高考数学题型归纳函数_高考函数题型及解题方法总结

专业目录 2025-01-05 17:05:18

高考如何考导数大题

⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.

高考数学导数大题出题特点及解法技巧:

高考数学题型归纳函数_高考函数题型及解题方法总结高考数学题型归纳函数_高考函数题型及解题方法总结


高考数学题型归纳函数_高考函数题型及解题方法总结


高考数学题型归纳函数_高考函数题型及解题方法总结


高三数学重要知识点精选总结3

1.若题目考察的是导数的概念,则主要考察的是对导数在一点处的定义和导数的几何意义,注意区分导数与△y/△x之间的区别。

2.若题目考察的是曲线的切线,分为两种情况:

(1)关于曲线在某一点的切线,求曲线y=f(x)在某一点P(x,y)的切线,即求出函数y=f(x)在P点的导数就是曲线在该点的切线的斜率.

(2)关于两曲线的公切线,若一直线同时与两曲线相切,则称该直线为两曲线的公切线.

高考导数有什么题型

①应用导数求函数的单调区间,或判定函数的单调性;

②应用导数求函数的极值与最值;③应用导数解决有关不等式问题。

导数的解题技巧和思路

①确定函数f(x)的定义域(最容易忽略的,请牢记);

②求方程f′(x)=0的解,这些解和f(x)的间断点把定义域分成若干区间;

③研究各小区间上f′(x)的符号,f′(x)>0时,该区间为增区间,反之则为减区间。高考数学导数主流题型及其方法(1)求函数中某参数的值或给定参数的值求导数或切线

一般来说,一到比较温和的导数题的会在问设置这样的问题:若f(x)在x=k时取得极值,试求所给函数中参数的值;或者是f(x)在(a,f(a))处的切线与某已知直线垂直,试求所给函数中参数的值等等很多条件。

虽然会有很多的花样,但只要明白他们的本质是考察大家求导数的能力,就会轻松解决。这一般都是用来送分的,所以遇到这样的题,一定要淡定,方法是:

先求出所给函数的导函数,然后利用题目所给的已知条件,以上述种情形为例:令x=k,f(x)的导数为零,求解出函数中所含的参数的值,然后检验此时是否为函数的极值。

高考数学中, 选择题的命题规律及常用的6大技巧及例题!

解答高考选择题既要求准确,又要快速选择,正如高冠教育(ggedu21)明确指出的,应“多一点想的,少一点算的”。我们都会有算错的时候,怎样才不会算错呢?“不算就不会算错” 因此,在解答时应该突出一个"选"字,尽量减少书写解题过程,在对照选择支的同时,多方考虑间接解法,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取。我们不要给任何“方法”做出限定,重要的是这种解答的思想方式。

一、高考数学选择题命题规律如下:

1、函数与导数

2—3个小题,1个大题,客观题主要以考查函数的基本性质、函数图像及变换、函数零点、导数的几何意义、定积分等为主,也有可能与不等式等知识综合考查;解答题主要是以导数为工具解决函数、方程、不等式等的应用问题。

2.三角函数与平面向量

小题一般主要考查三角函数的图像与性质、利用诱导公式与和角公式、倍角公式、正余弦定理求值化简、平面向量的基本性质与运算.大题主要以正、余弦定理为知识框架,以三角形为依托进行考查(注意在实际问题中的考查)或向量与三角结合考查三角函数化简求值以及图像与性质.另外向量也可能与解析等知识结合考查.

3.数列

2个小题或1个大题,小题以考查数列概念、性质、通项公式、前n项和公式等内容为主,属中低档题;解答题以考查等(比)数列通项公式、求和公式,错位相减求和、简单递推为主.

4.解析几何

2小1大,小题一般主要以考查直线、圆及圆锥曲线的性质为主,一般结合定义,借助于图形可容易求解,大题一般以直线与圆锥曲线位置关系为命题背景,并结合函数、方程、数列、不等式、导数、平面向量等知识,考查求轨迹方程问题,探求有关曲线性质,求参数范围,求最值与定值,探求存在性等问题.另外要注意对二次曲线之间结合的考查,比如椭圆与抛物线,椭圆与圆等.

5.立体几何

2小1大,小题必考三视图,一般侧重于线与线、线与面、面与面的位置的关系以及空间几何体中的空间角、距离、面积、体积的计算的考查,另外特别注意对球的组合体的考查.解答题以平行、垂直、夹角、距离等为考查目标.几何体以四棱柱、四棱锥、三棱柱、三棱锥等为主。

6.概率与统计

2小1大,小题一般主要考查频率分布直方图、茎叶图、样本的数字特征、性检验、几何概型和古典概型、抽样(特别是分层抽样)、排列组合、二项式定理第几个重要的分布.解答题考查点比较固定,一般考查离散型随机变量的分布列、期望和方.仍然侧重于考查与现实生活联系紧密的应用题,体现数学的应用性.

7.不等式

小题一般考查不等式的基本性质及解法(一般与其他知识联系,比如、分段函数等)、基本不等式性质应用、线性规划;解答题一般以其他知识(比如数列、解析几何及函数等)为主要背景,不等式为工具进行综合考查,一般较难。

8.算法与推理

程序框图每年出现一个,一般与函数、数列等知识结合,难度一般;推理题偶尔会出现一个。

二、高考数学选择题6大答题技巧

答题口诀:

(1)、小题不能大做

(2)、不要不管选项

(3)、能定性分析就不要定量计算

(4)、能特值法就不要常规计算

(5)、能间接解就不要直接解

(6)、能排除的先排除缩小选择范围

(7)、分析计算一半后直接选②根据具体问题中的数量关系列不等式(组)并解决简单实际问题选项

(8)、三个相高考数学填空题命题不拘泥于大纲,学生注意实际问题,经常用数学视角观察现实问题。这类题注重概率及排列组合的问题。似选相似

1、特殊值法

方法思想:通过取特值的方式提高解题速度,题中的一般情况必须满足我们取值的特殊情况,因而我们根据题意选取适当的特值帮助我们排除错误,选取正确选项。

2、估算法

方法思想:当选项距较大,且没有合适的解题思路时我们可以通过适当的放大或者缩小部分数据估算出的大概范围或者近似值,然后选取与估算值最接近的选项。

[注意]:带根号比较大小或者寻找近似值时要平方去比较这样可以减少误。

3、逆代法

方法思想:充分发挥选项的作用,观察选项特点,制定解题的特殊方案,可以大大的简化解题步骤,节省时间,做选择题我们切记不要不管选项.

4、特殊情况分析法

方法思想:当题中没有限定情况时,我们考虑问题可以从最特殊的情况开始分析,特殊情况往往可以帮助我们排除部分选项,然后分析从特殊情况到一般情况的[过度](变大、变小)等选出正确。

5、算法简化

方法思想:定性分析代替定量计算,根据题型结构简化计算过程,在一定程度上帮助我们加快了解题速度。

通过下面几个例题的讲解,我们不仅要掌握方法,更重要的是要去体会这种思想,做到活学活用。

6、特殊推论

【数学函数高考题目】高手来帮忙`````

文科 数学 会考哪些题型呢?什么题型是最常考的?高三文科生在复习时要着重复习哪些题型呢?下面和我一起来看看吧!

f(x)=ax2+(b+1)x+(b-1)=x

则ax^2+bx2、曲线F(x,y)=0关于直线Ax+By+C=0对称的曲线方程是F(x-(Ax+By+C),y-(Ax+By+C))=0+(b-1)=0有两个相异解。

判别式=b^2-4a(b-1)>0

a

高考数学函数题

B={x|x>0} A={x|-a-2

考点七:算法复数推理与证明a>2

你的个是S-底面积h-高V=Sh吧,求一下的到A的区间是(-a-2, a-2),

你看看-a-2肯定是负数,是吧,说明A区间肯定包含负数。

再看看B:

要么a>1,这样的话B=(0到正无穷,这个是对的,

当a<1时不行,你可以考虑一下,然后再考虑一下a=1的情况就行了

高考数学填空题的应对策略_高考数学题型全归纳

在高考数学卷中,填空题没有备选可供选择,避免选择项所起的暗示或干扰的作用,消除了考生存在的瞎估乱猜的侥幸心理,从这个角度看,它能够比较真实地考查出学生真正的数学水平。填空题只要求直接写出结果,不必写出计算、推理或证明过程,其结果必须是数值准确,形式规范,表达式(数)最简,若结果稍有疏漏就不得分。

本文以近几年全国各地高考数学题中较为典型的填空题为例,谈谈高考数学填空题的特点及应对策略。

一、高考数学填空题的命题特点

1.注重基础:数学基本概念、公式与定理的广泛应用

随着高考数学试卷整体难度的调整和填空题题量的不断变更,高考数学数学基本概念、基本理论试题也越来越注重考查基础知识和主干知识。题目涉及的内容和背景资料基本上为考生所熟知,例如高考常考的圆锥曲线问题、二项式定理、概率问题等。

2.突出迁移:概念、理论试题的补充扩展

高考数学概念与理论试题重视基础,但不是就基础考基础,而是注重数学概念与理论基础的延伸和拓展,注重将课本理论知识的综合与应用。

3.面向现实:概念、公式及定理的实际应用

4.再现探究:理论试题的发展创新

高考数学概念、理论试题在强调知识应用的同时,还尝试对学生拓展性能力和研究性学习的考查,强化对学生获取信息、处理信息、运用信息解决问题的能力的考核。适当增加开放型试题,鼓励有创造性的,要求用研究性的思路考虑问题,提出更优的解决方案。考改试题不具难度但有深度,体现了与课改的一致性,配合和支持了中学新课程改革。

5.体现区分:概念、公式、理论试题的选拔功能

虽然高考数学试题难度下降,但其作为选拔性考试的性质决定了高考填空题应有必要的区分度和适当的难度。纵观近几年的高考数学填空题,体现这种区分和选拔功能的试题大多为基本概念、逻辑推理试题。概念、逻辑推理试题在高考数学试卷的选拔功能中起着重要作用。

1.直接法

从题设条件出发,找出相关定义、定理或公式等直接进行求解,准确计算,得出结论。直接法是解填空题最常用的方法之一。

[例1](2007-全国卷-13)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文艺委员,则不同的选法共有 种。

[分析]直接利用排列组合的知识及从题目条件出发,得选法共有C13·A24=36种。

2.特例法

根据题设条件,选取适当的特殊值、特殊图形或特殊情况来进行处理问题,从而得出正确结论。用它解填空题是一种比较快速得到的解法。能利用特殊值法来解的题目,若能找到合适的特殊值,那解起题来将会有事半功倍的效果。

[例2](2010-重庆文)如图1所示,由三段圆弧连接而成的一条封闭曲线,各段圆弧所在的圆经过同一点P(点P不在C上)且半径相等。设第段弧所对的圆心角为?鄣i(i=1,2,3),则cos■cos■-sin■sin■= 。

[分析]从要求的结果来看,结论是的。故可尝试运用特例法。在符合题设条件下,让三段弧弧长相等(即点P为曲线C的中心),三个圆心分别记为O1,O2,O3,三段圆弧长的交点分别记为D,E,F,因为三个圆的半径相等,则O1,D,O2,E,O3,F构成一个正六边形,所以?鄣1,?鄣2,?鄣3均为240°。从而结论就容易求得了,即cos■cos■-sin■sin■=cos■=cos240

=-■。

3.数形结合法

借助图形进行直观分析,并辅助之以简单计算得出结论。无论是解何种题,数形结合都是比较常用的的方法。

[例3](2010-四川理-15)如图2所示,二面角的大小是?鄣-l-β的大小是60°,线段AB?奂?鄣,B∈l,AB与l所成的角为30°,则AB与平面β所成的角的正弦值是 。

[分析] 如图所示,过点A做平面β的垂线,垂足为C,在β内过C做l的垂线,垂足为D。连结AB,由三垂线定理可知AD⊥l,故∠ADC=60°,又由已知,得∠ABD=30°,连结CB,则∠ABC即为AB与平面β所成的角,设AD=2,则AC=■,CD=1,AB=■=4。从而sin∠ABC=■=■。

4.分析推理法

根据题设条件的特征进行观察、分析、推理,从中找出突破口,从而得出结论。

[例4](2010-重庆1.做好前面5个小题。不要小看这几个小题,对稳定情绪,鼓舞士气有很大作用。有些同学就是由于前面个别小题做得不顺,影响整个考试情绪。而一旦前面发挥得好,会感到一路顺手,所向披靡。理-15)已知函数f(x)满足:f(1)=■,且4f(x)f(y)=f(x+y)+f(x-y),(x,y∈R),则f(2010)= 。

[分析]令y=1,则4f(x)f(1)=f(x+1)+f(x-1),又f(1)=■,故f(x+1)=f(x)-f(x-1),从而得f(x+1)=f(x-5)。所以函数f(x)的周期为6。再令x=1,y=0,则有4f(1)f(0)=f(1+0)+f(1-0),故f(0)=■。从而f(2010)=f(335×6)=f(0)=■。

5.等价转化

从题目出发,把复杂的、生疏的、抽象的、困难的和未知的问题通过等价转化为简单的、熟悉的、具体的、容易的或已知的问题来解。当遇到那些不能用常规方法解时,应该考虑用等价法来解。

[例5](2010-江苏-12)设x,y为实数,满足3≤xy2≤8,4≤■≤9,则■的值是 。

[分析]从题设中来看,想直接运算出来是相当困难的,但从中可发现将其转化为对数形式时就好求了。由已知,知x,y均为正实数,两式分别取常用对数,得lg3≤1gx+21gy≤1g8……①,lg4≤21gx-1gy≤1g9……②,经运算化简得1g2≤1g■≤1g27,又lgx是增函数,所以2≤■≤1g27,故■的值为27。

⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用6.变形公式法

[例6](2011-全国卷理-16)在△ABC中,B=60°,AC=■,则AB+2BC的值为 。

[分析]在△ABC中,根据正弦定理■=■=■=2R,其中R为△ABC外接圆的半径。由三角恒等变换,有AB+2BC=2sinC+4sin(120°-C)=4sinC+2■cosC=2■sin(C+φ),C∈(0,■),所以AB+2BC的值为2■。

高三文科数学常考题型归纳

高考数学函数解答方法

文科数学常考题型有哪些

★ 高三数学知识点总结

圆/坐标系与参数方程/不等式

一般全国卷文科数学的第22至24题会考圆/坐标系与参数方程/不等式三道选做题。参数方程是大家选做最多的一道题,参数方程主要考查轨迹方程计算方法、三角换元求最值、极坐标方程和直角坐标方程转化等,这道题相对容易做。

函数

一般全国卷文科数学的第21题会考函数题。高考对三角函数知识主要考查三角函数及解三角形两部分知识。主要知识点有三角函数概念。恒等变形、同角关系等。三角函数还可以和向量知识结合在一起考,也可以和正弦定理、余弦定理结合起来一起考查。

解析几何

一般全国卷文科数学的第20题会考解析几何题。解析几何也不是难题,只要大家平时努力,这些题目都算是相对简单的。所以大家不要有畏难情绪,认为这是2道大题就觉得有多难,其实如果你认认真真去做了,这道题还是有希望做对的。退一步来说,即便是真的不会了,那也可以得一些步骤分,前一两问还是没问题的。

一般全国卷文科数学的第19题会考立体几何题。例题几何也不难,但大家一定要敢于尝试,敢于动笔写,不要说没有做题思路就放弃这道题。只要你按照常规的方法做就可以,然后一步步分析下去,边分析边写步骤,结果自然就出来了。如果没思路可以尝试2种以上的方法做。

概率

一般全国卷文科数学的第18题会考概率题。概率题相对比较简单,也是必须得分的题,这道题主要频数分布表、频率分布直方图、回归方程的求法、概率计算、相关系数的计算等等。主要还是对作图和识图能力考查比较多。

三角函数/数列

一般全国卷文科数学的第17题会考三角函数或数列题。数列是最简单的题目,或许你觉得它难,但它能放在道大题的位置,就说明你不应该丢分。数列题可以多总结一些类型题,分析归类,找到其中规律,题做多了,自然就有思路了。

文科数学成绩怎么提高

文科数学的一大特色,就在于你可以通过有效的总结来代替无尽的习题。总结并不代表一味地抄公式抄概念,而应该用自己的语言和做题经验归纳出针对自身的解题技巧,这也就是我所谓的“翻译”。事实上,高三一年我花在总结上的工夫与做题相比有过之而无不及。

粗心大意是文科数学学习中难以绕过的一大障碍,然而粗心只是表象,追本溯源仍是不够熟练。心态的调整亦无需花费额外的精力。我所采取的措施是在临考一个月时找来近三年的 高考试题 ,在规定的时间内细做一遍,并将写在卷上,达到降低高考恐惧感,增强自信心的目的。

我:高考数学复习重点题型有哪些

“偷懒”的要任就在于减少复习的负荷量。数学学习的负荷是永无止境的题海。开学伊始,我便整理出一个大体的概念框架,突出重点和难点。这样在轮复习大家都埋头做题之时,我便早早地跳出了题海。省下时间只是手段,把精力花在研究“精题”上才是目的。经验表明,选做精题为短期内成绩攀升打下了坚实的基础。

高考数学的题型都有哪些?各自占着怎样的占分比?

1、高考数学分值分布

三角函数18分左右;立体几何22分左右;解析几何28分左右;数列18分左右;函数与导数43分左右;不等式12分左右;二项式定理6分左右;复数5分;概率与统计18分左右。各知识点都很平均。解析几何的选择题只是考察概念,不会很难,选择提前10道和大题的三角函数,概率,立体几何, 只多要做题,可以在短时间内突破。

2、高考数学哪部分最难

高中数学,别说难或者不难,全部要好好学习。为了高考做准备。说的有点片面,但是真的要全部学习。现在的高考考的比较全面。必须按照考学大纲,全部掌握。高中数学都不太容易,理论性的东西多了一些,需要理解和掌握的东西比初中要多。如果前面第六,空间位置关系的定性与定量分析的一部分学不好,那后面的就会感到越来越难。个人觉得,排列组合中的计算是最难的。但是对于数学中的难易成都也是因人而异的。

3、高考数学如何取得高分

真懂。知识要掌握准确:在复习中,考生要树立稳扎稳打的习惯,对似懂非懂的基本问题必须实实在在地对待。方法要到位:比如证明问题常用的方法:比较法。2016、2017、2018年高考题都有它的应用,到现在没有变化吗?现在的比较法从高考题上就告诉我们不仅要会直接比较,还要会间接比较即调整后作或作比,而且还要和导数相结合。

真算。提高自己运算能力,也就是加强算功。将运算进行到底,应当始终成为高考复习的一个原则。注重算法,算理。在平时运算时应注重精算、心算、悟算、不算的训练,注重把握好运算方向,选择好的运算公式,避免盲目运算。

高考数学的题型有简易,逻辑数列,三角函数,立体几何,圆锥曲线,概率与统计,导数算法,线性规划不等式,向量,复数,三视图。选择题40分、填空题30分、解答题80分。这些占分比考生们要根据自身的情况好好的复习,着重要侧重一些重点难点的题型。

首先说一些比较零散的模块,你比如说算出一个五分的小题,还有线性回归会出一个五分的小题,三视图会出一个五分的小题,复数和会各出一道五分的小题,向量有可能出一道五分的小题,也可能不出一道小题,而是放在后面和三角函数结合出一道大题,或者和解析几何结合出一道大题,二项式定理会出一个五分小题上面一是一些非常零碎的小知识点,而从每年的出题规律上看没有什么大的变化,从这一部分题从难度上看也是属于简单题,所以同学们应该重视起来,因为一旦发现自己有不会的地方可以很快的补上了来,前面这些题大概要占到40分左右

1.选择题,12道一道五分,分值60占百分之五十2.填空题4道,一道五分,分值20,占6/1。3.简答题,分值30占4/1

高考数学必考知识点归纳有哪些?

定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体

高考数学必考知识点归纳:

,函数与导数

主要考查运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

第二,平面向量与三角函数、三角变换及其应用

这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

第三,数列及其应用

这部分是高考的重点而且是难点,主要出一些综合题。

第四,不等式

主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。

第五,概率和统计

这部分和我们的生活联系比较大,属应用题。

主要是证明平行或垂直,求角和距离。主要考察对定理的熟悉程度、运用程度。

第七,解析几何

高考的难点,运算量大,一般含参数。高考对数学基础知识的考查,既全面又从课本或习题中总结出来,但又不是课本的定理的“真命题”,用于解答填空题有快、准等优点。故而掌握好该方法并懂灵活应用那是相当不错的。突出重点,扎实的数学基础是成功解题的关键。

exp是什么函数

题意就是,F(X)与Y=X直线相交恒有两个点,所以方程:ax2+(b+1)x+(b-1)=x,得:b平方-4a(b-1)恒>0,所以令f(b)=b平方-4a(b-1),F(b)开口向上又不能与x轴有交点,这样才满足对”于任意的b,函数恒有两个不动点”,再求f(b)的△<O就行了,得0关于exp是什么函数相关如下:

exp,高等数学里以自然常数e为底的指数函数。用途:用来表示自然常数e的指数。例:EXP{F(X)}是e的F(X)次方。exp(2)就是e的平方。指数函数是数学中重要的函数。应用到值e上的这个函数写为exp(x)。

数学如何学好?

一、先掌握知识,再去刷题。刷题前要把基本知识搞懂,基本的公式、定理、数学名词都要提前搞清楚。记住这句话,刷题是为了学会知识,连知识点都没有搞清楚,就是一顿刷,不要,真的不要,一点用都没有,这样只会是努力,你连知识点、公式定理都记不住。

二、题型归纳,真的特别重要。每一道经典题目都要去细细分析,并且记录以下几点题目的条件,隐藏条件,隐藏点是怎么看出来的?解题思路,解题思是怎么来的?用到的公式、定义或者知识点。总结虽然很麻烦,可是能够最快的帮你提升学习成绩。对了,不要忘记经常反复观看。这里是我做的高考数学题型归纳,对每一类高考数学题型都详细的做了讲解。

三、错题集和学习笔记。高中数学学习一定要准备错题本和学习笔记,不能只是做题,因为高中数学题实在是太多了,数学基础的人,做题速度也很慢,也做不了太多题。通过错题来总结解题思路与解题技巧才是重点。

学好数学的重要性

数学与我们生活息息相关。要说学数学的真正效果,它不是体现在应试教育上,而是将来自身的思维上。学数学是一个由简5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。单到复杂的思维过程,会有人觉得数学知识以后用不上。

以后不从事相关学术工作的话,用不到多少数学学到的知识,但是仔细观察后,数学学习好的人往往能在很多事情处理上思路清晰,逻辑连贯,更胜人一筹。还可以利用各种反向思维,这就是数学带来的作用。

第二数学的重要性不言而喻。数学是一切科学的基础,是培养逻辑思维重要渠道,可以说我们人类的每一次重大进步都有数学这门学科在做强有力的支撑;没有数学就没有手机、电脑、电视,甚至我们的航天飞机,也就没有今天我们丰富多彩的生活;学好数学,它会让我们的头脑是变得更理性、思维变得更敏捷、头脑变得更灵活。

数学能让我们思考任何问题的时候都比较缜密,而不至于思绪紊乱;学习数学给予我们的不仅仅是知识,更重要的是一种能力的培养和塑造,这种能力包括观察实验、收集信息、逻辑推理、计算等等这些能力和培养,将会终身受益。

第三生活中的数学知识运用无处不在。从日常生活中柴米油盐的费用的计算,到天文地理、质量控制、农业经济、航天事业都存在着运用数学的影子,上街买东西要用到加减法,类似这样的问题有很多,这些生活中的数学,归纳成数学知识,来解决了更多的生活实际问题。

高考数学函数解答方法

但为什么说q是p的必要条件呢?

在高中 数学 的学习当中,最让考生们头疼的知识点是数学 函数 问题,对于函数的题空间该如何解答呢?以下是我整理的关于解答函数的方法:

一、函数题找不到解题的突破口怎么办?

高考中的函数题不外就是导数,从这里入手大致可以了。如果是小题的话,可从函数的性质入手。

二、函数中的重点难点是什么?函数方面不好的话,应该从什么地方学起呢?

函数的基本性质是最重要的,要掌握透彻、理解透彻,才能在做题的时候灵活运用。函数题形式虽多,但是万变不离其宗,函数性质还是关键。

三、艺术生现在该怎么快速提高成绩?

快速是不存在的,但基础的同学这个时候就只能做最基础的题了。

四、上课能听懂,一到做题就不会,是什么原因呢?

还是题做的少,不熟悉。如果学生对知识掌握程度不好,就不要做难题了,中档以下的题的分数也够了。

五、立体几何证明除了用到中位线平移,一般还有哪些?

如果是证明垂直的话,用等腰三角形的三线合一、三垂线定理等,其实立体几何证明题最实用的还是建系。

六、椭圆的大题怎么得分?

椭圆题得分方法常见的是用待定系数法求方程。

七、代数的二项式定理和排列组合的题弄不明白

二项式题不难,抓住通项公式不多了。排列组合用填空法比较常见,但要对几个主要题型,掌握透彻。

八、怎么才能激起孩子学数学的 兴趣 呢?

只能是做题会了才有兴趣,只能是从简单的题做起,会的多了就有兴趣了。

九、概率的题有什么好的做题方法?

概率题先定位,再用公式。

十、学立体几何没有立体感怎么办,看到题没有思路?

没立体感找实物 课本上每章的习题往往是为巩固本章内容而设置的,所用知识相对比较单一。复习中考生对知识交汇点的问题应适当加强训练,实际上就是训练学生的分析问题解决问题的能力。、画图练。

十一、均值不等式的题不会做,除了记住公式还怎么办?

你能认定是均值不等式就一定会做,只用二元的即可。

十二、高中立体几何在高考中比例是多少?

立几大约是17或22分。

十三、定积分的题高考会出大题吗,需要背LIM的公式吗?

定积分不会单独出大题。

高考数学必考知识点之三角函数

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα (k∈Z)

cos(2kπ+α)=cosα (k∈Z)

tan(2kπ+α)=tanα (k∈Z)

cot(2kπ+α)=cotα (k∈Z)

公式二:

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α与 -α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

高三数学知识点及公式总结大全

2.排列(有序)与组合(无序)

高三数学重要知识点精选总结1

在求解排列与组合应用问题时,应注意:

1.课程内容:

必修课程由5个模块组成:

必修1:、函数概念与基本初等函数(指、对、幂函数)

必修2:立体几何初步、平面解析几何初步。

必修3:算法初步、统计、概率。

必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。

必修5:解三角形、数列、不等式。

以上是每一个高中学生所必须学习的。

上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。

此外,基础内容还增加了向量、算法、概率、统计等内容。

2.重难点及考点:

重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数

难点:函数、圆锥曲线

高考相关考点:

⑴与简易逻辑:的概念与运算、简易逻辑、充要条件

⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用

⑷三角函数:有关概念、同角关系与诱导公式、和、、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用

⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用

⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、不等式、不等式的应用

⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系

⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量

⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用

⑾概率与统计:概率、分布列、期望、方、抽样、正态分布

⑿导数:导数的概念、求导、导数的应用

⒀复数:复数的概念与运算

高三数学重要知识点精选总结2

①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).

②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.

⑶特殊棱锥的顶点在底面的射影位置:

①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.

②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心.

③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心.

④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.

⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.

⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;

⑧每个四面体都有内切球,球心

是四面体各个二面角的平分面的交点,到各面的距离等于半径.

[注]:i.各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的等腰三角形不知是否全等)

ii.若一个三角锥,两条对角线互相垂直,则第三对角线必然垂直.

简证:AB⊥CD,AC⊥BD

BC⊥AD.令得,已知则.

iii.空间四边形OABC且四边长相等,则顺次连结各边的中点的四边形一定是矩形.

iv.若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形.

简证:取AC中点,则平面90°易知EFGH为平行四边形

EFGH为长方形.若对角线等,则为正方形.

立体几何初步

(1)棱柱:

定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥

定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体

分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

表示:用各顶点字母,如五棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:

定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分

分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

表示:用各顶点字母,如五棱台

几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

(4)圆柱:

定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:

定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7)球体:

定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

高三数学重要知识点精选总结4

(1)先看“充分条件和必要条件”

当命题“若p则q”为真时,可表示为p=>q,则我们称p为q的充分条件,q是p的必要条件。这里由p=>q,得出p为q的充分条件是容易理解的。

事实上,与“p=>q”等价的逆否命题是“非q=>非p”。它的意思是:若q不成立,则p一定不成立。这就是说,q对于p是必不可少的,因而是必要的。

(2)再看“充要条件”

若有p=>q,同时q=>p,则p既是q的充分条件,又是必要条件。简称为p是q的充要条件。记作p<=>q

回忆一下初中学过的“等价于”这一概念;如果从命题A成立可以推出命题B成立,反过来,从命题B成立也可以推出命题A成立,那么称A等价于B,记作A<=>B。“充要条件”的含义,实际上与“等价于”的含义完全相同。也就是说,如果命题A等价于命题B,那么我们说命题A成立的充要条件是命题B成立;同时有命题B成立的充要条件是命题A成立。

(3)定义与充要条件

数学中,只有A是B的充要条件时,才用A去定义B,因此每个定义中都包含一个充要条件。如“两组对边分别平行的四边形叫做平行四边形”这一定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。

显然,一个定理如果有逆定理,那么定理、逆定理合在一起,可以用一个含有充要条件的语句来表示。

“充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示“充分”。“仅当”表示“必要”。

(4)一般地,定义中的条件都是充要条件,判定定理中的条件都是充分条件,性质定理中的“结论”都可作为必要条件。

高三数学重要知识点精选总结5

1.函数的奇偶性

(1)若f(x)是偶函数,那么f(x)=f(-x);

(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);

(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);

(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;

2.复合函数的有关问题

(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

3.函数图像(或方程曲线的对称性)

(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;

(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;

(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;

(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;

4.函数的周期性

(1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;

(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;

(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;

(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;

(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;

(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;

5.方程k=f(x)有解k∈D(D为f(x)的值域);

6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

7.(1)(a>0,a≠1,b>0,n∈R+);

(2)logaN=(a>0,a≠1,b>0,b≠1);

(3)logab的符号由口诀“同正异负”记忆;

(4)alogaN=N(a>0,a≠1,N>0);

8.判断对应是否为映射时,抓住两点:

(1)A中元素必须都有象且;

(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

9.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

10.对于反函数,应掌握以下一些结论:

(1)定义域上的单调函数必有反函数;

(2)奇函数的反函数也是奇函数;

(3)定义域为非单元素集的偶函数不存在反函数;

(4)周期函数不存在反函数;

(5)互为反函数的两个函数具有相同的单调性;

(6)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);

11.处理二次函数的问题勿忘数形结合

二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;

12.依据单调性

利用一次函数在区间上的保号性可解决求一类参数的范围问题;

13.恒成立问题的处理方法

(1)分离参数法;

(2)转化为一元二次方程的根的分布列不等式(组)求解;

(1)、高三数学必考知识点归纳公式大全

(2)、高三女儿数学只考了108分 老爸的这一做法绝了

(3)、2019扬州高三模拟统考语文数学试题难度点评

(4)、2019年湖北高三2月联考数学理试题及

(5)、高三数学教师教学工作总结

(6)、高三复习班数学班主任工作总结

版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。