高考 导函数_高考导函数大题

中专问答 2024-11-10 09:50:36

导数,判断单调性

(1)若导数大于零,则单调递增,若导数小于零,则单调递减.导数等于零为函数驻点,不一定为极值点,需代入驻点左右两边的数值求导数正负判断单调性.

高考 导函数_高考导函数大题高考 导函数_高考导函数大题


高考 导函数_高考导函数大题


高考 导函数_高考导函数大题


(2)若已知函数为递增函数,则导数大于等于零,若已知函数为递减函数,则导数小于等于零.

扩展资料导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。

导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。

参考资料

导数,也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数1. 高中数学解题技巧冲刺得分题输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f(x0)或df(x0)/dx。

用导数判断单调性的方法如下:

②若可导,且x∈D时恒有f'(x)>0,则函数y=f(x)在区间D内单调递增;反之,若x∈D时,f'(x)<0,则称函数y=f(x)在区间D内单调递减 。

同理:

①若导数大于零,则单调递增,若导数小于零,则单调递减。导数等于零为函数驻点,不一定为极值点,需代入驻点左右两边的数值求导数正负判断单调性。

②若已知函数为递增函数,则导数大于等于零,若已知函数为递减函数,则导数小于等于零。

步:对函数求导,得出导函数。

第二步:令导函数大于0,解得的x的范围,就得到了函数的(严格)递增区间。

令导函数小于0,解得的x的范围,就得到了函数的(严格)递减区间。

说明:

若令导函数大于等于0,解出的是不减区间;或称为一般的增区间;

若令导函数小于等于0,解出的是不增区间;或称为一般的减区间。

不懂请3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指1) 注意:上述公式中A^n表示A的n次方。单峰函数)的值和最小值.追问,懂了得个采纳好不?

判断单调性,步:对函数求导,就能得出导函数。

第二步:令导函数大于0,解得的x的范围,就得到了函数的(严格)递增区间。

若令导函数大于等于0,解出的是不减区间;或称为一般的增区间

若令导函数小于等于0,解出的是不增区间

令函数的导数等于0,f'(x)>0,函数单调递增.f'(x)<0,函数单调递减

高考数学一轮复习-第三章 第二节 导数与函数的单调性

导数怎么算?

(2)几种常见函数的导数公式

(1)求函数y=f(x)在x0处导数的步骤:①求函数的增量Δy=f(x0+Δx)-f(x0) ②求平均变化率③取极限,得导数。

解:f(x)=xlnx f(x)的导函数是g(x),g(x)=lnx+1

(3)导数的四则运算法则

(3)复合函数对自变量的导数

按上面所说对照课本总结

导数很简单的,把书上的公式总结一下,然后套用就可以了。。。。。。

我觉得高考的时候,导数不是难点。

主要靠求导公式。简单函数直接代入公式求的,复合函数 要把它拆成简单函数 一步一步求算。多看看书,就很简单的

这个问题不是三言两语就能完成的,你有学好这个的态度,自学就会算了

我记得导数应该是高中的课程吧,你可以具体点吗?发过来,试着帮你解答

高中数学导数难题解题技巧

倒数的基本公式有好几个 比如x的立方=3X的平方等等

导数是高考数学必考的内容,近年来高考加大了对以导数为载体的知识问题的考查,题型在难度、深度和广度上不断地加大、加深,从而使得导数相关知识愈发显得重要。下面是我为大家整理的关于高中数学导数难题解题技巧,希望对您有所帮助。欢迎大家阅读参考学习!

得到X1-X2,因为任意x1 x2大于0 x1>x2 ,所以X1-X2 〉0〉a

1高中数学导数难题解题技巧

1.导数在判断函数的单调性、最值中的应用

利用导数来求函数的最值的一般步骤是:(1)先根据求导公式对函数求出函数的导数;(2)解出令函数的导数等于0的自变量;(3)从导数性质得出函数的单调区间;(4)通过定义域从单调区间中求出函数最值。

2.导数在函数极值中的应用

利用导数的知识来求函数极值是高中数学问题比较常见的类型。利用导数求函数极值的一般步骤是:(1)首先根据求导法则求出函数的导数;(2)令函数的导数等于0,从而解出导函数的零点;(3)从导函数的零点个数来分区间讨论,得到函数的单调区间;(4)根据极值点的定义来判断函数的极值点,再求出函数的极值。

3.导数在求参数的取值范围时的应用

利用导数求函数中的某些参数的取值范围,成为近年来高考的 热点 。在一般函数含参数的题中,通过运用导数来化简函数,可以更快速地求出参数的取值范围。

2高中数学解题中导数的妙用

导数知识在函数解题中的妙用

函数知识是高中数学的重点内容,其中包括极值、图像、奇偶性、单调性等方面的分析,具有代表性的题型就是极值的计算和单调性的分析,按照普通的解题过程是通过图像来分析,可是对于较难的函数来说,制作图像不仅浪费时间,而且极容易出错,而在函数解题中应用导数简直就是手到擒来。

例如:函数f(x)=x3+3x2+9x+a,分析f(x)的单调性。这是高中数学中常见的三次函数,在对这道题目进行单调性分析时,很多学生根据思维定式会采用常规的手法画图去分析单调区间,但由于未知数a的存在而遇到困难。如果考虑用导数的相关知识解决这一问题,解:f’(x)=-3x2+6x+9,令f’(x)>0,那么解得x<-1或者x>3,也就是说函数在(-∞,-1),(3,+∞)这个单调区间上单调递减,这样就能非常容易的判断函数的单调性。

导数知识在方程求根解题中的妙用

导数知识在方程求根中的应用属于一项重点内容,在平时的数学练习中以及高考的考察中均曾以不同的难度形式出现过。导数知识能针对方程求根,根据导函数的求解能判断原函数的根的个数。在解这一类问题的时候,教师要善于学生利用导函数与X轴的交点个数来判断方程根的个数。

例如,某一证明问题:方程x-sinx=0,只有一个根x=0。在分析这一问题时实际上就是利用函数的单调性质和特殊值来确定f(x)=0。其证明过程需首先利用到导数知识,令f(x)=x-sinx,定义域为R,求导f(x)=1-cosx>0,再利用函数单调性及数形结合思想,求得x=0是次方程的根。此内容的应用就是最为典型的导数知识在方程求根中的应用。

学会审题,才会解题

很多考生对审题重视不够,往往要做的题目都没有看清楚就急于下笔,审好题是做题的关键,审题一一定要逐字逐句的看清楚,通过审题发现题目有无易漏、易错点,只有仔细审题才能从题目中获取更多的信息,只有挖掘题目中的隐含条件、启发解题思路,提醒常见解题误区和自己易出现的错误,才能提高解题能力。只有认真的审题,谨慎的态度,才能准确地揣摩出题者的意图,发现更多的信息,从而快速找到解题方向。

考前保持头脑清醒,要摒弃杂念,不断进行积极的心理暗示,创设宽松的氛围,创设数学情境,进而酝酿数学思维,静能生慧,满怀信心的进行针对性的自我安慰,以平稳自信、积极主动的心态准备应考。这就要求我们要善于观察。

先做简单题,后做难题

4高中数学的解题技巧

审题技巧

审题是正确解题的关键,是对题目进行分析、综合、寻求解题思路和 方法 的过程,审题过程包括明确条件与目标、分析条件与目标的联系、确定解题思路与方法三部分。(1)条件的分析,一是找出题目中明确告诉的已知条件,二是发现题目的隐含条件并加以揭示。目标的分析,主要是明确要求什么或要证明什么;把复杂的目标转化为简单的目标;把抽象目标转化为具体的目标;把不易把握的目标转化为可把握的目标。

(2)分析条件与目标的联系。每个数学问题都是由若干条件与目标组成的。解题者在阅读题目的基础上,需要找一找从条件到目标缺少些什么?或从条件顺推,或从目标分析,或画出关联的草图并把条件与目标标在图上,找出它们的内在联系,以顺利实现解题的目标。(3)确定解题思路。一个题目的条件与目标之间存在着一系列必然的联系,这些联系是由条件通向目标的桥梁。用哪些联系解题,需要根据这些联系所遵循的数学原理确定。解题的实质就是分析这些联系与哪个数学原理相匹配。

类型题掌握,提升发散性

学习的过程也是知识的积累过程,所以,不论是哪一学科,都不能期待能一朝实现学校目标,而数学亦是如此。所以,在日常解答某些类型数学题的时候,对其题型加以掌握,这是提高学生解题能力,培养学生解题技巧的重要途径之一,并且效果良好。

但是有一点我们必须铭记,类型习题的整理和记忆是指对其解题思路的记忆,并不是对其解答过程的记忆。如一位学生只是对这道题的解题过程加以记录,不去分析,不去思考其解答方式的亮点,那么即使他整理再多的习题,也无法取得应有的效果,只会将学习停留在表面。

高中数学导数难题解题技巧相关 文章 :

3. 高二数学不好怎么办?遇到困难怎么办

5. 高中数学导数测试题及

7. 高二数学:学习方法 导数如何学

8. 高中数学大题的解题技巧及解题思想

9. 高中数学解答题8个答题模板与做大题的方法

10. 高考数学答题技巧

高考导数一般都是第几题

全国卷高考导数题型:

(导数是微积分中的重要基础概念。导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。1)求函数中某参数的值或给定参数的值求导数或切线。

(2)求函数的单调性或单调区间以及极值点和最值。①判断函数y=f(x)在区间D内是否可导;

(3)恒成立或在一定条件下成立时求参数范围。

(4)构造新函数对新函数进行分析。

(5)零点问题。

高三数学导数

2. 等比数列:a(n+1)/an=q, n为自然数。 (2)通项公式:an=a1q^(n-1); 推广式: an=am·q^(n-m); (3)求和公式:Sn=na1(q=1) Sn=a1(1-q^n)/(1-q) =(a1-a1q^n)/(1-q) =a1/(1-q)-a1/(1-q)q^n ( 即a-aq^n) (前提:q不等于 1) (4)性质: ①若 m、n、p、q∈N,且m+n=p+q,则am·an=apaq; ②在等比数列中,依次每 k项之和仍成等比数列. (5)“G是a、b的等比中项”“G^2=ab(G≠0)”. (6)在等比数列中,首项A1与公比q都不为零.

f(x1)-f(x2)/g(x1)-g(x2)=(x1lnx1- x2lnx2)/(lnx1-lnx2),同时消去lnx1-lnx2

如果顺序做题既耗费时间又拿不到分,会做的题又被耽误了。所以先做简单题,多年的 经验 告诉我们,当你解题不顺利时,更要冷静,静下心来,沉住气,根据自己的实际情况,果断跳过自己不会做的题目,把简单的都做完,如果我们能把这部分的分数拿到,就已经打了胜仗,再集中精力做比较难的题,有了胜利的信心,面对住偏难的题更要有耐心,不要着急,可以先放弃,但也要注意认真对待每一道题,不能走马观花,要相信自己。到应有的分数。还有善于把难题转换成简单的题目的能力。

数学高考导数怎么解题还有证明等比老写不出来

1.了解导数概念的某些实际背景(如瞬时从我们的心理学角度来讲,一般拿到试卷以后,心情比较紧张,此时不要急于下手解题,可以先对试题多少、分布、难易程度从头到尾浏览一遍,做题要先易后难,做到心中有数,一般简单的题目占全卷60%,这是很重要的一部分分数,见到简单题要细心解题,尽量使用数学语言,而且要更加严谨以振奋精神,养成良好的审题习惯鼓舞信心。速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念.

2.熟记基本导数公式;掌握两个函数和、、积补充资料、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数.

高考,数学……二阶导数恒大于零,所以函数是凹的,所以有[f(x1)+f(x2)]/2 >f[(x1+x2)/2],上海...

具体题号不一定,至少会有一道选择题和一道压轴大题大题共17分。部分地方出卷还会有相关填空题。

不会哈

如果卷子上没有说不准用超纲的知识答卷就没有关系

貌似改卷老师还比较喜欢6. 高二数学学习方法指导与学习方法总结有一定高等数学基础的孩子

注意题目要求,看有无二阶可导或任意阶可导字样

二次求导的含义和用法是什么?

需要看看书

函数在某点的一阶导数表示函数图象在该点的切线的斜率,表达了函数值在该点附近的变化快慢,相应地,对函数二次求导,相当于对原来函数的一阶导函数再进行一次求导,所得二阶导数即表示切线的斜率的变化快慢,可对比位移一次求导即速度,位移二次求导即加速度来理解.

4. 高中数学导数练习题及

我们都知道用导函数判断原函数的单调性,如果导函数大于零,则原函数为增,导函数小于零,则原函数为减.在求出导函数后,如果再继续对导函数求导,即求出,则可以用去判断的增减性,如下图:下面我们结合高考题来看看二次求导在解高考数学函数压轴题中的应用【理·2010全国卷一第20题】已知函数.(Ⅰ)若,求的取值范围;(Ⅱ)证明:先看问,首先由可知函数的定义域为,易得则由可知,化简得,这时要观察一下这个不等式,显然每一项都有因子,而又大于零,所以两边同乘可得,所以有,在对求导有,即当<<时,>0,在区间上为增函数;当时,;当<时,<0,在区间上为减函数.所以在时有值,即.又因为,所以.应该说问难度不算大,大多数同学一般都能做出来.再看第二问.要证,只须证当<时,;当<时,>即可.由上知,但用去分析的单调性受阻.我们可以尝试再对求导,可得,显然当<时,;当<时,>,即在区间上为减函数,所以有当<时,,我们通过二次求导分析的单调性,得出当<时,则在区间上为增函数,即,此时,则有成立.下面我们在接着分析当<时的情况,同理,当<时,>,即在区间上为增函数,则,此时,为增函数,所以,易得也成立.综上,得证.下面提供一个其他解法供参考比较.(Ⅰ),则题设等价于.令,则.当<<时,>;当时,是的值点,所以 .综上,的取值范围是.(Ⅱ)由(Ⅰ)知,即.当<<时,因为<0,所以此时.当时,.所以比较上述两种解法,可以发现用二次求导的方法解题过程简便易懂,思路来得自然流畅,难度降低,否则,另外一种解法在解第二问时用到问的结论,而且运用了一些代数变形的技巧,解法显得偏而怪,同学们不易想出.不妨告诉同学们一个秘密:熟炼掌握二次求导分析是解决高考数学函数压轴题的一个秘密武器!下面我们再看一道高考压轴题.【理·2010全国卷三第21题】设函数.(Ⅰ)若,求的单调区间;(Ⅱ)若当时,.求的取值范围.问没有任何难度,通过求导数来分析的单调即可.当,令,得;当<时,<;当>时,>.所以在区间上为减函数,在区间上为增函数.第二问,其实问算是个提示,即当时,在区间上为增函数,故,显然满足题意.下面我们分别分析<和>两种情况.当<时,在区间上显然,综上可得在区间上成立.故<满足题意.当>时,显然,当在区间上大于零时,为增函数,满足题意.而当在区间上为增函数时,也就是说,要求在区间上大于等于零,又因为在区间上为增函数,所以要求,即,解得.综上所述,的取值范围为.通过上面两道压轴题,我们已经领略了二次求导在分析高考数学函数压轴题的威力.再看看某些省市的函数题.【理·2010安徽卷第17题】设为实数,函数.(Ⅰ)求的单调区间与极值;(Ⅱ)求证:当>且>时,>.问很常规,我们直接看第二问.首先要构造一个新函数,如果这一着就想不到,那没辙了.然后求导,结果见下表.,继续对求导得 减x05极小值x05增由上表可知,而,由>知>,所以>,即在区间上为增函数.于是有>,而,故>,即当>且>时,>.高中数学题一般都会给个求导,并且大部分都是二次的.很多时候,一道题,你看到就知道要求导,当你一次求导后发现得出的结果还存在未知的东西,极值什么的没有清晰得表现出来,就可以考虑二次求导.当然,还有三次求导的,这个时候要非常细心,观察全局,不然做到后边很容易出错.

数学高考导数怎么解题还有证明等比老写不出来

1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一2. 高中数学六种解题技巧与五种数学答题思路点处的导 3高中数学的解题技巧数的定义和导数的几何意义;理解导函数的概念.

2.熟记基本导数公式;掌握两个函数和、、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数.

版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。