大家好我是小乐,导数的几何意义高考必考,关于导数的几何意义题型总结很多人还不知道,那么现在让我们一起来看看吧!
导数的几何意义高考必考 导数的几何意义题型总结
导数的几何意义高考必考 导数的几何意义题型总结
导数的几何意义高考必考 导数的几何意义题型总结
导数的几何意义高考必考 导数的几何意义题型总结
1、 1、充要条件的判定奋斗也就是我们平常所说的努力。
2、那种不怕苦,不怕累的精神在学习中也是需要的。
3、看到了一道有意思的题,就不惜一切代价攻克它。
4、为了学习,废寝忘食一点也不是难事,只要你做到了有兴趣。
5、下面是我给大家带来的 高三数学 会考知识点整理大全,以供大家参考!5. 平面向量:初等运算、坐标运算、数量积及其应用高三数学会考知识点整理大全定义:形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
6、定义域和值域:当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
7、当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。
8、在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
9、而只有a为正数,0才进入函数的值域。
10、性质:对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。
11、当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;排除了为0这种可能,即对于x排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
12、考点一:与简易逻辑考点二:函数与导数考点三:三角函数与平面向量一般是2道小题,1道综合解答题。
13、小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。
14、大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。
15、向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新 热点 ”题型、考点四:数列与不等式不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。
16、对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查、在选择、填空题中考查等或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、题目、考点五:立体几何与空间向量一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系;三是考查利用空间向量解决立体几何问题:利用空间向量证明线面平行与垂直、求空间角等(文科不要求)、在高考试卷中,一般有1~2个客观题和一个解答题,多为中档题。
17、考点六:解析几何一般有1~2个客观题和1个解答题,其中客观题主要考查直线斜率、直线方程、圆的方程、直线与圆的`位置关系、圆锥曲线的定义应用、标准方程的求解、离心率的计算等,解答题则主要考查直线与椭圆、抛物线等的位置关系问题,经常与平面向量、函数与不等式交汇,考查一些存在性问题、证明问题、定点与定值、最值与范围问题等。
18、考点七:算法复数推理与证明高考对算法的考查以选择题或填空题的形式出现,或给解答题披层“外衣”、考查的热点是流程图的识别与算法语言的阅读理解、算法与数列知识的网络交汇命题是考查的主流、复数考查的重点是复数的有关概念、复数的代数形式、运算及运算的几何意义,一般是选择题、填空题,难度不大、推理证明部分命题的方向主要会在函数、三角、数列、立体几何、解析几何等方面,单独出题的可能性较小。
19、对于理科,数学归纳法可能作为解答题的一小问高三数学复习知识点一、充分条件和必要条件当命题“若A则B”为真时,A称为B的充分条件,B称为A的必要条件。
20、二、充分条件、必要条件的常用判断法1、定义法:判断B是A的条件,实际上就是判断B=>A或者A=>B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可2、转换法:当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断。
21、3、法在命题的条件和结论间的关系判断有困难时,可从的角度考虑,记条件p、q对应的分别为A、B,则:若A?B,则p是q的充分条件。
22、若A?B,则p是q的必要条件。
23、若A=B,则p是q的充要条件。
24、若A?B,且B?A,则p是q的既不充分也不必要条件。
25、三、知识扩展1、四种命题反映出命题之间的内在联系,要注意结合实际问题,理解其关系(尤其是两种等价关系)的产生过程,关于逆命题、否命题与逆否命题,也可以叙述为:(1)交换命题的条件和结论,所得的新命题就是原来命题的逆命题;(2)同时否定命题的条件和结论,所得的新命题就是原来的否命题;(3)交换命题的条件和结论,并且同时否定,所得的新命题就是原命题的逆否命题。
26、2、由于“充分条件与必要条件”是四种命题的关系的深化,他们之间存在这密切的联系,故在判断命题的条件的充要性时,可考虑“正难则反”的原则,即在正面判断较难时,可转化为应用该命题的逆否命题进行判断。
本文到这结束,希望上面文章对大家有所帮助。
版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。