不是的哦,(arcsinx/a)'=1/√(a^2-x^2) ,所以解是对的。
文科 高考 三角函数 高三文科数学三角函数专题测试题
文科 高考 三角函数 高三文科数学三角函数专题测试题
文科 高考 三角函数 高三文科数学三角函数专题测试题
arcsinx/2的导数等于根号下(1—x/2的平方)分之一在乘以1/2
你公式记错了,另外这是复合函数求导,还要求内函数(x/2)的导数
高考数学选择题多少分 在高考数学的试卷中,选择题一共8小题,每小题5分一共40分。填空一共5个,每题6分,一共30分。选择填空总共70分。具体是这样在高考数学试卷上分布的:
一、选择题 1~8 每小题5分 共40分
二、填空题9~14 每小题6分 共30分
三、解答题
19.解析几何体 椭圆 双曲线 选修4-5:不等式选讲;导数、统计案例、复数这些虽说是选修,其实是选修中的必修,一定要学的。抛物线 之类的 14分
20.定义新运算 推理与证明 13分
共计150分
高考数学分值分布 1.与简易逻辑。分值在5~10分左右(一道或两道选择题),高考数学考查的重点是抽象思维能力,主要考查与的运算关系,将加强对的计算与化简的考查,并有可能从有限向无限发展。简易逻辑多为考查“充分与必要条件”及命题真伪的判别。
3.不等式; 高考数学一般不会单独命题,会在其他题型中“隐蔽”出现,分值一般在10左右。不等式作为一种工具广泛地应用在涉及函数、数列、解几等知识的考查中,不等式重点考五种题型:解不等式(组);证明不等式;比较大小;不等式的应用;不等式的综合性问题。选择题和填空题主要考查不等式性质、解法及均值不等式。解答题会与其它知识的交汇中考查,如含参量不等式的解法(确定取值范围)、数列通项或前n 项和的有界性证明、由函数的导数确定最值型的不等式证明等。
4.数列:数列是高中数学的重要内容,又是初等数学与高等数学的重要衔接点,所以在历年的高考数学解答题中都占有重要的地位.题量一般是一个小题一个大题,有时还有一个与其它知识的综合题。分值在20分左右,文科以应用等、等比数列的概念、性质求通项公式、前n 项和为主;理科以应用Sn 或an 之间的递推关系求通项、求和、证明有关性质为主。数列是特殊的函数,而不等式是深刻认识函数与数列的工具,三者综合的求解题与求证题是对基础知识和基础能力的双重检验,是高考命题的新热点。
5.三角函数:分值在20分左右(两小一大)。三角函数高考数学题大致为以下几类:一是三角函数的恒等变形,即应用同角变换和诱导公式,两角和公式,二倍角公式,求三角函数值及化简、证明等问题;二是三角函数的图象和性质,即图像的平移、伸缩变换与对称变换、画图与视图,与单调性、周期性和对称性、最值有关的问题;三是三角形中的三角问题.
高考数学对这部分内容的命题有如下趋势:⑴降低了对三角变形的要求,加强了对三角函数的图象和性质的考察.⑵多是基础题,难度属中档偏易.⑶强调三角函数的工具性,加强了三角函数与其他知识的综合,如与向量知识、三角形问题、解析几何、立体几何的综合。以三角形为载体,以三角函数为核心,以正余弦公式为主体,考查三角变换及其应用的能力,已成为考试热点。
全集U={高考要考的内容}
A={高一所学内容}
B=A的补集。。。
文科选修1-1,1-2
理科选修2理科数学难度系数比往年高两个档次-1、2-2、2-3、4-4、4-5
2018年广东高考数学卷难道怎么样,广东高考数学试卷难不难
立尚教育高考研(课程)究院数学名师马健伦认为,文科数学和理科数学根据全国卷难度而言,不算太难,但较以前广东卷难度而言,难度却提高了不少。“大部分是常规题型和难度,但不少题目都有创新,如果广东考生平常练习少的话,就会因为看不懂而难以下手。文科数学考生不熟悉题型,计算量大
“好难啊,只能听天由命了。”西关培英中学的考生一见到老师就哭诉。就连华师附中的汤同学,被问到考得怎样,也是表情凝重,连连摇头,只意味深长地说了一句“一言难尽”。
“难度比以往确实上升。计算量又大,概率题都把我绕晕了,时间特别紧。”有考生直接调侃道:“上午漫画作文题的分数,就是在预示我的数学成绩。”
采访了解到,由于全国卷的题目,即使之前已经进行了训练,但有些题型广州的考生还是看不懂。考文科数学的刘同学表示:“难度确实比以往高,计算量比较大,好几道题第二问都不够时间写”。据了解,往年文科数学的道大题一般是三角函数,但是今年换成了数列题,立体几何也有创新,今年考了投影的知识点,概率题文字量也比较大。
至于理科考生,对数学也是“哀嚎”一片。很多考生反映这次概率题看不懂,但平时喜欢数学的.刘同学则认为,可能是题目文字较多,需要花费较多时间来分析,其实不算难。”他认为,真正很难的是解析几何和函数导数。“解析几何一般考查椭圆形,双曲线,抛物线和圆,需要自己画图,做完问,后面完全不会了。
16题是三角函数题,文科是解三角形
17题立体几何
20题圆锥曲线(必定是椭圆与直线的位置关系)
看你是什么省份的,你翻虚数翻前几年的高考试卷,可以自己大概整理下的
与简易逻辑
不15题是概率题等式
立体几何知识
解析几何以
圆锥曲线(椭圆主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是个板块。、双曲线、抛物线)
导数
统计
三角函数
数列
这些都是高考必考内容
还有微积分
你可以问上一届的同学借一本《考试说明》,里面就列举了必考内容。
【篇一】高三数学重要知识点整理
一、求动点的轨迹方程的基本步骤
⒈建立适当的坐标系,设出动点M的坐标;
⒉写出点M的;
⒊列出方程=0;
⒌检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
直译法:求动点轨迹方程的一般步骤
①建系——建立适当的坐标系;
②设点——设轨迹上的任一点P(x,y);
③列式——列出动点p所满足的关系式;
④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;
⑤证明——证明所求方程即为符合条件的动点轨迹方程。
【篇二】高三数学重要知识点整理
、高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。
第二、平面向量和三角函数。
重点考察三个方面:一个是划减与求值,,重点掌握公式,重点掌握五组基本公式。第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。难度比较小。
数列这个板块,重点考两个方面:一个通项;一个是求和。
第四、空间向量和立体几何,在里面重点考察两个方面:一个是证明;一个是计算。
第五、概率和统计。
第六、解析几何。
这是我们比较头疼的问题,是整个试卷里难度比较大,计算量的题,当然这一类题,我总结下面五类常考的题型,包括:
类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法;
第二类我们所讲的动点问题;
第三类是弦长问题;
第四类是对称问题,这也是2008年高考已经考过的一点;
第五类重点问题,这类题时往往觉得有思路,但是没有,
当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原第18题 圆锥曲线(解析几何)因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。
第七、押轴题。
考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。
考点一:与简易逻辑
部分一般以选择题出现,属容易题。重点考查间关系的理解和认识。近年的试题加强了对计算化简能力的考查,并向无限集发展,考查抽象思维能力。在解决这些问题时,要注意利用几何的直观性,并注重表示方法的转换与化简。简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。
考点二:函数与导数
函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。
考点三:三角函数与平面向量
一般是2道小题,1道综合解答题。小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型.
考点四:数列与不等式
不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查.在选择、填空题中考查等或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、题目.
考点五:立体几何与空间向量
一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系;三是考查利用空间向量解决立体几何问题:利用空间向量证明线面平行与垂直、求空间角等(文科不要求).在高考试卷中,一般有1~2个客观题和一个解答题,多为中档题。
考点六:解析几何
一般有1~2个客观题和1个解答题,其中客观题主要考查直线斜率、直线方程、圆的方程、直线与圆的位置关系、圆锥曲线的定义应用、标准方程的求解、离心率的计算等,解答题则主要考查直线与椭圆、抛物线等的位置关系问题,经常与平面向量、函数与不等式交汇,考查一些存在性问题、证明问题、定点与定值、最值与范围问题等。
考点七:算法复数推理与证明
高考对算法的考查以选择题或填空题的形式出现,或给解答题披层“外衣”.考查的热点是流程图的识别与算法语言的阅读理解.算法与数列知识的网络交汇命题是考查的主流.复数考查的重点是复数的有关概念、复数的代数形式、运算及运算的几何意义,一般是选择题、填空题,难度不大.推理证明部分命题的方向主要会在函数、三角、数列、立体几何、解析几何等方面,单独出题的可能性较小。对于理科,数学归纳法可能作为解答题的一小问.
2018年广东高考数学卷难道怎么样,广东高考数学试卷难不难
文科数学考生不熟悉题型,计算量大
“好难啊,只能听天由命了。”西关培英中学的考生一见到老师就哭诉。就连华师附中的汤2. △ABC面积=absinC/2=(2RsinA)(2RsinB)sqrt(3)/4同学,被问到考得怎样,也是表情凝重,连连摇头,只意味深长地说了一句“一言难尽”。
“难度比以往确实上升。计算量又大,概率题都把我绕晕了,时间特别紧。”有考生直接调侃道:“上午漫画作文题的分数,就是在预示我的数学成绩。”
采访了解到,由于全国卷的题目,即使之前已经进行了训练,但有些题型广州的考生还是看不懂。考文科数学的刘同学表示:“难度确实比以往高,计算量比较大,好几道题第二问都不够时间写”。据了解,往年文科数学的道大题一般是三角函数,但是今年换成了数列题,立体几何也有创新,今年考了投影的知识点,概率题文字量也比较大。
至于理科考生,对数学也是“哀嚎”一片。很多考生反映这次概率题看不懂,但平时喜欢数学的.刘同学则认为,可能是题目文字较多,需要花费较多时间来分析,其实不算难。”他认为,真正很难的是解析几何和函数导数。“解析几何一般考查椭圆形,双曲线,抛物线和圆,需要自己画图,做完问,后面完全不会了。
正弦定现在离高考已不远了,时间非常紧张,因此在的复习阶段考生应该抓住宝贵的时间,在最短时间内程度提高学习效率,那我们就不能做大量重复的无用功,因此我们要学会选题,那就需要我们抓住一些典型问题,借题发挥,充分挖掘。具体的就是解题后反思。反思题意,总结解此类题目的方法和技巧,同时我们还要学会典型问题的引申变化,促进知识的串联和方法的升华。那么到底什么是典型例题呢?那就是高考真题,特别是近三年以来高考真题中的解答题(重点做前5道)理,a/sinA=b/sonB=c/sinC=2R, R=sqrt(2).
条件 2sqrt18.导数题 13分(2)[(sinA)^2—(sinC)^2]=(a—b)sinB,
==> 2R[(a/2R)^2—(c/2R)^2]=(a—b)b/(2R),
==> a^2-c^2+b^2=ab,
余弦定理, cosC=(a^2+b^2-c^2)/(2ab)=1/2
==> ∠C=60°.
=2sqrt(3)sinAsinB= 均值不等式的取等条件为 sinA=sinB ==> A=B=60°。 故 当A=B=60°时,△ABC面积有值3sqrt(3)/2. 一、2010年高考数学考查的重点: 根据《2010高考数学考试大纲》,重点考察函数、数列、三角函数、平面向量、不等式、立体几何、解析几何、概率统计、导数九大章节。作为高考来讲重点考查下面几个版块: (1)函数与导数:在这个版块重点考查,二次函数,高次函数,分式函数和复合函数的单调性和最值,考生尤其要重视分式函数和指对复合函数的单调性和值域的求解方法。同时考生应重视函数与数列、函数与不等式的结合,灵活掌握处理这类综合题的方法和技巧,抓住典型例题,以不变应万变。 (2)平面向量与三角函数:在这个版块里,将向量作为一种工具放在三角函数里考,重点考查三方面:①三角的化简与求值,考查化简与求值,重点考察的是五组三角公式,包括同角基本公式,诱导公式,倍半公式,和公式和辅助角公式②图象和性质:在这里重点考查的是正弦函数和余弦函数的图象和性质,掌握正弦和余弦函数的性质应该从以下的7个方面去掌握:定义域,值域,单调性,奇偶性,图象,周期性和对称性,特别是正弦和余弦函数的性质是高考重点中的重点,应特别关注。③三角恒等变形,这部分重点考察的还是一些基本公式的应用,提醒各位考生应加强对基本公式的理解和记忆。 (3)数列:在这个版块里重点考查的是数列的通项与求和,在这里面我们重点掌握几种常见求通项的方法,包括公式法,待定系数法等等,在求和里面我们重点掌握几种常见求和的方法,包括利用公式法,裂项相加法,错位相减法等等,在这里要强调的是要掌握每一种方法所适应于哪一类的数列。一般来讲在高考中通项是重点也是难点,特别是项与项之间的递推公式应重点掌握。对于数列的求和特别应该重视等比数列求和公式中公比的限制性条件,这是高考的一个易错点,应重点关注! (4)空间向量和立体几何:2010新课标高考对这个版块的要求降低。特别是对文科同学来说,对于角度和距离的计算仅限于线线角和点面距离、几何体的表面积和体积。在证明中以线面平行,线面垂直的证明为主。对于理科同学来讲,在这里我建议大家要掌握利用空间向量俩来解决立体几何中的证明和计算问题。特别强调的是利用空间向量求解的时候必须准确记忆角度和距离的计算公式,然后理解公式中各字母的含义,按照公式去找条件即可。对于这部分考生除对传统的证明和计算重点掌握之外还应加强对立体几何中的翻转问题、动点问题训练,以从容应对高考中的新题、难题。 (5)概率和统计:高中阶段重点掌握古典概型、几何概型和随机变量三类基本模型。这部分在高考中是以应用题的形式出现,在这里我要强调的是概率这道题在高考中难度往往较小,考生只需要认真读题,读懂题意,分清类型就可以解答出来了。对于2010年高考来说考生应重视统计这一部分的学习,特别是线性回归、统计方法等考生应准确理解基本概念并会简单应用。 (6)解析几何:这个版块我总结了在高考中常考的五种模型:类:直线和曲线的位置关系及向量的计算,这类题目是高考最常见的一类问题,考生应掌握它的通法。第二类:动点问题(消参法),在这里需要强调的是要注意动点所满足的范围限制。第三类:弦长问题(公式法),在这里考生只需要会利用弦长公式就可以了;第四类:对称问题(代换法),即找中点来代换;第五类:中点问题(点法)。解析几何的这道题目往往是整个试卷中计算量的一道题目了,很多同学会做但不会算,这种情况在高考中是很常见的,这就需要我们在平时训练的时候要善始善终,每做一道题就坚持把它算完,长期坚持养成好习惯,运算能力自然就会提高。这五类模型考生都应该重点掌握,高考中尽管解析的难度较大,但万变不离其宗,只要基本模型熟练掌握,应对这道大题还是绰绰有余的。 (7)数列,函数与不等式:这个版块往往考的是压轴题,以不等式的证明为主,难度往往很大,考生在复习备考中应重点积累一些不等式的证明方法,包括放缩法,数学归纳法等等。虽然难度较大,我建议考生采取分步得分,不留空白。对于这部分的复习我建议可以放在后期,5月份之后可以适当看看已经考过的压轴题,开阔思路,对于大部分考生不作重点要求。 二、四个月应该注意的问题: 现在距离2010年高考还有四个多月的时间,这是考生综合素质提高的黄金时间,这段时间,也称为全面复习阶段,同学们需要把前面一些零散的知识点系统化、条理化、模块化,找到学科中的宏观线索,提纲挚领,全面到位。下面我根据以往的高考数学复习的经验,结合考生的学习体会,谈谈这四个月的复习建议。 (一)、全面落实双基,保证驾轻就熟 目前高考数学试卷,基础知识和基本方法的考查占80%左右的份量,即使是创新题或能力题也是建立在双基之上,只有脚踏实地、一丝不苟地巩固双基,才能突破难题,战胜新题。在这里我要强调的是教材是,只有把握了教材,也就切中了要害。不仅要深刻理解教材中的知识,更重要的是要关注教材中解决问题的思想方法,还要全面把握知识体系,做到不掌握不放过。对照《考试说明》,确定考试范围,认真阅读和理解教材中相关内容,包括每个概念、每个例题、每个注释、每个图形,准确理解和记忆知识点,不留空白和隐患。复习阶段不防从课本的目录入手,进行串联,形成体系。同时要配以适量的练习,练习中遇到困难也在所难免,必须找到问题的症结在那里,对照教材,扫除障碍。回归教材、吃透课本,千万不能眼高手。,对于教材的复习,建议可以重点看看概率和统计、数列、函数、导数、圆锥曲线这几章的例题。 (二)、重视错题病例,实时亡羊补牢 错题病例也是财富,它有时暴露我们的知识缺陷,有时暴露我们的思维不足,有时暴露我们方法的不当,毛病暴露出来了,也就有治疗的方向,提供了纠错的机会,因此我建议在后期冲刺的阶段我们一定要建立错题库,特别是那些概念理解不深刻、知识记忆失误、思维不够严谨、方法使用不当等典型错误收集成册,并加以评注,指出错误原因,经常翻阅,常常提醒,警钟长鸣。 (三)、抓住典型例题,争取融会贯通 (四)、精读考试大纲,确保了如指掌 《考试说明》是高考命题的依据,〈大纲〉明确告诉我们高考考什么、考多难、怎样考这三个问题。考生一定要明确考试的知识要求。针对教材与复习时的笔记逐一对照,看是否得到了落实,确保没有遗漏,对于那些没有没达要求的决不罢手。特别是大纲中调整的内容,比如2010新课标高考新增三视图,程序与框图、极坐标、几何概型、微积分等必须高度重视,明确要求,提高复习的针对性和实效性。另外,对试卷的形式,题型、考试时间、分值等等也应一清二楚。 (五)、加强毅力训练,做到持之以恒 的四个月是高考冲刺最关键的时候,很多考生身心俱疲,那就看谁能坚持到谁就能取得胜利。的阶段,我们同样每天要有明确的学习,并坚决执行,不寻找借口。任何一门学科,只要三天不接触,拿到题目时,将会觉得入手不顺,思维不畅,效率不高且容易出错,若5天不训练将会不进而退。所以,建议各个学科每天都要有所巩固,遇到困难应及时解决,不能积累,否则会打击信心,丧高考如何规范答题:失斗志,要想高考成功,即要有热情更要有毅力! 知识点考察角度与重点内容知识点考察角度与重点内容知识点考察角度与重点内容知识点考察角度与重点内容:::: 1、 注意交集、并集、补集运算的理解,细节上注意区间端点问题的取舍。 2、简易逻辑 特称、全称、且、或的相关否定及命题判断,重点考察与立体几何、三角函数等命题的融合。 3、函数 3年来只出过两道单纯考察函数的小题,高考更注重考生对函数思想的理解。注意奇偶性与单调性的简单应用、数形结合。 4、导数的应用 已知切点与未知切点,求切线方程的两类题型,高考考察点更趋向函数解析式的求导运算,出现了求导解析式运算量加大的趋向,学生应注意熟练分式求导及不特殊的对数、指数求导公式。 函数与导数大题的常见题型:问注意三种基本问题;第二问注意高等数学、竞赛数学为背景的不等量问题的证明。例如函数零点与相应导函数零点之间的关系、琴生不等式、杨氏不等式的证明。解答押轴一问时应考虑到必会应用问的结论或处理问时用到的方法,可按此思路寻找解题策略。 5、数列 等等比基本公式,尤其注意等比中q为1的讨论,注意下角标性质、片段和性质以及列项求和,要求复杂数列递推的题型。适当注意等比中项的充分性以及和均值不等式的综合。 6、三角函数 必考内容,常见题型为三角函数相关的问题以及三角求值问题、最值问题。 7、向量 趋向向量的数形结合,注意向量的数量积运算,并且与圆锥曲线弦中点问题结合。 8、不等式 三种基本不等式融合于其它知识点出题、注意线性规划中目标函数为分式形式的问题。 9、几何证明选讲 未出过小题,主要在选作中考察,注意位置关系与垂径定理的应用 10、圆锥曲线 两小题一大题,小题注意抛物线的定义、焦半径、焦点弦、准线;双曲线的渐近线;相关性质如通径、焦点三角形面积等需要背。由于双曲线和椭圆的第二定义在新教材中被删除,所以涉及两种曲线的准线问题可以不用复习,但对第二定义的考察仍然在题目中,这也从侧面也更突出了保留的抛物线涉及准线问题的地位,应重点注意抛物线涉及准线问题,包括最短距离问题、焦点弦问题等等。 大题常见题型:问注意求轨迹的三种题型。第二问注意椭圆中以向量为载体的动中有定问题;注意抛物线的求导切线问题。高考可能有淡化韦达定理的趋向可适当关注相应题目训练。 11、立体几何 两小题一大题,小题有一中档题和一难题,注意三视图表面积、运动下几何体相关量的变化范围问题、与球的相关组合体、体积分割问题;注意长方体载体的应用。 大题常见题型:注意训练开放性问题如已知二面角大小探求相应点位置以及建系的三种不同类型。 12、排列组合 一道小题,注意基本模型的掌握,不宜训练难题。 13、二项式定理 通常为选择填空题,且只有一题,主要是公式应用,适当注意最基本求解常数项等问题即可。 14、概率统计 以大题为主。以统计为背景的二项分布问题、注意训练从大量阅读信息中快速提取数据的能力,方的概率公式要求记忆。 15、复数 基本运算,运算量逐年加大。 16、算法 注意程序语言;注意与列项求和、与统计过程、与实际测量为载体的解三角形以及与二分法的整合 姐姐告诉你,高中最重要的是基础,相信我,千万不要浪费过多的时间去搞一些奇形怪状的难题 我不知。但是我身边也有挺多例子:他们以前读书也但是他们只在快高考三个月很努力很努力看书。还有多做题他们考上挺好的大学。我也正在准备高考,我成绩也,所以我会晚上看到三点白天七点起来看会在做点事接着看。下午睡觉看电视和他们聊天。我觉得你也给自己定个好点。我也是在三个月左右看所以我不觉得我比别人什么 所以你相信自己?高考数学重难点
17.立体几何14分 (16 17位置可能互换)
版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。