高中数学每章的重点知识归纳 高中数学每一章的知识框架图

各省高考 2024-11-18 10:15:37

高中数学必考知识点归纳

高考数学必考知识点有哪些,高中数学重点知识有哪些,需要我们掌握?下面是我为大家整理的关于高中数学必考知识点归纳,希望对您有所帮助。

高中数学每章的重点知识归纳 高中数学每一章的知识框架图高中数学每章的重点知识归纳 高中数学每一章的知识框架图


高中数学每章的重点知识归纳 高中数学每一章的知识框架图


高中数学每章的重点知识归纳 高中数学每一章的知识框架图


高中数学知识点 总结

1.必修课程由5个模块组成:

必修1:,函数概念与基本初等函数(指数函数,幂函数,对数函数)

必修2:立体几何初步、平面解析几何初步。

必修3:算法初步、统计、概率。

必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。

必修5:解三角形、数列、不等式。

以上所有的知识点是所有高中生必须掌握的,而且要懂得运用。

选修课程分为4个系列:

系列1:2个模块

选修1-1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。

选修1-2:统计案例、推理与证明、数系的扩充与复数、框图

系列2: 3个模块

选修2-1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何

选修2-2:导数及其应用、推理与证明、数系的扩充与复数

选修2-3:计数原理、随机变量及其分布列、统计案例

选修4-1:几何证明选讲

选修4-4:坐标系与参数方程

选修4-5:不等式选讲

2.高考数学必考重难点及其考点:

重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数

难点:函数,圆锥曲线

高考相关考点:

1. 与逻辑:的逻辑与运算(一般出现在高考卷的道选择题)、简易逻辑、充要条件

2. 函数:映射与函数、函数解析式与定义域、值域与值、反函数、三大性质、函数图象、指数函数、对数函数、函数的应用

3. 数列:数列的有关概念、等数列、等比数列、数列求通项、求和

4. 三角函数:有关概念、同角关系与诱导公式、和倍半公式、求值、化简、证明、三角函数的图像及其性质、应用

5. 平面向量:初等运算、坐标运算、数量积及其应用

6. 不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、不等式(经常出现在大题的选做题里)、不等式的应用

7. 直线与圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系

8. 圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用

9. 直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量

10. 排列、组合和概率:排列、组合应用题、二项式定理及其应用

11. 概率与统计:概率、分布列、期望、方、抽样、正态分布

12. 导数:导数的概念、求导、导数的应用

13. 复数:复数的概念与运算

高中数学易错知识点整理

一.与函数

1.进行的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解.

2.在应用条件时,易A忽略是空集的情况

3.你会用补集的思想解决有关问题吗?

4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?

5.你知道“否命题”与“命题的否定形式”的区别.

6.求解与函数有关的问题易忽略定义域优先的原则.

7.判断函数奇偶性时,易忽略检验函数定义域是否关于__对称.

8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域.

9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调.例如:.

10.你熟练地掌握了函数单调性的证明 方法 吗?定义法(取值,作,判正负)和导数法

11.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用或不等式表示.

12.求函数的值域必须先求函数的定义域。

13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?

14.解对数函数问题时,你注意到真数与底数的限制条件了吗?

(真数大于零,底数大于零且不等于1)字母底数还需讨论

15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求值?

16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。

17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?

二.不等式

18.利用均值不等式求值时,你是否注意到:“一正;二定;三等”.

19.不等式的解法及其几何意义是什么?

20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?

21.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.

22.在求不等式的解集、定义域及值域时,其结果一定要用或区间表示;不能用不等式表示.

23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a<0.

三.数列

24.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?

25.在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。

26.你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?

27.数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。)

28.应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先设时成立,再结合一些数学方法用来证明时也成立。

四.三角函数

29.正角、负角、零角、象限角的概念你清楚吗?,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与象限的角;终边相同的角和相等的角的区别吗?

30.三角函数的定义及单位圆内的三角函数线(正弦线、余弦线、正切线)的定义你知道吗?

31.在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?

32.你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角.异角化同角,异名化同名,高次化低次)

33.反正弦、反余弦、反正切函数的取值范围分别是

34.你还记得某些特殊角的三角函数值吗?

35.掌握正弦函数、余弦函数及正切函数的图象和性质.你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗?

36.函数的图象的平移,方程的平移以及点的平移公式易混:

(1)函数的图象的平移为“左+右-,上+下-”;如函数的图象左移2个单位且下移3个单位得到的图象的解析式为,即.

(2)方程表示的图形的平移为“左+右-,上-下+”;如直线左移2个个单位且下移3个单位得到的图象的解析式为,即.

(3)点的平移公式:点按向量平移到点,则.

37.在三角函数中求一个角时,注意考虑两方面了吗?(先求出某一个三角函数值,再判定角的范围)

38.形如的周期都是,但的周期为。

39.正弦定理时易忘比值还等于2R.

五.平面向量

40.数0有区别,的模为数0,它不是没有方向,而是方向不定。可以看成与任意向量平行,但与任意向量都不垂直。

41.数量积与两个实数乘积的区别:

在实数中:若,且ab=0,则b=0,但在向量的数量积中,若,且,不能推出.

已知实数,且,则a=c,但在向量的数量积中没有.

在实数中有,但是在向量的数量积中,这是因为左边是与共线的向量,而右边是与共线的向量.

42.是向量与平行的充分而不必要条件,是向量和向量夹角为钝角的必要而不充分条件。

六.解析几何

43.在用点斜式、斜截式求直线的方程时,你是否注意到不存在的情况?

44.用到角公式时,易将直线l1、l2的斜率k1、k2的顺序弄颠倒。

45.直线的倾斜角、到的角、与的夹角的取值范围依次是。

46.定比分点的坐标公式是什么?(起点,中点,分点以及值可要搞清),在利用定比分点解题时,你注意到了吗?

47.对不重合的两条直线

(建议在解题时,讨论后利用斜率和截距)

48.直线在两坐标轴上的截距相等,直线方程可以理解为,但不要忘记当时,直线在两坐标轴上的截距都是0,亦为截距相等。

49.解决线性规划问题的基本步骤是什么?请你注意解题格式和完整的文字表达.(①设出变量,写出目标函数②写出线性约束条件③画出可行域④作出目标函数对应的系列平行线,找到并求出解⑦应用题一定要有答。)

50.三种圆锥曲线的定义、图形、标准方程、几何性质,椭圆与双曲线中的两个特征三角形你掌握了吗?

51.圆、和椭圆的参数方程是怎样的?常用参数方程的方法解决哪一些问题?

52.利用圆锥曲线第二定义解题时,你是否注意到定义中的定比前后项的顺序?如何利用第二定义推出圆锥曲线的焦半径公式?如何应用焦半径公式?

53.通径是抛物线的所有焦点弦中短的弦.(想一想在双曲线中的结论?)

54.在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?椭圆,双曲线二次项系数为零时直线与其只有一个交点,判别式的限制.(求交点,弦长,中点,斜率,对称,存在性问题都在下进行).

55.解析几何问题的求解中,平面几何知识利用了吗?题目中是否已经有坐标系了,是否需要建立直角坐标系?

七.立体几何

56.你掌握了空间图形在平面上的直观画法吗?(斜二测画法)。

57.线面平行和面面平行的定义、判定和性质定理你掌握了吗?线线平行、线面平行、面面平行这三者之间的联系和转化在解决立几问题中的应用是怎样的?每种平行之间转换的条件是什么?

58.三垂线定理及其逆定理你记住了吗?你知道三垂线定理的关键是什么吗?(一面、四线、三垂直、立柱即面的垂线是关键)一面四直线,立柱是关键,垂直三处见

59.线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为”一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行”而导致证明过程跨步太大.

60.求两条异面直线所成的角、直线与平面所成的角和二面角时,如果所求的角为90°,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法.

61.异面直线所成角利用“平移法”求解时,一定要注意平移后所得角等于所求角(或其补角),特别是题目告诉异面直线所成角,应用时一定要从题意出发,是用锐角还是其补角,还是两种情况都有可能。

62.你知道公式:和中每一字母的意思吗?能够熟练地应用它们解题吗?

63.两条异面直线所成的角的范围:0°<α≤90° >

直线与平面所成的角的范围:0o≤α≤90°

二面角的平面角的取值范围:0°≤α≤180°

64.你知道异面直线上两点间的距离公式如何运用吗?

65.平面图形的翻折,立体图形的展开等一类问题,要注意翻折,展开前后有关几何元素的“不变量”与“不变性”。

66.立几问题的求解分为“作”,“证”,“算”三个环节,你是否只注重了“作”,“算”,而忽视了“证”这一重要环节?

67.棱柱及其性质、平行六面体与长方体及其性质.这些知识你掌握了吗?(注意运用向量的方法解题)

68.球及其性质;经纬度定义易混.经度为二面角,纬度为线面角、球面距离的求法;球的表面积和体积公式.这些知识你掌握了吗?

八.排列、组合和概率

69.解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合.

解排列组合问题的规律是:相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法;定序问题倍缩法;多元问题分类法;有序分配问题法;选取问题先排后排法;至多至少问题间接法.

70.二项式系数与展开式某一项的系数易混,第r+1项的二项式系数为。二项式系数项与展开式中系数项易混.二项式系数项为中间一项或两项;展开式中系数项的求法要用解不等式组来确定r.

71.你掌握了三种常见的概率公式吗?(①等可能的概率公式;②互斥有一个发生的概率公式;③相互同时发生的概率公式.)

72.二项式展开式的通项公式、n次重复试验中A发生k次的概率易记混。

通项公式:它是第r+1项而不是第r项;

A发生k次的概率:.其中k=0,1,2,3,…,n,且0

<1,p+q=1.< p="">

73.求分布列的解答题你能把步骤写全吗?

74.如何对总体分布进行估计?(用样本估计总体,是研究统计问题的一个基本思想方法,一般地,样本容量越大,这种估计就越,要求能画出频率分布表和频率分布直方图;理解频率分布直方图矩形面积的几何意义.)

75.你还记得一般正态总体如何化为标准正态总体吗?(对任一正态总体来说,取值小于x的概率,其中表示标准正态总体取值小于的概率)

相关 文章 :

1. 高中数学重要知识点巧记口诀

2. 高中数学学习方法:知识点总结全版

3. 高一数学必背公式及知识汇总

4. 高一数学重点知识点公式总结

5. 高中数学重点知识结构总结 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

高中数学知识点归纳总结

想要了解高中数学知识点的小伙伴,赶紧来瞧瞧吧!下面由我为你精心准备了“高中数学知识点归纳总结”,本文仅供参考,持续关注本站将可以持续获取更多资讯!

高中数学知识点归纳总结

1.等数列的定义

如果一个数列从第2项起,每一项与它的前一项的等于同一个常数,那么这个数列就叫做等数列,这个常数叫做等数列的公,通常用字母d表示。

2.等数列的通项公式

若等数列{an}的首项是a1,公是d,则其通项公式为an=a1+(n-1)d。

3.等中项

如果A=(a+b)/2,那么A叫做a与b的等中项。

4.等数列的常用性质

(1)通项公式的推广:an=am+(n-m)d(n,m∈N_)。

(2)若{an}为等数列,且m+n=p+q,则am+an=ap+aq(m,n,p,q∈N_)。

(3)若{an}是等数列,公为d,则ak,ak+m,ak+2m,…(k,m∈N_)是公为md的等数列。

(4)数列Sm,S2m-Sm,S3m-S2m,…也是等数列。

(5)S2n-1=(2n-1)an。

(6)若n为偶数,则S偶-S奇=nd/2;若n为奇数,则S奇-S偶=a中(中间项)。

注意:

一个推导

利用倒序相加法推导等数列的前n项和公式:

Sn=a1+a2+a3+…+an,①

Sn=an+an-1+…+a1,②

①+②得:Sn=n(a1+an)/2。

两个技巧

已知三个或四个数组成等数列的一类问题,要善于设元。

(1)若奇数个数成等数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,…。

(2)若偶数个数成等数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,…,其余各项再依据等数列的定义进行对称设元。

四种方法

等数列的判断方法

(1)定义法:对于n≥2的任意自然数,验证an-an-1为同一常数;

(2)等中项法:验证2an-1=an+an-2(n≥3,n∈N_)都成立;

(3)通项公式法:验证an=pn+q;

(4)前n项和公式法:验证Sn=An2+Bn。

注:后两种方法只能用来判断是否为等数列,而不能用来证明等数列。

拓展阅读:高中数学选择题解题技巧

1、直接解题法(直接法)

直接从题设条件出发,运用有关概念、性质、定理、法则和公式等知识,通过严密的推理和准确的运算,从而得出正确的结论,然后对照题目所给出的选择支“对号入座”作出相应的选择。涉及概念、性质的辨析或运算较简单的题目常用直接法。直接法是解答选择题常用的基本方法,低档选择题可用此法迅速求解。直接法适用的范围很广,只要运算正确必能得出正确的。提高直接法解选择题的能力,准确地把握中档题目的“个性”,用简便方法巧解选择题,是建立在扎实掌握“三基”的基础上,否则一味求快则会快中出错。

2、特殊值解题

正确的选择对象,在题设普遍条件下都成立的情况下,用特殊值(取得越简单越好)进行探求,从而清晰、快捷地得到正确的,即通过对特殊情况的研究来判断一般规律,是解答本类选择题的佳策略。近几年高考选择题中可用或结合特例法解答的约占30%左右。通过取适合条件的特殊值、特殊图形、特殊位置等进行分析,往往能简缩思维过程、降低难度而迅速地解。

3、数形结合法或者割补法(解析几何常用方法):

巧妙地利用割补法,可以将不规则的图形转化为规则的图形,这样可以使问题得到简化,从而缩短解题长度。对于一些具有几何背景的数学问题,如能构造出与之相应的图形进行分析,往往能在数形结合、以形助数中获得形象直观的解法。

4、极限法

这是高中选修部分,不过用在解题会很快。极限思想是一种基本而重要的数学思想。当一个变量无限接近一个定量,则变量可看作此定量。对于某些选择题,若能恰当运用极限思想思考,则往往可使过程简单明快。用极限法是解选择题的一种有效方法。它根据题干及选择支的特征,考虑极端情形,有助于缩小选择面,迅速找到。

高考数学复习技巧有哪些

1、重点知识,落实到位

函数、导数、数列、向量、不等式、直线与平面的位置关系、直线与圆锥曲线、概率、数学思想方法等,这些既是高中数学教学的重要内容,又是高考的重点,而且常考常新,经久不衰。因此,在复习备考中,一定要围绕上述重点内容作重点复习,保证复习时间、狠下功夫、下足力气、练习到位、反思到位、效果到位。并将这些板块知识有机结合,形成知识链、方法群。如聚集立体几何与其他知识的整合,就包括它与方程、函数、三角、向量、排列组合、概率、解析几何等的整合,善于将已经完成过的题目清理,整理出的解题通法和一般的策略,“在知识网络交汇点设计试题”是近几年高考命题改革反复强调的重要理念之一,在复习备考的过程中,要打破数学章节界限,把握好知识间的纵横联系与融合,形成有序的网络化知识体系。

2、新增内容,注重辐射

新增内容是新课程的活力和精髓,是近、现代数学在高中的渗透,且占整个高中教学内容的40%左右,而高考这部分内容的分值,远远超出其在教学中所占的比例。试题加大了对新教材中增加的线性规划、向量、概率、导数等知识的考查力度,对新增内容一一作了考查,分值达50多分,并保持了将概率内容作为应用题的格局。因此,复习中要强化新增知识的学习,特别是新增数学知识与其它知识的结合。向量在解题中的作用明显加强,用导数做工具研究函数的单调性和证明不等式问题,导数亦成为高考解答题目的必考内容之一。

3、思想方法,重在体验

数学思想方法作为数学的精髓,历来是高考数学考查的重中之重。“突出方法永远是高考试题的特点”,这就要求我们在复习备考中应重视“通法”,重点抓方法渗透。

首先,我们应充分地重视数学思想方法的总结提炼,尽管数学思想方法的掌握是一个潜移默化的过程,但是我们认为,遵循“揭示—渗透”的原则,在复习备考中采取一些措施,对于数学思想方法以及数学基本方法的掌握是可以起到促进作用的,例如,在复习一些重点知识时,可以通过重新揭示其发生过程,适时渗透数学思想方法。

其次,要真正地重视“通法”,切实淡化“特技”,我们不应过分地追求特殊方法和特殊技巧,不必将力气花在钻偏题、怪题和过于繁琐、运算量太大的题目上,而应将主要精力放在基本方法的灵活运用和提高学生的思维层次上,另外,在复习中,还应充分重视解题回顾,借助于解题之后的反思、总结、引申和提炼来深化知识的理解和方法的领悟。

4、综合能力,强化训练

近年来高考数学试题,在加强基础知识考查的同时,突出能力立意。以能力立意,就是从问题入手,把握学科的整体意义,用统一的数学观点组织材料,对知识的考查倾向于理解和应用,特别是知识的综合性和灵活运用,这就要求我们在复习过程中,应打破数学内部学科界限,加强综合解题能力的训练;注重培养学生收集处理信息的能力、语言文字的表达能力及建模能力;力求打破能力学科化的界限,用数学的眼光去分析生产和生活及其他学科的一些具体问题。

5、规范解题,正本清源

高三数学的复习效果,终显化的是一种解题的能力,解题能力的高低,直接决定了复习的成败,如何提高解题能力?建议从下面几方面入手:

(1)认真审题自觉化,通过反复读题、对问题重新表述、对数学语言加以表征等加工策略,寻找解题突破口;

(2)思路探求情境化,通过对问题情境的典型性、层次性、综合性分析,去寻找解法的情境;

(3)思维过程显性化,“听得懂,不会做”是没有真正学会思考,解题时要追问:怎样想,为什么要这样想?特别是理清怎样做,为什么要这样做;

(4)解题方法多样化、格式书写规范化、重要结论工具化、解后反思制度化。

高中数学知识点重点总结大全

总结 是指团体、企业单位和个人对某一阶段的学习、它可以给我们下一阶段的学习和工作生活做指导,因此十分有必须要写一份总结哦。下面是我给大家带来的高中数学知识点重点总结大全,以供大家参考!

高中数学知识点重点总结大全

的有关概念

1)(集):某些指定的对象集在一起就成为一个(集).其中每一个对象叫元素

注意:①与的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。

②中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个)。

③具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件

2)的表示 方法 :常用的有列举法、描述法和图文法

3)的分类:有限集,无限集,空集。

4)常用数集:N,Z,Q,R,N

子集、交集、并集、补集、空集、全集等概念

1)子集:若对_∈A都有_∈B,则AB(或AB);

2)真子集:AB且存在_0∈B但_0A;记为AB(或,且)

3)交集:A∩B={_|_∈A且_∈B}

4)并集:A∪B={_|_∈A或_∈B}

5)补集:CUA={_|_A但_∈U}

注意:A,若A≠?,则?A;

若且,则A=B(等集)

与元素

掌握有关的术语和符号,特别要注意以下的符号:(1)与、?的区别;(2)与的区别;(3)与的区别。

子集的几个等价关系

①A∩B=AAB;②A∪B=BAB;③ABCuACuB;

④A∩CuB=空集CuAB;⑤CuA∪B=IAB。

交、并集运算的性质

①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;

③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;

有限子集的个数:

设A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。

练习题:

已知M={_|_=m+,m∈Z},N={_|_=,n∈Z},P={_|_=,p∈Z},则M,N,P满足关系()

A)M=NPB)MN=PC)MNPD)NPM

分析一:从判断元素的共性与区别入手。

解答一:对于M:{_|_=,m∈Z};对于N:{_|_=,n∈Z}

对于P:{_|_=,p∈Z},由于3(n-1)+1和+1都表示被3除余1的数,而6m+1表示被6除余1的数,所以MN=P,故选B。

人教版 高一数学 知识点整理

考点一、映射的概念

1.了解对应大千世界的对应共分四类,分别是:一对一多对一一对多多对多

2.映射:设A和B是两个非空,如果按照某种对应关系f,对于A中的任意一个元素_,在B中都存在的一个元素y与之对应,那么,就称对应f:A→B为A到B的一个映射(mapping).映射是特殊的对应,简称“对一”的对应。包括:一对一多对一

考点二、函数的概念

1.函数:设A和B是两个非空的数集,如果按照某种确定的对应关系f,对于A中的任意一个数_,在B中都存在确定的数y与之对应,那么,就称对应f:A→B为A到B的一个函数。记作y=f(_),_A.其中_叫自变量,_的取值范围A叫函数的定义域;与_的值相对应的y的值函数值,函数值的叫做函数的值域。函数是特殊的映射,是非空数集A到非空数集B的映射。

2.函数的三要素:定义域、值域、对应关系。这是判断两个函数是否为同一函数的依据。

3.区间的概念:设a,bR,且a

①(a,b)={_a

⑤(a,+∞)={__>a}⑥[a,+∞)={__≥a}⑦(-∞,b)={__

考点三、函数的表示方法

1.函数的三种表示方法列表法图象法解析法

2.分段函数:定义域的不同部分,有不同的对应法则的函数。注意两点:①分段函数是一个函数,不要误认为是几个函数。②分段函数的定义域是各段定义域的并集,值域是各段值域的并集。

考点四、求定义域的几种情况

①若f(_)是整式,则函数的定义域是实数集R;

②若f(_)是分式,则函数的定义域是使分母不等于0的实数集;

③若f(_)是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数;

④若f(_)是对数函数,真数应大于零。

⑤.因为零的零次幂没有意义,所以底数和指数不能同时为零。

⑥若f(_)是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数;

⑦若f(_)是由实际问题抽象出来的函数,则函数的定义域应符合实际问题

高一数学知识点归纳大全

圆的方程定义:

圆的标准方程(_—a)2+(y—b)2=r2中,有三个参数a、b、r,即圆心坐标为(a,b),只要求出a、b、r,这时圆的方程就被确定,因此确定圆方程,须三个条件,其中圆心坐标是圆的定位条件,半径是圆的定形条件。

直线和圆的位置关系:

1、直线和圆位置关系的判定方法一是方程的观点,即把圆的方程和直线的方程联立成方程组,利用判别式Δ来讨论位置关系。

①Δ>0,直线和圆相交、②Δ=0,直线和圆相切、③Δ<0,直线和圆相离。

方法二是几何的观点,即把圆心到直线的距离d和半径R的大小加以比较。

①dR,直线和圆相离、

2、直线和圆相切,这类问题主要是求圆的切线方程、求圆的切线方程主要可分为已知斜率k或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况。

3、直线和圆相交,这类问题主要是求弦长以及弦的中点问题。

切线的性质

⑴圆心到切线的距离等于圆的半径;

⑵过切点的半径垂直于切线;

⑶经过圆心,与切线垂直的直线必经过切点;

⑷经过切点,与切线垂直的直线必经过圆心;

当一条直线满足

(1)过圆心;

(2)过切点;

(3)垂直于切线三个性质中的两个时,第三个性质也满足。

切线的判定定理

经过半径的外端点并且垂直于这条半径的直线是圆的切线。

切线长定理

从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角。

高中数学知识点重点总结大全相关 文章 :

★ 高中数学知识点总结及公式大全

★ 高中数学知识点全总结全版

★ 高中数学知识点全总结

★ 高中数学知识点大全

★ 高一数学知识点汇总大全

★ 高中数学知识要点总结范文

★ 高中数学知识点总结归纳新

★ 高中数学知识点总结

★ 高一数学知识点总结归纳

★ 高一数学知识点全面总结

高中数学必修一到必修五的知识点归纳有哪些?

高中数学必修一到必修五的知识点归纳有:

1、向量的基本概念

(1)向量

既有大小又有方向的量叫做向量。物理学中又叫做矢量。如力、速度、加速度、位移就是向量。

(2)平行向量

方向相同或相反的非零向量,叫做平行向量。平行向量也叫做共线向量。

(3)相等向量

长度相等且方向相同的向量叫做相等向量。

2、对于向量概念需注意

(1)向量是区别于数量的一种量,既有大小,又有方向,任意两个向量不能比较大小,只可以判断它们是否相等,但向量的模可以比较大小。

(2)向量共线与表示它们的有向线段共线不同。向量共线时,表示向量的有向线段可以是平行的,不一定在同一条直线上;而有向线段共线则是指线段必须在同一条直线上。

(3)由向量相等的定义可知,对于一个向量,只要不改变它的大小和方向,它是可以任意平行移动的,因此用有向线段表示向量时,可以任意选取有向线段的起点,由此也可得到:任意一组平行向量都可以平移到同一条直线上。

3、求函数的单调性:

利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导,(1)如果恒f(x)0,则函数yf(x)在区间(a,b)上为增函数;(2)如果恒f(x)0,则函数yf(x)在区间(a,b)上为减函数;(3)如果恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数。

4、求函数的极值:

设函数yf(x)在x0及其附近有定义,如果对x0附近的所有的点都有f(x)f(x0)(或f(x)f(x0)),则称f(x0)是函数f(x)的极小值(或极大值)。

5、求函数的值与小值:

如果函数f(x)在定义域I内存在x0,使得对任意的xI,总有f(x)f(x0),则称f(x0)为函数在定义域上的值。函数在定义域内的极值不一定,但在定义域内的值是一定的。

高中知识点总结

高中数学的章知识是,知识是贯穿高一到高三整个高中阶段,甚至知识还经常放到高考数学的后一道题中,因此知识对我们的高中数学很重要,如你想学好,就来看看吧。

一、知识归纳:

1、的有关概念。

1)(集):某些指定的对象集在一起就成为一个(集).其中每一个对象叫元素

注意:①与的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。

②中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个)。

③具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件

2)的表示方法:常用的有列举法、描述法和图文法

3)的分类:有限集,无限集,空集。

4)常用数集:N,Z,Q,R,N

2、子集、交集、并集、补集、空集、全集等概念。

1)子集:若对x∈A都有x∈B,则A B(或A B);

2)真子集:A B且存在x0∈B但x0 A;记为A B(或 ,且 )

3)交集:A∩B={x| x∈A且x∈B}

4)并集:A∪B={x| x∈A或x∈B}

5)补集:CUA={x| x A但x∈U}

注意:①? A,若A≠?,则? A ;

②若 , ,则 ;

③若 且 ,则A=B(等集)

3、弄清与元素、与的关系,掌握有关的`术语和符号,特别要注意以下的符号:(1) 与 、?的区别;(2) 与 的区别;(3) 与 的区别。

4、有关子集的几个等价关系

①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;

④A∩CuB = 空集 CuA B;⑤CuA∪B=I A B。

5、交、并集运算的性质

①A∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B∪A;

③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;

6、有限子集的个数:设A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。

二、例题讲解:

【例1】已知M={x|x=m+ ,m∈Z},N={x|x= ,n∈Z},P={x|x= ,p∈Z},则M,N,P满足关系

A) M=N P B) M N=P C) M N P D) N P M

分析一:从判断元素的共性与区别入手。

解答一:对于M:{x|x= ,m∈Z};对于N:{x|x= ,n∈Z}

对于P:{x|x= ,p∈Z},由于3(n-1)+1和+1都表示被3除余1的数,而6m+1表示被6除余1的数,所以M N=P,故选B。

分析二:简单列举中的元素。

解答二:M={…, ,…},N={…, , , ,…},P={…, , ,…},这时不要急于判断三个间的关系,应分析各中不同的元素。

= ∈N, ∈N,∴M N,又 = M,∴M N,

= P,∴N P 又 ∈N,∴P N,故P=N,所以选B。

点评:由于思路二只是停留在初的归纳设,没有从理论上解决问题,因此提倡思路一,但思路二易人手。

变式:设 , ,则( B )

A.M=N B.M N C.N M D.

解:

当 时,2k+1是奇数,k+2是整数,选B

【例2】定义AB={x|x∈A且x B},若A={1,3,5,7},B={2,3,5},则AB的子集个数为

A)1 B)2 C)3 D)4

分析:确定AB子集的个数,首先要确定元素的个数,然后再利用公式:A={a1,a2,…,an}有子集2n个来求解。

解答:∵AB={x|x∈A且x B}, ∴AB={1,7},有两个元素,故AB的子集共有22个。选D。

变式1:已知非空M {1,2,3,4,5},且若a∈M,则6?a∈M,那么M的个数为

A)5个 B)6个 C)7个 D)8个

变式2:已知{a,b} A {a,b,c,d,e},求A.

解:由已知,中必须含有元素a,b.

A可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.

评析 本题A的个数实为{c,d,e}的真子集的个数,所以共有 个 .

【例3】已知A={x|x2+px+q=0},B={x|x2?4x+r=0},且A∩B={1},A∪B={?2,1,3},求实数p,q,r的值。

解答:∵A∩B={1} ∴1∈B ∴12?4×1+r=0,r=3.

∴B={x|x2?4x+r=0}={1,3}, ∵A∪B={?2,1,3},?2 B, ∴?2∈A

∵A∩B={1} ∴1∈A ∴方程x2+px+q=0的两根为-2和1,

∴ ∴

变式:已知A={x|x2+bx+c=0},B={x|x2+mx+6=0},且A∩B={2},A∪B=B,求实数b,c,m的值.

解:∵A∩B={2} ∴1∈B ∴22+m?2+6=0,m=-5

∴B={x|x2-5x+6=0}={2,3} ∵A∪B=B ∴

又 ∵A∩B={2} ∴A={2} ∴b=-(2+2)=4,c=2×2=4

∴b=-4,c=4,m=-5

【例4】已知A={x|(x-1)(x+1)(x+2)>0},B满足:A∪B={x|x>-2},且A∩B={x|1

分析:先化简A,然后由A∪B和A∩B分别确定数轴上哪些元素属于B,哪些元素不属于B。

解答:A={x|-21}。由A∩B={x|1-2}可知[-1,1] B,而(-∞,-2)∩B=ф。

综合以上各式有B={x|-1≤x≤5}

变式1:若A={x|x3+2x2-8x>0},B={x|x2+ax+b≤0},已知A∪B={x|x>-4},A∩B=Φ,求a,b。(:a=-2,b=0)

点评:在解有关不等式解集一类问题,应注意用数形结合的方法,作出数轴来解之。

变式2:设M={x|x2-2x-3=0},N={x|ax-1=0},若M∩N=N,求所有满足条件的a的。

解答:M={-1,3} , ∵M∩N=N, ∴N M

①当 时,ax-1=0无解,∴a=0 ②

综①②得:所求为{-1,0, }

【例5】已知 ,函数y=log2(ax2-2x+2)的定义域为Q,若P∩Q≠Φ,求实数a的取值范围。

分析:先将原问题转化为不等式ax2-2x+2>0在 有解,再利用参数分离求解。

解答:(1)若 , 在 内有有解

令 当 时,

所以a>-4,所以a的取值范围是

变式:若关于x的方程 有实根,求实数a的取值范围。

解答:

点评:解决含参数问题的题目,一般要进行分类讨论,但并不是所有的问题都要讨论,怎样可以避免讨论是我们思考此类问题的关键。

版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。