小怡今天给分享关于导数的高考文科数学题的知识,其中也会对数学导数题型总结文科进行解释,希望能解决你的问题,请看下面的文章阅读吧!
关于导数的高考文科数学题 数学导数题型总结文科
关于导数的高考文科数学题 数学导数题型总结文科
关于导数的高考文科数学题 数学导数题型总结文科
1、2.数形结合思想学过的知识与 方法 很可能被遗忘,要想牢固掌握,并形成能力,就必须科学而有效地进行复习,以期达到温故知新的目的!接下来是我为大家整理的高中数学基础 知识大全 ,希望大家喜欢! 高中数学基础知识大全一 球的定义: 定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫球体,简称球。
2、 半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径。
3、 第二定义:球面是空间中与定点的距离等于定长的所有点的。
4、 球: 以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体(solid sphere),简称球。
5、 高中数学基础知识大全二 专题一: 考点1:的基本运算 考点2:之间的关系 专题二:函数 考点3:函数及其表示 考点4:函数的基本性质 考点5:一次函数与二次函数. 考点6:指数与指数函数 考点7:对数与对数函数 考点8:幂函数 考点9:函数的图像 考点10:函数的值域与最值 考点11:函数的应用 专题三:立体几何初步 考点12:空间几何体的结构、三视图和直视图 考点13:空间几何体的表面积和体积 考点14:点、线、面的位置关系 考点15:直线、平面平行的性质与判定 考点16:直线、平面垂直的判定及其性质 考点17:空间中的角 考点18:空间向量 高中数学基础知识大全三 1. 高中数学新增内容命题走向 新增内容:向量的基础知识和应用、概率与统计的基础知识和应用、初等函数的导数和应用。
6、 命题走向:试卷尽量覆盖新增内容;难度控制与中学教改的深化同步,逐步提高要求;注意体现新增内容在解题中的独特功能。
7、 (1)导数试题的三个层次 层次:导数的概念、求导的公式和求导的法则; 第二层次:导数的简单应用,包括求函数的极值、单调区间,证明函数的增减性等; 第三层次:综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式和函数的单调性等结合在一起。
8、 (2)平面向量的考查要求 a.考查平面向量的性质和运算法则及基本运算技能。
9、要求考生掌握平面向量的和、、数乘和内积的运算法则,理解其直观的几何意义,并能正确地进行运算。
10、 b.考查向量的坐标表示,向量的线性运算。
11、 c.和其他数学内容结合在一起,如可和函数、曲线、数列等基础知识结合,考查逻辑推理和运算能力等综合运用数学知识解决问题的能力。
12、题目对基础知识和技能的考查一般由浅入深,入手不难,但要完成解答,则需要严密的逻辑推理和准确的计算。
13、 (3)概率与统计部分 基本题型:等可能概率题型、互斥有一个发生的概率题型、相互的概率题型、重复试验概率题型,以上四种与数字特征计算一起构成的综合题。
14、 复习建议:牢固掌握基本概念;正确分析随机试验;熟悉常见概率模型;正确计算随机变量的数字特征。
15、 2. 高中数学的知识主干 函数的基础理论应用,不等式的求解、证明和综合应用,数列的基础知识和应用;三角函数和三角变换;直线与平面,平面与平面的位置关系;曲线方程的求解,直线、圆锥曲线的性质和位置关系。
16、 3. 传统主干知识的命题变化及基本走向 (1)函数、数列、不等式 a.函数考查的变化 函数中去掉了幂函数,指数方程、对数方程和不等式中去掉了“无理不等式的解法、指数不等式和对数不等式的解法”等内容,这类问题的命题热度将变冷,但仍有可能以等式或不等式的形式出现。
17、 b.不等式与递归数列的综合题解决方法 化归为等或等比数列问题解决;借助教学归纳法解决;推出通项公式解决;直接利用递推公式推断数列性质。
18、 c.函数、数列、不等式命题基本走向:创造新情境,运用新形式,考查基本概念及其性质;函数具有抽象化趋势,即通过函数考查抽象能力;函数、数列、不等式的交汇与融合;利用导数研究函数性质,证明不等式;归纳法、数学归纳法的考查方式由主体转向局部。
19、 (2)三角函数 结合实际,利用少许的三角变换(尤其是余弦的倍角公式和特殊情形下公式的应用),考查三角函数性质的命题;与导数结合,考查三角函数性质及图象;以三角形为载体,考查三角变换能力,及正弦定理、余弦定理灵活运用能力;与向量结合,考查灵活运用知识能力。
20、 (3)立体几何 由考查论证和计算为重点,转向既考查空间观念,又考查几何论证和计算;由以公式、定理为载体,转向对观察、实验、作、设计等的适当关注;加大向量工具应用力度;改变设问方式。
21、 (4)解析几何 a.运算量减少,对推理和论证的要求提高。
22、 b.考查范围扩大,由求轨迹、讨论曲线本身的性质扩大到考查:曲线与点、曲线与直线的关系,与曲线有关的直线的性质;运用曲线与方程的思想方法,研究直线、圆锥曲线之外的其他曲线;根据定义确定曲线的类型。
23、 c.注重用代数的方法证明几何问题,把代数、解析几何、平面几何结合起来。
24、 d.向量、导数与解析几何有机结合。
25、 4. 关注试题创新 (1)知识内容出新:可能表现为高观点题;避开 热点 问题、返璞归真。
26、 a.高观点题指与高等数学相联系的问题,这样的问题或以高等数学知识为背景,或体现高等数学中常用的数学思想方法和推理方法。
27、高观点题的起点高,但落点低,也就是所谓的“高题低做”,即试题的设计来源于高等数学,但解决的方法是中学所学的初等数学知识,所以并没将高等数学引进高中教学的必要。
28、考生不必惊慌,只要坦然面对,较易突破。
29、 b.避开热点问题、返璞归真:回顾近年来的试题,那些最有冲击力的题,往往在我们的意料之外,而又在情理之中。
本文到这结束,希望上面文章对大家有所帮助。
版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。