高一上册数学(高一上册数学电子课本)

中专问答 2025-01-04 10:18:35

高一上册数学教案范例

【 #高一# 导语】高一新生要作好充分思想准备,以自信、宽容的心态,尽快融入集体,适应新同学、适应新校园环境、适应与初中迥异的纪律制度。记住:是你主动地适应环境,而不是环境适应你。因为你走向参加工作也得适应。以下内容是 为你整理的《高一上册数学教案范例》,希望你不负时光,努力向前,加油!

高一上册数学(高一上册数学电子课本)高一上册数学(高一上册数学电子课本)


高一上册数学(高一上册数学电子课本)


高一上册数学(高一上册数学电子课本)


高一上册数学(高一上册数学电子课本)


1.高一上册数学教案范例

一、教学目标

1.知识与技能:掌握画三视图的基本技能,丰富学生的空间想象力。

2.过程与方法:通过学生自己的亲身实践,动手作图,体会三视图的作用。

3.情感态度与价值观:提高学生空间想象力,体会三视图的作用。

二、教学重点:画出简单几何体、简单组合体的三视图;

难点:识别三视图所表示的空间几何体。

三、学法指导:观察、动手实践、讨论、类比。

四、教学过程

(一)创设情景,揭开课题

展示庐山的风景图——“横看成岭侧看成峰,远近高低各不同”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体。

(二)讲授新课

1、中心投影与平行投影:

中心投影:光由一点向外散射形成的投影;

平行投影:在一束平行光线照射下形成的投影。

正投影:在平行投影中,投影线正对着投影面。

2、三视图:

正视图:光线从几何体的前面向后面正投影,得到的投影图;

侧视图:光线从几何体的左面向右面正投影,得到的投影图;

俯视图:光线从几何体的上面向下面正投影,得到的投影图。

三视图:几何体的正视图、侧视图和俯视图统称为几何体的三视图。

三视图的画法规则:长对正,高平齐,宽相等。

长对正:正视图与俯视图的长相等,且相互对正;

高平齐:正视图与侧视图的高度相等,且相互对齐;

宽相等:俯视图与侧视图的宽度相等。

3、画长方体的三视图:

正视图、侧视图和俯视图分别是从几何体的正前方、正左方和正上方观察到有几何体的正投影图,它们都是平面图形。

长方体的三视图都是长方形,正视图和侧视图、侧视图和俯视图、俯视图和正视图都各有一条边长相等。

4、画圆柱、圆锥的三视图:

5、探究:画出底面是正方形,侧面是全等的三角形的棱锥的三视图。

(三)巩固练习

课本P15练习1、2;P20习题1.2[A组]2。

(四)归纳整理

请学生回顾发表如何作好空间几何体的三视图

(五)布置作业

课本P20习题1.2[A组]1。

2.高一上册数学教案范例

1.与函数概念实习作业

一、教学内容分析

《普通高中课程标准实验教科书·数学(1)》(人教A版)第44页。-----《实习作业》。本节课程体现数学文化的特色,学生通过了解函数的发展历史进一步感受数学的魅力。学生在自己动手收集、整理资料信息的过程中,对函数的概念有更深刻的理解;感受新的学习方式带给他们的学习数学的乐趣。

二、学生学习情况分析

该内容在《普通高中课程标准实验教科书·数学(1)》(人教A版)第44页。学生次完成《实习作业》,积极性高,有热情和新鲜感,但缺乏经验,所以需要教师精心设计,做好准备工作,充分体现教师的“导演”角色。特别在分组时注意学生的合理搭配(成绩的好坏、家庭有无电脑、男女生比例、口头表达能力等),选题时,各组之间尽量不要重复,尽量多地选不同的题目,可以让所有的学生在学习共享的过程中受到更多的数学文化的熏陶。

三、设计思想

《标准》强调数学一:的含义与表示文化的重要作用,体现数学的文化的价值。数学教育不仅应该帮助学生学习和掌握数学知识和技能,还应该有助于学生了解数学的价值。让学生逐步了解数学的思想方法、理性精神,体会数学家的创新精神,以及数学文明的深刻内涵。

四、教学目标1.了解函数概念的形成、发展的历史以及在这个过程中起重大作用的历史和人物;

2.体验合作学习的方式,通过合作学习品尝分享获得知识的快乐;

3.在合作形式的小组学习活动中培养学生的意识、实践技能和价值观。

五、教学重点和难点

重点:了解函数在数学中的核心地位,以及在生活里的广泛应用;

难点:培养学生合作交流的能力以及收集和处理信息的能力。

六、教学过程设计

【课堂准备】

1.分组:4~6人为一个实习小组,确定一人为组长。教师需要做好协调工作,确保每位学生都参加。

2.选题:根据个人兴趣初步确定实习作业的题目。教师应该到各组中去了解选题情况,尽量多地选择不同的题目。

参考题目:

(1)函数产生的背景;

(2)函数概念发展的历史过程;

(3)函数符号的故事;

(4)数学家(如:开普勒、伽利略、笛卡儿、牛顿、莱布尼兹、贝努利、欧拉、柯西、狄里克雷、罗巴契夫斯基等)与函数;

(5)也可自拟题目

3.分配任务:根据个人情况和优势,经小组共同商议,由组长确定每人的具体任务。

4.搜集资料:针对所选题目,通过各种方式(相关书籍----《函数在你身边》、《世界函数通史》、《世界科学家传记》等;搜集素材,包括文字、、数据以及音像资料等,并记录相关资料,写出实习报告。

6.把各组的实习报告,贴在班级的学习栏内,让学生学习交流。

3.高一上册数学教案范例

教学目标:

1.进一步理解和掌握数列的有关概念和性质;

2.在对一个数列的探究过程中,提高提出问题、分析问题和解决问题的能力;

3.进一步提高问题探究意识、知识应用意识和同伴合作意识。

教学重点:

问题的提出与解决

教学难点:

如何进行问题的探究

教学方法:

启发探究式

教学过第二章开始主要讲指数函数的性质程:

问题:已知{an}是首项为1,公比为的无穷等比数列。对于数列{an},提出你的问题,并进行研究,你能得到一些什么样的结论?

研究方向提示:

1.数列{an}是一个等比数列,可以从等比数列角度来进行研究;

2.研究所给数列的项之间的关系;

3.研究所给数列的子数列;

4.研究所给数列能构造的新数列;

5.数列是一种特殊的函数,可以从函数性质角度来进行研究;

6.研究所给数列与其它知识的联系(组合数、复数、图形、实际意义等)。

针对学生的研究情况,对所提问题进行归类,选择部分类型问题共同进行研究、分析与解决。

课堂小结:

1.研究一个数列可以从哪些方面提出问题并进行研究?

2.你喜欢哪位同学的研究?为什么?

4.高一上册数学教案范例

教学目标

掌握等数列与等比数列的概念,通项公式与前n项和公式,等中项与等比中项的概念,并能运用这些知识解决一些基本问题.

教学重难点

掌握等数列与等比数列的概念,通项公式与前n项和公式,等中项与等比中项的概念,并能运用这些知识解决一些基本问题.

教学过程

等比数列性质请同学们类比得出.

【方法规律】

1、通项公式与前n项和公式联系着五个基本量,“知三求二”是一类基本的运算题.方程观点是解决这类问题的基本数学思想和方法.

2、判断一个数列是等数列或等比数列,常用的方法使用定义.特别地,在判断三个实数

a,b,c成等(比)数列时,常用(注:若为等比数列,则a,b,c均不为0)

3、在求等数列前n项和的(小)值时,常用函数的思想和方法加以解决.

【举例】

例1:

(1)设等数列的前n项和为30,前2n项和为100,则前3n项和为.

(2)一个等比数列的前三项之和为26,前六项之和为728,则a1=,q=.

例2:四数中前三个数成等比数列,后三个数成等数列,首末两项之和为21,中间两项之和为18,求此四个数.

例3:项数为奇数的等数列,奇数项之和为44,偶数项之和为33,求该数列的中间项.

5.高一上册数学教案范例

教学目的:掌握圆的标准方程,并能解决与之有关的问题

教学过程:

一、导入新课,探究标准方程

二、掌握知识,巩固练习

1.说出下列圆的方程

⑴圆心(3,-2)半径为5⑵圆心(0,3)半径为3

2.指出下列圆的圆心和半径

⑴(x-2)2+(y+3)2=3

⑵x2+y2=2

⑶x2+y2-6x+4y+12=0

3.判断3x-4y-10=0和x2+y2=4的位置关系

4.圆心为(1,3),并与3x-4y-7=0相切,求这个圆的方程

三、引伸提高,讲解例题

例1、圆心在y=-2x上,过p(2,-1)且与x-y=1相切求圆的方程(突出待定系数的数学方法)

1、某圆过(-2,1)、(2,3),圆心在x轴上,求其方程。

2、某圆过A(-10,0)、B(10,0)、C(0,4),求圆的方程。

例2:某圆拱桥的跨度为20米,拱高为4米,在建造时每隔4米加一个支柱支撑,求A2P2的长度。

例3、点M(x0,y0)在x2+y2=r2上,求过M的圆的切线方程(一题多解,训练思维)

四、小结练习P771,2,3,4

五、作业P811,2,3,4

高一上册数学必修一知识点梳理

(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性。

1.高一上册数学必修一知识点梳理

空间几何体表面积体积公式:

1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)

2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h为其高,

4、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc

5、棱柱S-h-高V=Sh

6、棱锥S-h-高V=Sh/3

7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3

8、S1-上底面积,S2-下底面积,S0-中h-高,V=h(S1+S2+4S0)/6

9、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h

10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)

11、r-底半径h-高V=πr^2h/3

12、r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径d-直径V=4/3πr^3=πd^3/6

14、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3

16、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/4

17、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)

2.高一上册数学必修一知识点梳理

两个平面的位置关系:

(1)两个平面互相平行的定义:空间两平面没有公共点

(2)两个平面的位置关系:

两个平面平行-----没有公共点;两个平面相交-----有一条公共直线。

a、平行

两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。

b、相交

二面角

(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。

(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为[0°,180°]

(3)二面角的棱:这一条直线叫做二面角的棱。

(4)二面角的面:这两个半平面叫做二面角的面。

(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。

(6)直二面角:平面角是直角的二面角叫做直二面角。

esp.两平面垂直

两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。记为⊥

两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直

两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。

3.高一上册数学必修一知识点梳理

函数的性质

函数的单调性(局部性质)

(1)增函数

设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1

如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.

(2)图象的特点

如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.

(3).函数单调区间与单调性的判定方法

(A)定义法:

(1)任取x1,x2∈D,且x1

(2)作f(x3、a-边长,S=6a2,V=a31)-f(x2);或者做商

(3)变形(通常是因式分解和配方);

(4)定号(即判断f(x1)-f(x2)的正负);

(5)下结论(指出函数f(x)在给定的区间D上的单调性).

(B)图象法(从图象上看升降)

复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”

注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.

函数的奇偶性(整体性质)

(1)偶函数:一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.

(2)奇函数:一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.

(3)具有奇偶性的函数的图象的特征:偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

9.利用定义判断函数奇偶性的步骤:

1首先确定函数的定义域,并判断其是否关于原点对称;

2确定f(-x)与f(x)的关系;

3作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.

注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,

(1)再根据定义判定;

(2)由f(-x)±f(x)=0或f(x)/f(-x)=±1来判定;

(3)利用定理,或借助函数的图象判定.

函数的解析表达式

(1)函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.

(2)求函数的解析式的主要方法有:1.凑配法2.待定系数法3.换元法4.消参法

函数(小)值

1利用二次函数的性质(配方法)求函数的(小)值

2利用图象求函数的(小)值

3利用函数单调性的判断函数的(小)值:

如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有值f(b);

如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有小值f(b);

高一数学上册教案模板

必修四主要是拓展一下三角函数,简单了解一下平面向量。

1.高一数学上册教案模板

一、教学目标

1、知识与技能

(1)通过实物作,增强学生的直观感知。

(2)能根据几何结构特征对空间物体进行分类。

(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

(4)会表示有关于几何体以及柱、锥、台的分类。

2、过程与方法

(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

(2)让学生观察、讨论、归纳、概括所学的知识。

3、情感态度与价值观

(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

(2)培养学生的空间想象能力和抽象括能力。

重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。难点:柱、锥、台、球的结构特征的概括。

三、教学用具

(1)学法:观察、思考、交流、讨论、概括。

(2)实物模型、投影仪四、教学思路

(一)创设情景,揭示课题

1、教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?学生回忆,举例和相互交流。教师对学生的活动及时给予评价。

2、所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。

1、学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。

2、观察棱柱的几何物件以及投影出棱柱的,它们各自的特点是什么?它们的共同特点是什么?

(1)有两个面互相平行;

(2)其余各面都是平行四边形;

(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。

4、教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。

5、提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?

请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?

6、以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。

7、让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。

8、学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示学生思考、讨论、概括。

9、教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。

10、现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成。请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?

(三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。

1、有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)

2、棱柱的何两个平面都可以作为棱柱的底面吗?

3、课本P8,习题1.1A组第1题。

4、圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?

5、棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?

2.高一数学上册教案模板

一、教学目标

(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上。1.知识与技能:

(1)通过实物作,增强学生的直观感知。

(2)能根据几何结构特征对空间物体进行分类。

(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

(4)会表示有关于几何体以及柱、锥、台的分类。

2.过程与方法:

(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

(2)让学生观察、讨论、归纳、概括所学的知识。

3.情感态度与价值观:

(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

(2)培养学生的空间想象能力和抽象括能力。

二、教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

难点:柱、锥、台、球的结构特征的概括。

三、教学用具

(1)学法:观察、思考、交流、讨论、概括。

(2)实物模型、投影仪。

3.高一数学上册教案模板

教学目标

1、使学生理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。

(1)理解数列是按一定顺序排成的一列数,其每一项是由其项数确定的。

(2)了解数列的各种表示方法,理解通项公式是数列第项与项数的关系式,能根据通项公式写出数列的前几项,并能根据给出的一个数列的前几项写出该数列的一个通项公式。

(3)已知一个数列的递推公式及前若干项,便确定了数列,能用代入法写出数列的前几项。

2、通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力。

3、通过由求的过程,培养学生严谨的科学态度及良好的思维习惯。

教学建议

(1)为激发学生学习数列的兴趣,体会数列知识在实际生活中的作用,可由实际问题引入,从中抽象出数列要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还有物品堆放个数的计算等。

(2)数列中蕴含的函数思想是研究数列的指导思想,应及早学生发现数列与函数的关系。在教学中强调数列的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列。函数表示法有列表法、图象法、解析式法,类似地,数列就有列举法、图示法、通项公式法。由于数列的自变量为正整数,于是就有可能相邻的两项(或几项)有关系,从而数列就有其特殊的表示法——递推公式法。

(3)由数列的通项公式写出数列的前几项是简单的代入法,教师应精心设计例题,使这一例题为写通项公式作一些准备,尤其是对程度的学生,应多举几个例子,让学生观察归纳通项公式与各项的结构关系,尽量为写通项公式提供帮助。

(4)由数列的前几项写出数列的一个通项公式使学生学习中的一个难点,要帮助学生分析各项中的结构特征(整式,分式,递增,递减,摆动等),由学生归纳一些规律性的结论,如正负相间用来调整等。如果学生一时不能写出通项公式,可让学生依据前几项的规律,猜想该数列的下一项或下几项的值,以便寻求项与项数的关系。

(5)对每个数列都有求和问题,所以在本节课应补充数列前项和的概念,用表示的问题是重点问题,可先提出一个具体问题让学生分析与的关系,再由特殊到一般,研究其一般规律,并给出严格的推理证明(强调的表达式是分段的);之后再到特殊问题的解决,举例时要兼顾结果可合并及不可合并的情况。

(6)给出一些简单数列的通项公式,可以求其项或小项,又是函数思想与方法的体现,对程度好的学生应提出这一问题,学生运用函数知识是可以解决的。

4.高一数学上册教案模板

圆是学生在初中已初步了解了圆的知识及前面学习了直线方程的基础上来进一步学习《圆的标准方程》,它既是前面圆的知识的复习延伸,又是后继学习圆与直线的位置关系奠定了基础。因此,本节课在本章中起着承上启下的重要作用。

教学目标

1.知识与技能:探索并掌握圆的标准方程,能根据方程写出圆的坐标和圆的半径。

2.过程与方法:通过圆的标准方程的学习,掌握求曲线方程的方法,领会数形结合的思想。

3.情感态度与价值观:激发学生学习数学的兴趣,感受学习成功的喜悦。

教学重点难点

教学重点:圆的标准方程理解及运用

教学难点:根据不同条件,利用待定系数求圆的标准方程。

根据教学内容的特点及高一年级学生的年龄、认知特征,紧紧抓住课堂知识的结构关系,遵循“直观认知――作体会――感悟知识特征――应用知识”的认知过程,设计出包括:观察、作、思考、交流等内容的教学流程。并且充分利用现代化信息技术的教学手段提高教学效率。以此使学生获取知识,给学生作、合作交流的机会。学法上注重让学生参与方程的推导过程,努力拓展学生思维的空间,促其在尝试中发现,讨论中明理,合作中成功,让学生真正体验知识的形成过程。

学习者分析

高一年级的学生从知识层面上已经掌握了圆的相关性质;从能力层面具备了一定的观察、分析和数据处理能力,对数学问题有自己个人的看法;从情感层面上学生思维活跃积极性高,但他们数学应用意识和语言表达的能力还有待加强。

5.高一数学上册教案模板

一、教材分析

函数作为初等数学的核心内容,贯穿于整个初等数学体系之中。函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段不仅把函数看成变量之间的依赖关系,更是从“变量说”到“对应说”,这是对函数本质特征的进一步认识,也是学生认识上的一次飞跃。这一章内容渗透了函数的思想,的思想以及数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响。

本节《函数的概念》是函数这一章的起始课。概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。本课从间的对应来描绘函数概念,起到了上承,下引函数的作用。也为进一步学习函数这一章的其它内容提供了方法和依据。

二、重难点分析

根据对上述对教材的分析及新课程标准的要求,确定函数的概念既是本节课的重点,也应该是本章的难点。

三、学情分析

1、有利因素:一方面学生在初中已经学习了变量观点下的函数定义,并具体研究了几类简单的函数,对函数已经有了一定的感性认识;另一方面在本书章学生已经学习了的概念,这为学习函数的现代定义打下了基础。

2、不利因素:函数在初中虽已讲过,不过较为肤浅,本课主要是从两个间对应来描绘函数概念,是一个抽象过程,要求学生的抽象、分析、概括的能力比较高,学生学起来有一定的难度。

四、目标分析

1、理解函数的概念,会用函数的定义判断函数,会求一些基本的函数的定义域、值域。

2、通过对实际问题分析、抽象与概括,培养学生抽象、概括、归纳知识以及逻辑思维、建模等方面的能力。

3、通过对函数概念形成的探究过程,培养学生发现问题,探索问题,不断超越的创新品质。

五、教法学法

本节课的教学以学生为主体、教师是数学课堂活动的组织者、者和参与者,我一方面精心设计问题情景,学生主动探索。另一方面,依据本节为概念学习的特点,以问题的提出、问题的解决为主线,始终在学生知识的“近发展区”设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程。

学法方面,学生通过对新旧两种函数定义的对比,在论的观点下初步建构出函数的概念。在理解函数概念的基础上,建构出函数的定义域、值域的概念,并初步掌握它们的求法。

高一上学期数学课本有几本?

教学重点:圆的标准方程及有关运用

高一数学课本数目因各地使用的教材不同会有所不同,人教版教材一共需要学习八本书,分别为:

1、必修:

高中数学必修一、高中数学必修二、高中数学必修三、高中数学必修四、高中数学必修五。

2、选修:

高中数学选修一、高中数学选修二、高中数学选修三。

扩展资料:数学必修一章节内容:

章与函数概念

1.1

1.2函数及其表示

1.3函数的基本性质

2.1指数函(2)在数学问题的解决过程中运用了哪些数学思想?数

2.2对数函数

2.3幂函数

3.1函数与方程

3.2函数模型及其应用

人教版高一数学上册学些什么

教学难点:标准方程的灵活运用

高一上册应该学两本书我们这是学必修一和必修四,不知你们那儿怎样。而人教版数学又2、等比数列的通项公式是 ,有人教A版和人教B版,我学的是人教A版。

必修一主要是与函数概念,基本初等函数,函数的应用。

冀教版高一数学知识点总结

3、组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。

数学是的重点考察科目,数学知识的积累和解题 方法 的掌握,需要科学有效的 复习方法 ,同时需要持之以恒的坚持。下面是我给大家整理的一些 高一数学 的知识点,希望对大家有所帮助。

高一上册数学必修一知识点梳理

两个(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上。平面的位置关系:

(1)两个平面互相平行的定义:空间两平面没有公共点

(2)两个平面的位置关系:

两个平面平行-----没有公共点;两个平 面相 交-----有一条公共直线。

a、平行

两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。

b、相交

二面角

(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。

(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为[0°,180°]

(3)二面角的棱:这一条直线叫做二面角的棱。

(4)二面角的面:这两个半平面叫做二面角的面。

(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。

(6)直二面角:平面角是直角的二面角叫做直二面角。

esp.两平面垂直

两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。记为⊥

两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直

两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。

高一数学必修五知识点

直线和平面垂直

直线和平面垂直的定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面。

直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。

直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。③直线和平面平行——没有公共点

直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。

直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

高一 数学 学习方法 参考

(1)制定明确学习目的。合理的 学习 是推动我们主动学习和克服困难的内在动力。先由老师指导督促,再一定要由自己切实完成,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志。

(2) 课前预习 是取得较好学习效果的基础。课前预习不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习的主动权。预习不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲思路,把握重点,突破难点,尽可能把问题解决在课堂上。

(3)上课是理解和掌握基本知识、基本技能和基本方法的关键环节。学然后知不足,上课更能专心听重点难点,把老师补充的内容记录下来,而不是全抄全录,顾此失彼。

(4)及时复习是提高效率学习的重要一环。通过反复阅读教材,多方面查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比效,一边复习一边将复习成果整理在 笔记本 上,使对所学的新知识由懂到会。

(5)作业是通过自己的思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程。这一过程也是对我们意志毅力的考验,通过运用使我们对所学知识由会到熟。

(6)解决疑难是指对完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。解决疑难一定要有锲而不舍的精神。做错的作业再做一遍。对错误的地方没弄清楚要反复思考。实在解决不了的要请教老师和同学,并要经常把易错的地方拿来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,长期坚持使对所学知识由熟到活。

(7)系统小结是通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节。小结要在系统复习的基础上以教材为依据,参照笔记与资料,通过分析、综合、类比、概括,揭示知识间的内在联系,以达到对所学知识融会贯通的目的。经常进行多层次小结,能对所学知识由活到悟。

(8)课外学习包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流 学习心得 等。课外学习是课内学习的补充和继续,它不仅能丰富同学们的 文化 科学知识,加深和巩固课内所学的知识,而且能够满足和发展我们的 兴趣 爱好 ,培养学习和工作的能力,激发求知欲与学习热情。

高一数学知识点 总结 相关 文章 :

★ 高一数学知识点汇总大全

★ 高一数学知识点总结(人教版)

★ 高一数学知识点总结

★ 高一数学知识点总结上册

★ 高一数学知识点总结

★ 高一数学知识点(考前必看)

★ 高中高一数学知识点总结

★ 高一数学知识点总结

★ 高一数学知识点全面总结

★ 高一数学知识点总结归纳

高一数学上册期末考哪里

以20__题为例,让学生学以致用,增强数学学习兴趣。

高一数学期末必考的知识点概括1

复数是高中代数的重要内容,在试题中约占8%-10%,一般的出一道基础题和一道中档题,经常与三角、解析几何、方程、不等式等知识综合.本章主要内容是复数的概念,复数的代数、几何、三角表示方法以及复数的运算.方程、方程组,数形结合,分域讨论,等价转化的数学思想与方法在本章中有突出的体现.而复数是代数,三角,解析几何知识,相互转化的枢纽,这对拓宽学生思路,提高学生解综合习题能力是有益的.数、式的运算和解方程,方程组,不等式是学好本章必须具有的基本技能.简化运算的意识也应进一步加强.

在本章学习结束时,应该明确对二次三项式的因式分解和解一元二次方程与二项方程可以画上的句号了,对向量的运算、曲线的复数形式的方程、复数集中的数列等边缘性的知识还有待于进一步的研究.

1.知识网络图

复数知识点网络图

2.复数中的难点

(1)复数的向量表示法的运算.对于复数的向量表示有些学生掌握得不好,对向量的运算的几何意义的灵活掌握有一定的困难.对此应认真体会复数向量运算的几何意义,对其灵活地加以证明.

(2)复数三角形式的乘方和开方.有部分学生对运算法则知道,但对其灵活地运用有一定的困难,特别是开方运算,应对此认真地加以训练.

(3)复数的辐角主值的求法.

(4)利用复数的几何意义灵活地解决问题.复数可以用向量表示,同时复数的模和辐角都具有几何意义,对他们的理解和应用有一定难度,应认真加以体会.

3.复数中的重点

(1)理解好复数的概念,弄清实数、虚数、纯虚数的不同点.

(2)熟练掌握复数三种表示法,以及它们间的互化,并能准确地求出复数的模和辐角.复数有代数,向量和三角三种表示法.特别是代数形式和三角形式的互化,以及求复数的模和辐角在解决具体问题时经常用到,是一个重点内容.

(3)复数的三种表示法的各种运算,在运算中重视共轭复数以及模的有关性质.复数的运算是复数中的主要内容,掌握复数各种形式的运算,特别是复数运算的几何意义更是重点内容.

(4)复数集中一元二次方程和二项方程的解法.

高一数学期末必考的知识点概括2

1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)

2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h为其高,

4、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc

5、棱柱S-h-高V=Sh

6、棱锥S-h-高V=Sh/3

7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3

8、S1-上底面积,S2-下底面积,S0-中h-高,V=h(S1+S2+4S0)/6

9、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S注意:常用数集及其记法:底,V=S底h=πr2h

10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)

11、r-底半径h-高V=πr^2h/3

12、r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径d-直径V=4/3πr^3=πd^3/6

14、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3

16、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/4

17、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)

高一数学期末必考的知识点概括3

从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,两直线平行;有无穷多解时,两直线重合;只有一解时,两直线相交于一点。常用直线向上方向与X轴正向的夹角(叫直线的倾斜角)或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。可以通过斜率来判断两条直线是否互相平行或互相垂直,也可计算它们的交角。直线与某个坐标轴的交点在该坐标轴上的坐标,称为直线在该坐标轴上的截距。直线在平面上的位置,由它的斜率和一个截距完全确定。在空间,两个平面相交时,交线为一条直线。因此,在空间直角坐标系中,用两个表示平面的三元一次方程联立,作为它们相交所得直线的方程。

表达式:

斜截式:y=kx+b

两点式:(y-y1)/(y1-y2)=(x-x1)/(x1-x2)

点斜式:y-y1=k(x-x1)

截距式:(x/a)+(y/b)=0

高一数学教学设计

(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0)。

高一数学教学设计5篇

作为一名高一数学教师,通常需要进行教案编写工作,编写教案有利于我们科学、合理地支配课堂时间。那么高一数学教学教案该怎么设计呢?下面是我给大家整理的高一数学教学设计,希望大家喜欢!

高一数学教学设计篇1

一、教材

《直线与圆的位置关系》是高中人教版必修2第四章第二节的内容,直线和圆的位置关系是本章的重点内容之一。从知识体系上看,它既是点与圆的位置关系的延续与提高,又是学习切线的判定定理、圆与圆的位置关系的基础。从数学思想方法层面上看它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比、化归等数学思想方法,有助于提高学生的思维品质。

二、学情

学生初中已经接触过直线与圆相交、相切、相离的定义和判定;且在上节的学习过程中掌握了点的坐标、直线的方程、圆的方程以及点到直线的距离公式;掌握利用方程组的方法来求直线的交点;具有用坐标法研究点与圆的位置关系的基础;具有一定的数形结合解题思想的基础。

三、教学目标

(一)知识与技能目标

能够准确用图形表示出直线与圆的三种位置关系;可以利用联立方程的方法和求点到直线的距离的方法简单判断出直线与圆的关系。

(二)过程与方法目标

经历作、观察、探索、总结直线与圆的位置关系的判断方法,从而锻炼观察、比较、概括的逻辑思维能力。

(三)情感态度价值观目标

激发求知欲和学习兴趣,锻炼积极探索、发现新知识、总结规律的能力,解题时养成归纳总结的良好习惯。

四、教学重难点

(一)重点

用解析法研究直线与圆的位置关系。

(二)难点

体会用解析法解决问题的数学思想。

五、教学方法

根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,借助信息技术工具,以几何画板为平台,通过图形的动态演示,变抽象为直观,为学生的数学探究与数学思维提供支持.在教学中采用小组合作学习的方式,这样可以为不同认知基础的学生提供学习机会,同时有利于发挥各层次学生的作用,教师始终坚持启发式教学原则,设计一系列问题串,以学生的数学思维活动。

六、教学过程

(一)导入新课

教师借助多媒体创设泰坦尼克号的情景,并从中抽象出数学模型:已知冰山的分布是一个半径为r的圆形区域,圆心位于轮船正西的l处,问,轮船如何航行能够避免撞到冰山呢?如何行驶便又会撞到冰山呢?

教师学生回顾初中已经学习的直线与圆的`位置关系,将所想到的航行路线转化成数学简图,即相交、相切、相离。

设计意图:在已有的知识基础上,提出新的问题,有利于保持学生知识结构的连续性,同时开阔视野,激发学生的学习兴趣。

(二)新课教学——探究新知

教师提问如何判断直线与圆的位置关系,学生先思考几分钟,然后同桌两人为一组交流,并整理出本组同学所想到的思路。在整个交流讨论中,教师既要有对正确认识的赞赏,又要有对错误见解的分析及对该学生的鼓励。

判断方法:

(1)定义法:看直线与圆公共点个数

即研究方程组解的个数,具体做法是联立两个方程,消去x(或y)后所得一元二次方程,判断△和0的大小关系。

(2)比较法:圆心到直线的距离d与圆的半径r做比较,

(三)合作探究——深化新知

教师进一步抛出疑问,对比两种方法,由学生观察实践发现,两种方法本质相同,但比较法只适合于直线与圆,而定义法适用范围更广。教师展示较为基础的题目,学生解答,总结思路。

已知直线3x+4y-5=0与圆x2+y2=1,判断它们的位置关系?

让学生自主探索,讨论交流,并阐述自己的解题思路。

当已知了直线与圆的方程之后,圆心坐标和半径r易得到,问题的关键是如何得到圆心到直线的距离d,他的本质是点到直线的距离,便可以直接利用点到直线的距离公式求d。类比前面所学利用直线方程求两直线交点的方法,联立直线与圆的方程,组成方程组,通过方程组解得个数确定直线与圆的交点个数,进一步确定他们的位置关系。明确解题步骤。

(四)归纳总结——巩固新知

为了将结论由特殊推广到一般学生思考:

可由方程组的解的不同情况来判断:

当方程组有两组实数解时,直线l与圆C相交;

当方程组有一组实数解时,直线l与圆C相切;

当方程组没有实数解时,直线l与圆C相离。

活动:我将抽取两位同学在黑板上扮演,并在巡视过程中对部分学生加以指导。对黑板上的两名学生的解题过程加以分析完善。通过对基础题的练习,巩固两种判断直线与圆的位置关系判断方法,并使每一个学生获得后续学习的信心。

(五)小结作业

在小结环节,我会以口头提问的方式:

(1)这节课学习的主要内容是什么?

设计意图:启发式的课堂小结方式能让学生主动回顾本节课所学的知识点。也促使学生对知识网络进行主动建构。

作业:在学生回顾本堂学习内容明确两种解题思路后,教师让学生对比两种解法,那种更简捷,明确本节课主要用比较d与r的关系来解决这类问题,对用方程组解的个数的判断方法,要求学生课外做进一步的探究,下一节课汇报。

七、板书设计

我的板书本着、直观、清晰的原则,这就是我的板书设计。

高一数学教学设计篇2

1、教材(教学内容)

本课时主要研究任意角三角函数的定义。三角函数是一类重要的基本初等函数,是描述周期性现象的重要数学模型,本课时的内容具有承前启后的重要作用:承前是因为可以用函数的定义来抽象和规范三角函数的定义,同时也可以类比研究函数的模式和方法来研究三角函数;启后是指定义了三角函数之后,就可以进一步研究三角函数的性质及图象特征,并体会三角函数在解决具有周期性变化规律问题中的作用,从而更深入地领会数学在其它领域中的重要应用、

2、设计理念

本堂课采用“问题解决”教学模式,在课堂上既充分发挥学生的主体作用,又体现了教师的作用。整堂课先通过问题学生梳理已有的知识结构,展开合理的联想,提出整堂课要解决的中心问题:圆周运动等具周期性规律运动可以建立函数模型来刻画吗?从而学生带着问题阅读和钻研教材,引发认知冲突,再通过问题学生改造或重构已有的认知结构,并运用类比方法,形成“任意角三角函数的定义”这一新的概念,通过例题与练习,将任意角三角函数的定义,内化为学生新的认识结构,从而达成教学目标、

3、教学目标

知识与技能目标:形成并掌握任意角三角函数的定义,并学会运用这一定义,解决相关问题、

情感态度与价值观目标:学生学会阅读数学教材,学会发现和欣赏数学的理性之美、

4、重点难点

重点:任意角三角函数的定义、

难点:任意角三角函数这一概念的理解(函数模型的建立)、类比与化归思想的渗透、

5、学情分析

学生已有的认知结构:函数的概念、平面直角坐标系的概念、任意角和弧度制的相关概念、以直角三角形为载体的锐角三角函数的概念、在教学过程中,需要先将学生的以直角三角形为载体的锐角三角函数的概念改造为以象限角为载体的锐角三角函数,并形成以角的终边与单位园的交点的.坐标来表示的锐角三角函数的概念,再拓展到任意角的三角函数的定义,从而使学生形成新的认知结构、

6、教法分析

“问题解决”教学法,是以问题为主线,和驱动学生的思维和学习活动,并通过问题,学生的质疑和讨论,充分展示学生的思维过程,在解决问题的过程中形成新的认知结构、这种教学模式能较好地体现课堂上老师的主导作用,也能充分发挥课堂上学生的主体作用、

7、学法分析

本课时先通过“阅读”学习法,学生改造已有的认知结构,再通过类比学习法学生形成“任意角的三角函数的定义”,学生运用类比学习法,来研究三角函数一些基本性质和符号问题,从而使学生形成新的认识结构,达成教学目标、

8、教学设计(过程)

一、引入

问题2:研究“任意角”这一概念时,我们引进了平面直角坐标系,对平面直角坐标系,令你印象深刻的是什么?

问题3:当角clipXimage002的终边在绕顶点O转动时,终边上的一个点P(x,y)必定随着终边绕顶点O作圆周运动,在这圆周运动中,有哪些数量?圆周运动的这些量之间的关系能用一个函数模型来刻画吗?

二、原有认知结构的改造和重构

问题4:当角clipXimage002[1]是锐角时,clipXimage004,线段OP的长度clipXimage006这几个量之间有何关系?

学生回答,分析结论,指出这种关系就是我们在初中学习过的锐角三角函数

学生阅读教材,并思考:

问题5:锐角三角函数是我们高中意义上的函数吗?如何利用函数的定义来理解它?

学生讨论并回答

三、新概念的形成

问题6:如果我们将角度推广到任意角,我们能得到任意角的三角函数的定义吗?

学生回答,并阅读教材,得到任意角三角函数的定义、并思考:

展示任意角三角函数的定义,并指出它是如何刻划圆周运动的

并类比函数的研究方法,得出任意角三角函数的定义域和值域。

四、概念的运用

1、基础练习

①口算clipXimage0【公式三】08的值、

②分别求clipXimage010的值

小结:ⅰ)画终边,求终边与单位圆交点的坐标,算比值

ⅱ)诱导公式(一)

③若clipXimage012,试写出角clipXimage002[2]的值。

④若clipXimage015,不求值,试判断clipXimage017的符号

⑤若clipXimage019,则clipXimage021为第象限的角、

例1、已知角clipXimage002[3]的终边过点clipXimage024,求clipXimage026之值

若P点的坐标变为clipXimage028,求clipXimage030的值

小结:任意角三角函数的等价定义(终边定义法)

例2、一物体A从点clipXimage032出发,在单位圆上沿逆时针方向作匀速圆周运动,若经过的弧长为clipXimage034,试用clipXimage034[1]表示物体A所在位置的坐标。若该物体作圆周运动的圆的半径变为clipXimage006[1],如何用clipXimage034[2]来表示物体A所在位置的坐标?

小结:可以采用三角函数模型来刻画圆周运动

五、拓展探究

问题8:当角clipXimage002[4]的终边绕顶点O作圆周运动时,角clipXimage002[5]的终边与单位圆的交点clipXimage039的坐标clipXimage041clipXimage043与角clipXimage002[6]之间还可以建立其它函数模型吗?

思考:引入平面直角坐标系后,我们可以把圆周运动用数来刻画,这是将“形”转化成为“数”;角clipXimage002[7]正弦值是一个数,你能借助平面直角坐标系和单位圆,用“形”来表示这个“数”吗?角clipXimage002[8]余弦值、正切值呢?

六、课堂小结

问题9:请你谈谈本节课的收获有哪些?

七、课后作业

教材P21第6、7、8题

高一数学教学设计篇3

一、教材的本质、地位与作用

对数函数(第二课时)是20__人教版高一数学(上册)第二章第八节第二课时的内容,本小节涉及对数函数相关知识,分三个课时,这里是第二课时复习巩固对数函数图像及性质,并用此解决三类对数比大小问题,是对已学内容(指数函数、指数比大小、对数函数)的延续和发展,同时也体现了数学的实用性,为后续学习起到奠定知识基础、渗透方法的作用,因此本节内容起到了一种承上启下的作用。

二、教学目标

根据教学大纲的要求以及本节课的地位与作用,结合高一学生的认知特点确定教学目标如下:

学习目标:

1、复习巩固对数函数的图像及性质

2、运用对数函数的性质比较两个数的大小

能力目标:

1、培养学生运用图形解决问题的意识即数形结合能力

2、学生运用已学知识,已有经验解决新问题的能力

3、探索出方法,有条理阐述自己观点的能力

德育目标:

培养学生勤于思考、思考、合作交流等良好的个性品质

三、教材的重点及难点

对数比大小发挥的是承上启下的作用,对前一是复习巩固对数函数的图像和性质,二是对指数中比大小问题的数学思想及方法的再次体现和应用,对后为解对数方程及对数不等式奠定基础。所以确定本节课重点:运用对数函数图像性质比较两数的大小

教学中将在以下2个环节中突出教学重点:

1、利用学生预习后的心得交流,资源共享,互补不足

2、通过适当的练习,加强对解题方法的掌握及原理的理解

另一方面,学生在预习后上课的情况下,对于课本上知识有了一定的认识,但本节课教师要补充第三类比大小问题———同真异底型,对于学生以小组为单位自主探究有一定的挑战性。所以确定本节课难点:同真异底的对数比大小

教学中会在以下3个方面突破教学难点:

1、教师调整角色,让学生成为学习的主人,教师在其中起作用即可。

2、小组合作探索新问题时,注重生生合作、师生互动,适时用语言鼓励学生,增强学生参与讨论的自信。

3、本节课采用多媒体辅助教学,节省时间,加快课程进度,增强了直观形象性。

四、学生学情分析

长处:高一学生经过几年的数学学习,已具备一定的数学素养,对于已学知识或用过的数学思想、方法有一定的应用能力及应用意识,对于本节课而言,从知识上说,对数函数的图像和性质刚刚学过,本节课是知识的应用,从数学能力上说,指数比大小问题的解题思想和方法在这可借鉴,另外数形结合能力、小结概括能力、特殊到一般归纳能力已具备一点。

学生可能遇到的困难:本节课从教学内容上来看,第三类对数比大小是课本以外补充的内容,没有预习心得,让学生在课堂中快速通过合作探究来完成解题思路的构建,有一定的挑战性,从学生能力上来看,探索出方法,有条理阐述自己观点的能力还需加强锻炼,知识之间的联系认识上还显不足。

五、教法特点

新课程强师要调整自己的角色,改变传统的教育方式,在教育方式上,以学生为中心,让学生成为学习的主人,教师在其中起作用即可。基于此,本节课遵循此原则重点采用问题探究和启发式的教学方法。从预习交流心得出发,到探索新问题,再到题后的回顾总结,一切以学生为中心,处处体现学生的主体地位,让学生多说、多分析、多思考、多总结,学生运用自己的语言阐述观点,加强理解,在生生合作,师生互动中解决问题,为提高学生分析问题、解决问题能力打下基础。本节课采用多媒体辅助教学,节省时间,加快课程进度,增强了直观形象性。

六、教学过程分析

1、课件展示本节课学习目标

设计意图:明确任务,激发兴趣

2、温故知新(已填表形式复习对数函数的图像和性质)

设计意图:复习已学知识和方法,为学生形成知识间的联系和框架建立平台,并为下一步的应用打下基础。

3、预习后心得交流

1)同底对数比大小

2)既不同底数,也不同真数的对数比大小

以课本例题为例,交流解题思路,题后总结此类型比大小问题的一般方法,而后通过练习加强理解巩固

设计意图:通过学生的预习,自己总结方法及此方法适用的题型,有条理的阐述自己的学习心得,老师只需起作用,学生从题目表面上升到题目的实质,从而找到解决问题的有效方法。

4、合作探究——同真异底型的对数比大小

以例3为例,学生分组合作探究解题方法,预计两种:一是利用换底公式将此类型转化为同底异真型,利用之前总结的方法解决此问题。二是利用具体对数的大小关系探究出不同底对数函数在同一直角坐标系中的图像,以此来解决此类型比大小问题。

设计意图:这一部分是本节课的难点,探究中充分发挥学生的主动性,培养主动学习的意识,同时也锻炼学生各方面能力的很好机会,为以后的探究学习积累经验和方法,充分体现“授之以鱼,不如授之以渔”的教学理念。另外数学问题的解决仅仅只是一半,更重要的是解题之后的回顾,即反思,如果没有了反思,他们就错过了解题的一次重要而有效益的方面。因此,本题解决后,让学生反思明白,要想利用性质解决问题,关键要做到“脑中有图”,以“形”促“数”。

5、小结

以学生自主小结的方式总结本节课得收获,教师可小结三个方面:所学内容、数学思想、数学方法

6、思考题

7、作业

包括两个方面:

1、书写作业

2、下节课前的预习作业

七、教学效果分析

通过本节课的教学实例来看,这种通过课本内容预习,而后课堂交流学习成果的方法效果不错,既能很好的完成教学任务,又能充分发挥学生学习的主动性。在自主探究时,学生分组讨论过程中,我参与小组讨论,对有能力的小组,在探究出一种方法后,可鼓励完成更多的方法探究,对于能力较弱的小组,可给予适当的提示,使学生都能动起来,课堂都有所收获,增强学生自信。另外,对于学生的总结回答,可能会比较慢,我一定会耐心听,及时鼓励,给予学生微笑和语言的鼓励,效果很好。在小结环节中,对于高一学生自己小结的方法,是我一直的教学尝试,由于只训练了半学期,学生只能达到小结知识的程度,在以后的训练中还会加入数学思想、数学方法的小结内容,使这些数学名词让学生不再觉得抽象,而是变成具体的,可作的、具体的解题工具。

高一数学教学设计篇4

教学目标:

(1)了解的表示方法;

(2)能正确选择自然语言、图形语言、语言(列举法或描述法)描述不同的具体问题,感受语言的意义和作用;

教学重点:掌握的表示方法;

教学难点:选择恰当的表示方法;

教学过程:

一、复习回顾:

1.和元素的定义;元素的三个特性;元素与的关系;常用的数集及表示。

2.{1,2}、{(1,2)}、{(2,1)}、{2,1}的元素分别是什么?有何关系

二、新课教学

(一).的表示方法

我们可以用自然语言和图形语言来描述一个,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示。

(1) 列举法:把中的元素一一列举出来,并用花括号“ ”括起来表示的方法叫列举法。

如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;

说明:1.中的元素具有无序性,所以用列举法表示时不必考

虑元素的顺序。

2.各个元素之间要用逗号隔开;

3.元素不能重复;

4.中的元素可以数,点,代数式等;

5.对于含有较多元素的,用列举法表示时,必须把元素间的规律显示清楚后方能用省略号,象自然数集N用列举法表示为

例1.(课本例1)用列举法表示下列:

(1)小于10的所有自然数组成的;

(2)方程x2=x的所有实数根组成的;

(4)方程组 的解组成的。

思考2:(课本P4的思考题)得出描述法的定义:

(2)描述法:把中的元素的公共属性描述出来,写在花括号{ }内。

具体方法:在花括号内先写上表示这个元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个中元素所具有的共同特征。

一般格式:

如:{x|x-3>2},{(x,y)|y=x2+1},{x|直角三角形},…;

说明:

1.课本P5一段话;

2.描述法表示应注意的代表元素,如{(x,y)|y= x2+3x+2}与 {y|y= x2+3x+2}是不同的两个,只要不引起误解,的代表元素也可省略,例如:{x|整数},即代表整数集Z。

辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。

例2.(课本例2)试分别用列举法和描述法表示下列:

(1)方程x2—2=0的所有实数根组成的;

(2)由大于10小于20的所有整数组成的;

(3)方程组 的解。

思考3:(课本P6思考)

说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般中元素较多或有无限个元素时,不宜采用列举法。

(二).课堂练习:

1.课本P6练习2;

2.用适当的方法表示:大于0的所有奇数

3.A={x| ∈Z,x∈N},则它的元素是 。

4.已知A={x|-3

归纳小结:

本节课从实例入手,介绍了的常用表示方法,包括列举法、描述法。

作业布置:

高一数学教学设计篇5

一、指导思想与理论依据

数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。

二、教材分析

三角函数的诱导公式是普通高中课程标准实验教科书(人教A版)数学必修四,章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六)。本节是课时,教学内容为公式(二)、(三)、(四)。教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角、终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四)。同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。为此本节内容在三角函数中占有非常重要的地位。

三、学情分析

本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容。

四、教学目标

(1)基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;

(2)能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;

(3)创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;

(4)个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观。

五、教学重点和难点

1、教学重点

理解并掌握诱导公式。

2、教学难点

六、教法学法以及预期效果分析

高中数学教案高中数学教学设计与教学反思

“授人以鱼不如授之以鱼”,作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法,如何实现这一目的,要求我们每一位教者苦心钻研、认真探究。下面我从教法、学法、预期效果等三个方面做如下分析。

1、教法

在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发、共同探究、综合应用等教学模式,还给学生“时间”、“空间”,由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦。

2、学法

“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情。如何能让学生程度的消化知识,提高学习热情是教者必须思考的问题。

在本节课的教学过程中,本人学生的学法为思考问题、共同探讨、解决问题简单应用、重现探索过程、练习巩固。让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习。

3、预期效果

本节课预期让学生能正确理解诱导公式的发现、证明过程,掌握诱导公式,并能熟练应用诱导公式了解一些简单的化简问题。

人教版高一上册数学内容目录(尽量仔细点,谢谢)

5.高一上册数学必修一知识点总结

您好,高一数学人教版内容如下

由图象知,函数的值域是 ,单调递增区间是 ,单调递减区间是 。

章开头,,主要讲元素和的关系,以及和之间的关系

章末,简单地函数以及映射的定义,和对函数定义域,值域,解析式之间的关系的阐述

第二章中间讲对数函数的定义和性质

第二章章末主要讲到对数函数换底公式的应用。

第三章主要讲到函数的实际应用

版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。