高考数学延伸公式 高中数学延伸课外书籍有哪些

专业目录 2025-03-28 02:07:41

高考数学常用公式:数学与简单逻辑公式

(5)圆锥:

【 #高考# 导语】学而不思则罔,在掌握知识点之后将其运用在解题中才是备考的好方法。备考需要一点点积累才能到达效果, 为您提供高考数学常用公式:数学与简单逻辑公式,通过复习,能够巩固所学知识并灵活运用,考试时会更得心应手,快来看看吧!

高考数学延伸公式 高中数学延伸课外书籍有哪些高考数学延伸公式 高中数学延伸课外书籍有哪些


高考数学延伸公式 高中数学延伸课外书籍有哪些


高考数学延伸公式 高中数学延伸课外书籍有哪些


高考数学延伸公式 高中数学延伸课外书籍有哪些


高考数学延伸公式 高中数学延伸课外书籍有哪些


“充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示“充分”。“仅当”表示“必要”。

数学与简单逻辑公式汇总

任一x∈Ax∈B,记作AB

AB,BAA=B

AB={x|x∈A,且x∈B}

AB={x|x∈A,或x∈B}

card(AB)=card(A)+card(B)-card(AB)

(1)命题

原命题若p则q

逆命题若q则p

否命题若p则q

逆否命题若q,则p

(2)四种命题的关系

(3)AB,A是B成立的充分条件

BA,A是B成立的必要条件

AB,A是B成立的充要条件

1.元素具有①确定性②互异性③无序性

③韦恩图④数轴法

3.的运算

⑴A∩(B∪C)=(A∩B)∪(A∩C)

⑵Cu(A∩B)=CuA∪CuB

Cu(A∪B)=CuA∩CuB

4.的性质

⑴n元的子集数:2n

真子集数:2n-1;非空真子集数:2n-2

高考数学必背公式

BC⊥AD.令得,已知则.

高考数学必背公式如下:

圆的公式:包括圆体积、面积、周长以及圆的标准方程、一般方程等。椭圆公式:椭圆周长公式、椭圆周长定理、椭圆面积公式等。两角和公式:包括正弦、余弦、正切的两角和公式以及半角公式等。

倍角公式:包括正弦、余弦、正切的二倍角公式等。三角函数的和化积以及积化和公式。等数列、等比数列的通项公式以及求和公式等。抛物线等公式。

高考数学的重点:

1、函数与导数:函数是高中数学的基础,导数是函数研究的重要工具。学生需要理解函数的性质和图像,掌握求导的方法和应用,理解导数在研究函数单调性和极值中的应用。

2、三角函数:三角函数是高中数学的重要内容之一,包括正弦、余弦、正切等函数的图像和性质,以及三角恒等变换和三角方程等。这部分内容需要学生掌握三角函数的周期性、对称性和最值等性质,同时要能够利用三角恒等变换进行化简和求值。

高考数学学习方法:

1、制定学习:

在开始学习之前,制定一个明确、可执行的学习。这个应该包括每天的学习任务、每周的学习目标以及每个月的学习。通过这种方式,你可以有条不紊地安排自己的学习时间,避免浪费时间和精力。

2、注重基础知识:

数学是一门需要扎实基础的学科。在学习过程中,要注重对基础知识的学习和掌握,如代数、几何、概率等。只有掌握了这些基础知识,才能更好地理解和应用更复杂的概念和技巧。

数学是一门需要通过大量练习来提高技能的学科。通过多做练习题,你可以更好地掌握知识点,了解各种题型的特点和解法,提高解题速度和准确率。

4、建立(1)分离参数法;错题本:

在学习的过程中,难免会遇到做错的题目。建立错题本是一个非常好的学习方法。将做错的题目记录下来,分析错误原因,并对其进行纠正。这样可以避免同样的错误再次出现,提高学习效率。

高考数学高频考点:复数公式总结

复数公式总结

a+bi=c+di,a=c,b=d

(a+bi)+(c+di)=(a32直线的三角方程+c)+(b+d)i

(a+bi)-(c+di)=(a-c)+(b-d)i

(a+bi)(c+di )=(ac-bd)+(bc+ad)i

a+bi=r(cosθ+isinθ)

r1=(cosθ1+isinθ1)?r2(cosθ2+isinθ2)

=r1?r2〔cos(θ1+θ2)+isin(θ1+θ2)〕

〔r(cosθ+sinθ)〕n=rn(cosnθ+isinnθ)

k=0,1,……,n-1

虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。

对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是辐角度。

箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。

代数运算的实质,有i多项式运算。i的正整数次幂,四个数值周期现。

一些重要的结论,熟记巧用得结果。虚实互化本领大,复数相等来转化。

利用方程思想解,注意整体代换术。几何运算图上看,加法平行四边形,

减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。

三角形式的运算,须将辐角和模辨。利用棣莫弗公式,乘方开方极方便。

辐角运算很奇特,和是由积商得。四条性质离不得,相等和模与共轭,

两个不会为实数,比较大小要不得。复数实数很密切,须注意本质区别。

注:①哪些相应的实变初等函数的性质被保留下来

②哪些a^[log(a)(M/N)] = a^[log(a)(M)] / a^[log(a)(N)]相应的实变初等函数的性质不再成立

③出现了哪些相应的实变初等函数所没有的新的性质。

【高考】有没有哪位大哥能整理一个高考数学(文科)会用到的所有公式给我。。。麻烦了。。。拜托了。。

问利用一次函数在区间上的保号性可解决求一类参数的范围问题;老师

或者看看自己考败的试卷,制成一个错题集,这样记得的公由基本性质1(换掉M和N)式就不用费时间了

小兄弟,你的提问证明你不喜看书,也不懂看书的重要性,因为你的问题就在高中数学5本书里,你认认真真的把课本看看应付高考足矣,因为书上的公式都全着呢,你又何必在这求人帮你总结呢?

我不是说你不该在这提问,而是怕你不好好看书,却老想着走捷径成功,这是很不现实的,“与其临渊羡鱼,不如退而结网。”当你塌下心来把书看透时,就是你时!祝你学好数学!

高三数学知识点及公式总结大全

(1)定义域上的单调函数必有反函数;

高三数学重要知识点精选总结1

倍角公式

1.课程内容:

必修课程由5个模块组成:

必修1:、函数概念与基本初等函数(指、对、幂函数)

必修3:算法初步、统计、概率。

必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。

必修5:解三角形、数列、不等式。

以上是每一个高中学生所必须学习的。

上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。

此外,基础内容还增加了向量、算法、概率、统计等内容。

2.重难点及考点:

重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数

难点:函数、圆锥曲线

高考相关考点:

⑴与简易逻辑:的概念与运算、简易逻辑、充要条件

⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用

⑶数列:数列的有关概念等数列等比数列、数列求和、数列的应用

⑷三角函数:有关概念、同角关系与诱导公式、和、、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用

⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用

⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、不等式、不等式的应用

⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系

⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用

⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量

⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用

⑾概率与统计:概率、分布列、期望、方、抽样、正态分布

⑿导数:导数的概念、求导、导数的应用

⒀复数:复数的概念与运算

高三数学重要知识点精选总结2

①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).

②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.

⑶特殊棱锥的顶点在底面的射影位置:

①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.

②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心.

③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心.

⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.

⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;

⑧每个四面体都有内切球,球心

是四面体各个二面角的平分面的交点,到各面的距离等于半径.

[注]:i.各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的等腰三角形不知是否全等)

ii.若一个三角锥,两条对角线互相垂直,则第三对角线必然垂直.

简证:AB⊥CD,AC⊥BD

iii.空间四边形OABC且四边长相等,则顺次连结各边的中点的四边形一定是矩形.

iv.若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形.

简证:取AC中点,则平面90°易知EFGH为平行四边形

EFGH为长方形.若对角线等,则为正方形.

高三数学重要知识点精选总结3

立体几何初步

(1)棱柱:

定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥

定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体

分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

表示:用各顶点字母,如五棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:

定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分

分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

表示:用各顶点字母,如五棱台

几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

(4)圆柱:

定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:

定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7)球体:

定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

高三数学重要知识点精选总结4

(1)先看“充分条件和必要条件”

当命题“若p则q”为真时,可表示为p=>q,则我们称p为q的充分条件,q是p的必要条件。这里由p=>q,得出p为q的充分条件是容易理解的。

但为什么说q是p的必要条件呢?

事实上,与“p=>q”等价的逆否命题是“非q=>非p”。它的意思是:若q不成立,则p一定不成立。这就是说,q对于p是必不可少的,因而是必要的。

(2)再看“充要条件”

若有p=>q,同时q=>p,则p既是q的充分条件,又是必要条件。简称为p是q的充要条件。记作p<=>q

回忆一下初中学过的“等价于”这一概念;如果从命题A成立可以推出命题B成立,反过来,从命题B成立也可以推出命题A成立,那么称A等价于B,记作A<=>B。“充要条件”的含义,实际上与“等价于”的含义完全相同。也就是说,如果命题A等价于命题B,那么我们说命题A成立的充要条件是命题B成立;同时有命题B成立的充要条件是命题A成立。

(3)定义与充要条件

数学中,只有A是B的充要条件时,才用A去定义B,因此每个定义中都包含一个充要条件。如“两组对边分别平行的四边形叫做平行四边形”这一定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。

显然,一个定理如果有逆定理,那么定理、逆定理合在一起,可以用一个含有充要条件的语句来表示。

(4)一般地,定义中的条件都是充要条件,判定定理中的条件都是充分条件,性质定理中的“结论”都可作为必要条件。

高三数学重要知识点精选总结5

1.函数的奇偶性

(1)若f(x)是偶函数,那么f(x)=f(-x);

(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);

(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;

2.复合函数的有关问题

(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定;

3.函数图像(或方程曲线的对称性)

(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;

(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;

(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;

(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;

4.函数的周期性

(1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;

(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;

(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;

(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;

(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;

(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;

5.方程k=f(x)有解k∈D(D为f(x)的值域);

6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

7.(1)(a>0,a≠1,b>0,n∈R+);

(2)logaN=(a>0,a≠1,b>0,b≠1);

(3)logab的符号由口诀“同正异负”记忆;

(4)alogaN=N(a>0,a≠1,N>0);

8.判断对应是否为映射时,抓住两点:

(1)A中元素必须都有象且;

(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

9.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

10.对于反函数,应掌握以下一些结论:

(2)奇函数的反函数也是奇函数;

(3)定义域为非单元素集的偶函数不存在反函数;

(4)周期函数不存在反函数;

(5)互为反函数的两个函数具有相同的单调性;

(6)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);

11.处理二次函数的问题勿忘数形结合

二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;

12.依据单调性

13.恒成立问题的处理方法

(2)转化为一元二次方程的根的分布列不等式(组)求解;

(1)、高三数学必考知识点归纳公式大全

(2)、高三女儿数学只考了108分 老爸的这一做法绝了

(3)、2019扬州高三模拟统考语文数学试题难度点评

(4)、2019年湖北高三2月联考数学理试题及

(5)、高三数学教师教学工作总结

(6)、高三复习班数学班主任工作总结

跪求 高中数学公式大全 特全 高考前公式冲刺 谢谢

对数的性质及推导

用^表示乘方,用log(a)(b)表示以a为底,b的对数

表示乘号,/表示除号

定义式:

若a^n=b(a>0且a≠1)

则n=log(a)(b)

基本性质:

1.a^(log(a)(b))=b

2.log(a)(MN)=log(a)(M)+log(a)(N);

3.log(a)(M/N)=log(a)(M)-log(a)(N);

4.log(a)(M^n)=nlog(a)(M)

推导

1.这个就不用推了吧,直接由定义式可得(把定义式中的[n=log(a)(b)]带入a^n=b)

2.

MN=MN

a^[log(a)(MN)] = a^[log(a)(M)] a^[log(a)(N)]

由指数的性质

a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}

log(a)(MN) = log(a)(M) + log(a)(N)

3.与2类似处理

MN=M/N

由指数的性质

a^[log(a)(M/N)] = a^{[log(a)(M)] - [log(a)(N)]}

4.与2类似处理

M^n=M^n

由基本性质1(换掉M)

a^[log(a)(M^n)] = {a^[log(a)(M)]}^n

由指数的性质

log(a)(M^n)=nlog(a)(M)

其他性质:

性质一:换底公式

log(a)(N)=log(b)(N) / log(b)(a)

推导如下

N = a^[log(a)(N)]

a = b^[log(b)(a)]

综合两式可得

N = {b^[log(b)(a)]}^[log(a)(N)] = b^{[log(a)(N)][log(b)(a)]}

又因为N=b^[log(b)(N)]

所以

b^[log(b)(N)] = b^{[log(a)(N)][log(b)(a)]}

所以

log(b)(N) = [log(a)(N)][log(b)(a)] {这步不明白或有疑问看上面的}

所以log(a)(N)=log(b)(N) / log(b)(a)

性质二:(不知道什么根与系数的关系 x1+x2=-b/a x1x2=c/a 注:韦达定理名字)

log(a^n)(b^m)=m/n[log(a)(b)]

推导如下

由换底公式[la^[log(a)(M^n)] = a^{[log(a)(M)]n}nx是log(e)(x),e称作自然对数的底]

log(a^n)(b^m)=ln(a^n) / ln(b^n)

由基本性质4可得

log(a^n)(b^m) = [nln(a)] / [mln(b)] = (m/n){[ln(a)] / [ln(b)]}

再由换底公式

log(a^n)(b^m)=m/n[log(a)(b)]

--------------------------------------------(性质及推导 完 )

公式三:

log(a)(b)=1/log(b)(a)

证明如下:

由换底公式 log(a)(b)=log(b)(b)/log(b)(a) ----取以b为底的对数,log(b)(b)=1

=1/log(b)(a)

还可变形得:

log(a)(b)log(b)(a)=1

三角函数的和化积公式

sinα+sinβ=2sin(α+β)/2·cos(α-β)/2

sinα-sinβ=2cos(α+β)/2·sin(α-β)/2

cosα+cosβ=2cos(α+β)/2·cos(α-β)/2

cosα-cosβ=-2sin(α+β)/2·sin(α-β)/2

三角函数的积化和公式

sinα ·cosβ=1/2 [sin(α+β)+sin(α-β)]

cosα ·sinβ=1/2 [sin(α+β)-sin(α-β)]

cosα ·cosβ=1/2 [cos(α+β)+cos(α-β)]

sinα ·sinβ=-1/2 [cos(α+β)-cos(α-β)]

把课本上的 向量 三角函数 数列 圆锥曲线背一下就可以了

数学老师精心整理43条高中数学公式及知识点,高一到高三都能用!

必修2:立体几何初步、平面解析几何初步。

1 函数的单调性

2 函数的奇偶性

3 函数在某处的导数的几何意义

4 几种常见函数的导数

5 导数的运算法则

6 求函数的极值

7 分数指数幂

8 根式的性质

9 有理数指数幂的运算性质

10 对数公式

11 常见的函数又因为指数函数是单调函数,所以图像

12 同角三角函数的基本关系式

13 正弦、余弦的诱导公式

14 和角与角公式

15 二倍角公式

16 三角函数的周期

17 正弦定理

18 余弦定理

19面积定理

20三角形内角和定理

21a与b的数量积

22平面向量的坐标运算

23两向量的夹角公式

24平面两点间距离公式

25向量的平行与垂直

26数列通项公式与前n项和的关系

27等数列通项公事与前n项和公式

28等数列的性质

29等比数列的通项公式与前n项和公式

30等比数列的性质

31常用不等式

33两条直线的垂直和平行

34点到直线的距离

35圆的两种方程

36点与圆的位置关系

37直线与圆的位置关系

38椭圆、双曲线、抛物线的性质

39双曲线方程与渐近线方程的关系

40抛物线的焦半径公式

41平方标准的计算

42回归直线方程

43性检验

44复数

45参数方程、极坐标化为直角坐标

高中数学必背公式总结 2019高考数学必背重点公式大全

如图:

高中数学必考重点公式总结归纳 椭圆周长计算公式

椭圆周长公式:L=2πb+4(a-b)

椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的。

椭圆面积计算公式

椭圆面积公式: S=πab

椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。

椭圆形物体 体积计算公式椭圆 的 长半径短半径PAI高

三角函数:

两角和公式

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)

tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

sinα+sin(α+2π/n)+sin(α+2π2/n)+sin(α+2π3/n)+……+sin[α+2π(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π2/n)+cos(α+2π3/n)+……+cos[α+2π(n-1)/n]=0 以及

sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))

和化积

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

cotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB

某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6

1^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 12+23+34+45+56+67+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角

乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

判别式 b2-4a=0 注:方程有相等的两实根

b2-4a在高中数学的学习上有很多数学公式需要我们去记忆背诵,高中数学有哪些重点公式有哪些呢?下面我为大家介绍一下!c>0 注:方程有两个不相等的个实根

b2-4ac<0 注:方程有共轭复数根

2019高考数学必背重点公式汇总

圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0

抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积 S=ch 斜棱柱侧面积 S=c'h

正棱锥侧面积 S=1/2ch' 正棱台侧面积 S=1/2(c+c')h'

圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pir2

圆柱侧面积 S=ch=2pih 圆锥侧面积 S=1/2cl=pirl

弧长公式 l=ar a是圆心角的弧度数r >0 扇形面积公式 s=1/2lr

锥体体积公式 V=1/3SH 圆锥体体积公式 V=1/ir2h

斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长

柱体体积公式 V=sh 圆柱体 V=pir2h

图形周长 面积 体积公式

长方形的周长=(长+宽)×2

正方形的周长=边长×4

长方形的面积=长×宽

正方形的面积=边长×边长

三角形的面积

已知三角形底a,高h,则S=ah/2

和:(a+b+c)(a+b-c)1/4

高考数学必背公式整理

3、多做练习题:

在应试教育中,只有多记公式,掌握解题技巧,熟悉各种题型,把自己变成一个做题机器,才能在考试中取得的成绩。

两角和公式

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA(4)函数极限的性质+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)

ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA))

tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。