应该说高考难的题是后一道综合大题,经常把函数、数列揉在一起,而解析几何一般都作为倒数第二或第三题出现吧,难度当然也不小,算12分,另外选择会有2道左右的解析几何,10分,填空可能会有一道,4分,这样算的话有30分左右的比例,还是相当重要的~
椭圆方程高考占多少分_高考求椭圆方程的题
椭圆方程高考占多少分_高考求椭圆方程的题
椭圆方程高考占多少分_高考求椭圆方程的题
解析几何题目要想做好,根本的还是对于公式的熟练使用,在此基础上从单一图形的题目做起,逐步做到终的综合题型。其实能否得到终或者证明主要取决于思路是否清晰,而训练思路的办法就只有多做题,并且自己总结出不同曲线的一些解题步骤包括常用曲线公式的解法、公式的组合等等。熟能生巧吧,没有捷径~
希望对你有帮助~
问是六分。
天津高考的试卷问往往都是六分,不管文理科,都是六分,但椭圆大题出现在题的情况较少。每年高考的题型都是不确定的,分值也会有所改变,仅供参考。
从以前的高考看,高中数学选修课高考占比在20%左右(30分左右),比例还是较大的。
所以,现在各学校的做法都是,只要在考试大纲范围内的内容,一律按必修对待的。
比如,许多教材上把“圆锥曲线与方程”(椭圆、双曲线,抛物线标准方程,性质,与直线的位置关系)作为选修,但考试中几乎都会有一道与之相关的大题,6-12分左右的,不能小视啊!
但是,今后的考试走势可能会变化,现在的思路是数学减少难度、英语降低标准,语文增加难度和范围。
不论你赶没赶上改革,按老师的要求去做,一定不会错的。
你想知道高考数学试卷选择一共占多少分吗?你是否明白高考数学的分值分布情况?下面我就为大家详细介绍下,具体内容如下。
高考数学选择题多少分 在高考数学的试卷中,选择题一共8小题,每小题5分一共40分。填空一共5个,每题6分,一共30分。选择填空总共70分。具体是这样在高考数学试卷上分布的:
一、选择题 1~8 每小题5分 共40分
二、填空题9~14 每小题6分 共30分
三、解答题
15.三角函数或者解三角形 13分
16.概率题 13分
17.立体几何14分 (16 17位置可能互换)
18.导数题 13分
19.解析几何体 椭圆 双曲线 抛物线 之类的 14分
20.定义新运算 推理与证明 13分
共计150分
高考数学分值分布 1.与简易逻辑。分值在5~10分左右(一道或两道选择题),高考数学考查的重点是抽象思维能力,主要考查与的运算关系,将加强对的计算与化简的考查,并有可能从有限向无限发展。简易逻辑多为考查“充分与必要条件”及命题真伪的判别。
2.函数与导数,函数是高中数学的主要内容,它把中学数学的各个分支紧密地联系在一起,是中学数学全部内容的主线。在高考数学中,至少三个小题一个大题,分值在30分左右。以指数函数、对数函数、生成性函数为载体结合图象的变换(平移、伸缩、对称变换)、四性问题(单调性、奇偶性、周期性、对称性)、反函数问题常常是选择题、填空题考查的主要内容,其中函数的单调性和奇偶性有向抽象函数发展的趋势。函数与导数的结合是高考的热点题型,文科以三次(或四次)函数为命题载体,理科以生成性函数(对数函数、指数函数及分式函数)为命题载体,以切线问题、极值值问题、单调性问题、恒成立问题为设置条件,与不等式、数列综合成题,是解答题试题的主要特点。
3.不等式; 高考数学一般不会单独命题,会在其他题型中“隐蔽”出现,分值一般在10左右。不等式作为一种工具广泛地应用在涉及函数、数列、解几等知识的考查中,不等式重点考五种题型:解不等式(组);证明不等式;比较大小;不等式的应用;不等式的综合性问题。选择题和填空题主要考查不等式性质、解法及均值不等式。解答题会与其它知识的交汇中考查,如含参量不等式的解法(确定取值范围)、数列通项或前n 项和的有界性证明、由函数的导数确定值型的不等式证明等。
4.数列:数列是高中数学的重要内容,又是初等数学与高等数学的重要衔接点,所以在历年的高考数学解答题中都占有重要的地位.题量一般是一个小题一个大题,有时还有一个与其它知识的综合题。分值在20分左右,文科以应用等、等比数列的概念、性质求通项公式、前n 项和为主;理科以应用Sn 或an 之间的递推关系求通项、求和、证明有关性质为主。数列是特殊的函数,而不等式是深刻认识函数与数列的工具,三者综合的求解题与求证题是对基础知识和基础能力的双重检验,是高考命题的新热点。
5.三角函数:分值在20分左右(两小一大)。三角函数高考数学题大致为以下几类:一是三角函数的恒等变形,即应用同角变换和诱导公式,两角和公式,二倍角公式,求三角函数值及化简、证明等问题;二是三角函数的图象和性质,即图像的平移、伸缩变换与对称变换、画图与视图,与单调性、周期性和对称性、值有关的问题;三是三角形中的三角问题.
高考数学对这部分内容的命题有如下趋势:⑴降低了对三角变形的要求,加强了对三角函数的图象和性质的考察.⑵多是基础题,难度属中档偏易.⑶强调三角函数的工具性,加强了三角函数与其他知识的综合,如与向量知识、三角形问题、解析几何、立体几何的综合。以三角形为载体,以三角函数为核心,以正余弦公式为主体,考查三角变换及其应用的能力,已成为考试热点。
6.向量:分值在10分左右,一般有一道小题的纯向量题,另外在函数、三角、解析几何与立体几何中均可能结合出题。向量是高考数学新增的重点内容,它融代数特征和几何特征于一体。
你所说的高考数学应该是理科的吧,每个知识所占分值不是固定的,一般按照知识的学时多少来分配,但也会考虑到知识点的重要性、难度等因素。下面是考点及学时:
必修(115个)
一、、简易逻辑(14课时,8个)
1.; 2.子集; 3.补集;
4.交集; 5.并集; 6.逻辑连结词;
7.四种命题; 8.充要条件.
二、函数(30课时,12个)
1.映射; 2.函数; 3.函数的单调性;
4.反函数; 5.互为反函数的函数图象间的关系; 6.指数概念的扩充;
7.有理指数幂的运算; 8.指数函数; 9.对数;
10.对数的运算性质; 11.对数函数. 12.函数的应用举例.
三、数列(12课时,5个)
1.数列; 2.等数列及其通项公式; 3.等数列前n项和公式;
4.等比数列及其通顶公式; 5.等比数列前n项和公式.
四、三角函数(46课时17个)
1.角的概念的推广; 2.弧度制; 3.任意角的三角函数;
4,单位圆中的三角函数线; 5.同角三角函数的基本关系式;
6.正弦、余弦的诱导公式’ 7.两角和与的正弦、余弦、正切;
8.二倍角的正弦、余弦、正切; 9.正弦函数、余弦函数的图象和性质;
10.周期函数; 11.函数的奇偶性; 12.函数 的图象;
13.正切函数的图象和性质; 14.已知三角函数值求角; 15.正弦定理;
16余弦定理; 17斜三角形解法举例.
五、平面向量(12课时,8个)
1.向量 2.向量的加法与减法 3.实数与向量的积;
4.平面向量的坐标表示; 5.线段的定比分点; 6.平面向量的数量积;
7.平面两点间的距离; 8.平移.
六、不等式(22课时,5个)
1.不等式; 2.不等式的基本性质; 3.不等式的证明;
4.不等式的解法; 5.含的不等式.
七、直线和圆的方程(22课时,12个)
1.直线的倾斜角和斜率; 2.直线方程的点斜式和两点式; 3.直线方程的一般式;
4.两条直线平行与垂直的条件; 5.两条直线的交角; 6.点到直线的距离;
7.用二元一次不等式表示平面区域; 8.简单线性规划问题. 9.曲线与方程的概念;
10.由已知条件列出曲线方程; 11.圆的标准方程和一般方程; 12.圆的参数方程.
八、圆锥曲线(18课时,7个)
1椭圆及其标准方程; 2.椭圆的简单几何性质; 3.椭圆的参数方程;
4.双曲线及其标准方程; 5.双曲线的简单几何性质; 6.抛物线及其标准方程;
7.抛物线的简单几何性质.
九、(B)直线、平面、简单何体(36课时,28个)
1.平面及基本性质; 2.平面图形直观图的画法; 3.平面直线;
4.直线和平面平行的判定与性质; 5,直线和平面垂直的判与性质;
6.三垂线定理及其逆定理; 7.两个平面的位置关系;
8.空间向量及其加法、减法与数乘; 9.空间向量的坐标表示;
10.空间向量的数量积; 11.直线的方向向量; 12.异面直线所成的角;
13.异面直线的公垂线; 14异面直线的距离; 15.直线和平面垂直的性质;
16.平面的法向量; 17.点到平面的距离; 18.直线和平面所成的角;
19.向量在平面内的射影; 20.平面与平面平行的性质; 21.平行平面间的距离;
22.二面角及其平面角; 23.两个平面垂直的判定和性质; 24.多面体;
25.棱柱; 26.棱锥; 27.正多面体; 28.球.
十、排列、组合、二项式定理(18课时,8个)
1.分类计数原理与分步计数原理. 2.排列; 3.排列数公式’
4.组合; 5.组合数公式; 6.组合数的两个性质;
7.二项式定理; 8.二项展开式的性质.
十一、概率(12课时,5个)
1.随机的概率; 2.等可能的概率; 3.互斥有一个发生的概率;
4.相互同时发生的概率; 5.重复试验.
选修Ⅱ(24个)
十二、概率与统计(14课时,6个)
1.离散型随机变量的分布列; 2.离散型随机变量的期望值和方; 3.抽样方法;
4.总体分布的估计; 5.正态分布; 6.线性回归.
十三、极限(12课时,6个)
1.数学归纳法; 2.数学归纳法应用举例; 3.数列的极限;
4.函数的极限; 5.极限的四则运算; 6.函数的连续性.
十四、导数(18课时,8个)
1.导数的概念; 2.导数的几何意义; 3.几种常见函数的导数;
4.两个函数的和、、积、商的导数; 5.复合函数的导数; 6.基本导数公式;
7.利用导数研究函数的单调性和极值; 8函数的值和小值.
十五、复数(4课时,4个)
1.复数的概念; 2.复数的加法和减法; 3.复数的乘法和除法;
4.数系的扩充.
版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。