观点下的初等数学
本书是克莱因根据自己在哥廷根大学多年为德国中学数学教师及在校学生开设的讲座所撰写的基础数学普及读物.该书反映了他对数学的许多观点,向人们生动地展示了的遗风,出版后被译成多种文字,是一部数学教育的不朽杰作,影响至今不衰.全书共分3卷.卷:算术,代数、分析;第二卷:几何;第三卷:数学与近似数学.
克莱因认为函数为数学的”灵魂”.应该成为中学数学的“基石”,应该把算术、代数和几何方面的内容,通过几何的形式用以函数为中心的观念综合起来;强调要用近代数学的观点来改造传统的中学数学内容,主张加强函数和微积分的教学,改革和充实代数的内容,倡导”高观点下的初等数学”意识.在克莱因看来,一个数学教师的职责是:”应使学生了解数学并不是孤立的各门学问,而是一个有机的整体”;基础数学的教师应该站在更高的视角(高等数学)来审视.理解初等数学问题,只有观点高了,事物才能显得明了而简单;一个称职的教师应当掌握或了解数学的各种概念、方法及其发展与完善的过程以及数学教育演化的经过.他认为”有关的每一个分支,原则上应看做是数学整体的代表”,“有许多初等数学的现象只有在非初等的理论结构内才能深刻地理解”.
本书是根据我国“中学数学教育标准”撰写的.书中介绍了与中学数学教材内容相配套的数学史知识,如球体积公式的历史、二项式定理的历史、n倍角正、余弦公式的历史、解析几何的诞生、对数的发明、机会游戏与概率等;还从理论上探讨了数学史与数学教育的关系,阐述了数学史在数学教学中的作用及如何将数学史融入数学教育等问题,是师范院校数学系学生、数学史教师和中学数学教师的参考书.
小学课程一般涵盖以下方面:1. 语文:包括阅读、写作、听说、数学史通论(翻译版)(海外数学类教材系列丛书)语法等方面的教学。2. 数学:涵盖数学概念和基本运算,如加减乘除、分数、比例、几何等。3. 英文:从基础的词汇、语法、口语交流等,到阅读理解、写作、听力等方面。4. 常识(综合科目):涵盖自然科学、科学、历史、地理、公民教育等方面的知识。5. 音乐、美术、体育:培养学生的审美能力和自我表达能力,同时也有益于学生的身体健康。6. 科技教育:培养学生的科学探究兴趣,如计算机程序、电子设备、机械组装等。7. 个人和发展:培养学生的合作精神、批判思维、自我创新能力等。总的来说,小学的课程设置比较全面,注重学科间的协调与整合,旨在培养学生的全面素质。
的数学教育是最难的,国外的数学基本上都是弱智,他们的题目,只要你看懂了,就都会做了。
有很多关于数学的书籍呀,你去书店里随便一找都能找得到一堆其实学生到美国学习,稍微努力一下,就可以拿到奖学金。
很简单
而刚上初中就完事了
的数学教育的确是世界上最难的,我们在好多的数学竟赛中都的了奖。这是大家公认的事数学的发现实了。
五年高考三年模拟,超棒的哦,还有步步高和分层训练,都是高中生必备
小学数学他们的数学确实很简单!
二有些人对于数学和艺术有成见,认为数学通过人的右脑工作,艺术通过人的左脑丁作.数学家理性而严谨,艺术家感性而浪漫.他们是两个完全不同类型的人群.本书要推翻这个成见.在本书中读者将看到一些数学家如何为艺术而孜孜不倦地工作,而一些艺术家如何热衷于数学的发现.事实上.现在已经有这样一些现代数学家他们不仅是现代数学的开拓者,而且是造诣很深的艺术家,同时也有这样一些艺术家.他们利用数学原理创作出使人意想不到的作品,在这里数学与艺术完全沟通起来了.年级(上下)
九年级(上mathematics eduction in China 有悠久的历史,早在西周时期,数学已作为“六艺”之一,成为专门的学问,唐初国子监增设算学馆,设有算学博士和助教,使用李淳风等编纂注释的《算经十书》为教材。明代算科考试亦以这些教材为准(见数学史)。下)
你能先说下你的数学基础吗?初中生,高中生,大学生还是什么?
《数学史通论》(翻译版)共分四大部分:6世纪前的数学;中世纪的数学(500-1000);早期近代数学(1400-1700);近代数学(1700-2000).《数学史通论》主要特色如下:1.灵活的编排:尽管《数学史通论》主要是按年代顺序编排的,但每一时期则是围绕某一专题展开的.读者通过查阅详尽的标题,就能对该时期历史的全程进行跟踪.2.不同时期的重要教材:《数学史通论》每一章中都会讨论一种或几种那个时期的重要教材,通过它们,不仅能学习那些伟大数学家的思想,今天的学生还能看到某些论题在过去是怎样被处理的.3.非西方数学:《数学史通论》相当多的材料是关于、印度及世界的数学的;在插入章中还比较了大约在14世纪初各主要文明的数学.4.人物传记和评注:《数学史通论》配有100多张纪念历代数学家及其工作的邮票和,并着重用框图给出数学家的小传.
数学与艺术
数学对艺术的影响由来已久,在文艺复兴时期艺术家利用原理创作出不朽的名作,在20世纪荷兰艺术家埃舍尔对无限拼图的探索给人以启迪,萨尔瓦多·达利本书对我国从事数学学习和数学教育的广大读者具有较好的启示作用,用本书译者之一,我国数学家、数学教育家吴大任先生的话来说,”所有对数学有一定了解的人都可以从中获得教益和启发”,此书”至今读来仍然感到十分亲切.这是因为,其内容主要是基础数学,其观点蕴含着真理……”.利用四维立方体的展开图画出了使人震撼的作品.艺术家们从斐波那契数列、最小曲面、麦比乌斯带中得到启发,数学家们利用睢塑来宣扬数学的成就.
高观点下的初等数学
本书是克莱因根据自己在哥廷根大学多年为德国中学数学教师及在校学生开设的讲座所撰写的基础数。。。学普及读物.该书反映了他对数学的许多观点,向人们生动地展示了的遗风,出版后被译成多种文字,是一部数学教育的不朽杰作,影响至今不衰.全书共分3卷.卷:算术,代数、分析;第二卷:几何;第三卷:数学与近似数学.
克莱因认为函数为数学的”灵魂”.应该成为中学数学的“基石”,应该把算术、代数和几何方面的内容,通过几何的形式用以函数为中心的观念综合起来;强调要用近代数学的观点来改造传统的中学数学内容,主张加强函数和微积分的教学,改革和充实代数的内容,倡导”高观点下的初等数学”意识.在克莱因看来,一个数学教师的职责是:”应使学生了解数学并不是孤立的各门学问,而是一个有机的整体”;基础数学的教师应该站在更高的视角(高等数学)来审视.理解初等数学问题,只有观点高了,事物才能显得明了而简单;一个称职的教师应当掌握或了解数学的各种概念、方法及其发展与完善的过程以及数学教育演化的经过.他认为”有关的每一个分支,原则上应看做是数学整体的代表”,“有许多初等数学的现象只有在非初等的理论结构内才能深刻地理解”.
本书是根据我国“中学数学教育标准”撰写的.书中介绍了与中学数学教材内容相配套的数学史知识,如球体积公式的历史、二项式定理的历史、n倍角正、余弦公式的历史、解析几何的诞生、对数的发明、机会游戏与概率等;还从理论上探讨了数学史与数学教育的关系,阐述了数学史在数学教学中的作用及如何将数学史融入数学教育等问题,是师范院校数学系学生、数学史教师和中学数学教师的参考书.
版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。