高考数学不等式的公式大全_高考数学不等式方法

招生计划 2025-01-04 10:30:40

高中数学必背公式大全 高考数学重点公式总结

四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。

很多人想知道在高中数学的学习上有哪些需要背的公式,高考数学中必背的重点公式有哪些呢?下面我为大家介绍一下!

高考数学不等式的公式大全_高考数学不等式方法高考数学不等式的公式大全_高考数学不等式方法


高考数学不等式的公式大全_高考数学不等式方法


2、高考数学不等式证明方法之综合法

高中数学重点公式大全 1、一元二次方程的解

根与系数的关系x1+x2=-b/ax1x2=c/a注:韦达定理

判别式b2-4a=0注:方程有相等的两实根

b2-4ac>0注:方程有两个不相等的个实根

b2-4ac<0注:方程有共轭复数根

2、立体图形及平面图形的公式

圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标

圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0

抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py

直棱柱侧面积S=ch斜棱柱侧面积S=c'h

正棱锥侧面积S=1/2ch'正棱台侧面积S=1/2(c+c')h'

圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pir2

圆柱侧面积S=ch=2pih圆锥侧面积S=1/2cl=pirl

弧长公式l=ara是圆心角的弧度数r>0扇形面积公式s=1/2lr

锥体体积公式V=1/3SH圆锥体体积公式V=1/ir2h

斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长

柱体体积公式V=sh圆柱体V=pir2h

3、图形周长、面积、体积公式

长方形的周长=(长+宽)×2

正方形的周长=边长×4

长方形的面积=长×宽

正tanα=sinα×secα方形的面积=边长×边长

三角形的面积

已知三角形底a,高h,则S=ah/2

已知三角形三边a,b,c,半周长p,则S=√[p(p-a)(p-b)(p-c)](海伦公式)(p=(a+b+c)/2)

和:(a+b+c)(a+b-c)1/4

设三角形三边分别为a、b、c,内切圆半径为r

则三角形面积=(a+b+c)r/2

设三角形三边分别为a、b、c,外接圆半径为r

则三角形面积=abc/4r

高中数学常用公式汇总 1、两角和公式

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)

2、倍角公式

tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

sinα+sin(α+2π/n)+sin(α+2π2/n)+sin(α+2π3/n)+……+sin[α+2π(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π2/n)+cos(α+2π3/n)+……+cos[α+2π(n-1)/n]=0 以及

sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

3、半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))

4、和化积

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

cotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB

5、某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6

1^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 12+23+34+45+56+67+…+n(n+1)=n(n+1)(n+2)/3

6、正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

7、余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角

8、乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

9、三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b

10、|a-b|≥|a|-|b| -|a|≤a≤|a|

高中数学所有公式大全 一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根与系数的关系 x1+x2=-b/a x1x2=c/a 注:韦达定理

判别式 b2-4a=0 注:方程有相等的两实根

b2-4ac>0 注:方程有两个不相等的个实根

b2-4ac0

抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积 S=ch 斜棱柱侧面积 S=c'h

正棱锥侧面积 S=1/2ch' 正棱台侧面积 S=1/2(c+c')h'

圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pir2

圆柱侧面积 S=ch=2pih 圆锥侧面积 S=1/2cl=pirl

弧长公式 l=ar a是圆心角的弧度数r >0 扇形面积公式 s=1/2lr

锥体体积公式 V=1/3SH 圆锥体体积公式 V=1/ir2h

斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长

柱体体积公式 V=sh 圆柱体 V=pir2h

高三数学必修一知识点整理

-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a

【 #高三# 导语】与高一高二不同之处在于,此时复习力学部分知识是为了更好的与高考考纲相结合,尤其水平中等或中等偏下的学生,此时需要进行查漏补缺,但也需要同时提升能力,填补知识、技能的空白。 高三频道为你精心准备了《高三数学必修一知识点整理》助你金榜题名!

1.高三数学必修一知识点整理

1.满足二元一次不等式(组)的x和y的取值构成有序数对(x,y),称为二元一次不等式(组)的一个解,所有这样的有序数对(x,y)构成的称为二元一次不等式(组)的解集。

2.二元一次不等式(组)的每一个解(x,y)作为点的坐标对应平面上的一个点,二元一次不等式(组)的解集对应平面直角坐标系中的一个半平面(平面区域)。

3.直线l:Ax+By+C=0(A、B不全为零)把坐标平面划分成两部分,其中一部分(半个平面)对应二元一次不等式Ax+By+C>0(或≥0),另一部分对应二元一次不等式Ax+By+C0所表示的平面区域时,应把边界画成虚线。

8.若点P(x0,y0)与点P1(x1,y1)在直线l:Ax+By+C=0的同侧,则Ax0+By0+C与Ax1+Byl+C符号相同;若点P(x0,y0)与点P1(x1,y1)在直线l:Ax+By+C=0的两侧,则Ax0+By0+C与Ax1+Byl+C符号相反。

9.从实际问题中抽象出二元一次不等式(组)的步骤是:

(1)根据题意,设出变量;

(2)分析问题中的变量,并根据各个不等关系列出常量与变量x,y之间的不等式;

(3)把各个不等式连同变量x,y有意义的实际范围合在一起,组成不等式组。

2.高三数学必修一知识点整理

1.定义:

用符号〉,=,〈号连接的式子叫不等式。

2.性质:

①不等式的两边都加上或减去同一个整式,不等号方向不变。

②不等式的两边都乘以或者除以一个正数,不等号方向不变。

③不等式的两边都乘以或除以同一个负数,不等号方向相反。

3.分类:

①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。

②一元一次不等式组:

a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

4.考点:

①解一元一次不等式(正切等于对边比邻边,组)

②根据具体问题中的数量关系列不等式(组)并解决简单实际问题

3.高三数学必修一知识点整理

1、圆柱体:

表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)

3、正方体

a-边长,S=6a2,V=a3

4、长方体

a-长,b-宽,c-高S=2(ab+ac+bc)V=abc

5、棱柱

S-底面积h-高V=Sh

6、棱锥

S-底面积h-高V=Sh/3

7、棱台

S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/3

8、拟柱体

S1-上底面积,S2-下底面积,S0-中截面积

h-高,V=h(S1+S2+4S0)/6

9、圆柱

r-⑤解对数不等式;底半径,h-高,C—底面周长

S底—底面积,S侧—侧面积,S表—表面积C=2πr

S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h

10、空心圆柱

R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)

11、直圆锥

r-底半径h-高V=πr^2h/3

12、圆台

r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/3

13、球

r-半径d-直径V=4/3πr^3=πd^3/6

14、球缺

h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3

15、球台

16、圆环体

R-环体半径D-环体直径r-环体截面半径d-环体截面直径

V=2π2Rr2=π2Dd2/4

17、桶状体

D-桶腹直径d-桶底直径h-桶高

V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)

V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)

4.高三数学必修一知识点整理

1、直线的倾斜角

定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α0扇形面积公式s=1/2lr

乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)

三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b

|a-b|≥|a|-|b|-|a|≤a≤|a|

一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a

根与系数的关系X1+X2=-b/aX1X2=c/a注:韦达定理

判别式

b2-4ac=0注:方程有两个相等的实根

b2-4ac>0注:方程有两个不等的实根

b2-4ac

高考数学二项式定理公式结论

r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6

高考数学二项式定理公式结论:令a= 1,b=x,有:(1 +x)n= Ci+ Chx+ Chx2 +.+ Cnx" +...+ CHxn令a= 1,b=-x, 有:(1+x)n= Cn- Clx+ Cix2-.+ Cnx" +...+ (-1)"Cnxn由此可得贝努力不等式。当x>-1时,有:n≥1时,(1+x)n≥1+nx;0≤n≤1时,(1 +x)∩≤1+nx。

4、高考数学不等式证明方法之放缩法

1、基本概念。

①二项式展开式:等式右边的多项式叫作(a+ b)"的二项展开式。

②二项式系数::展开式中各项的系数中的C%(r = 0,1,2, ..n)。

③项数:展开式第r+1项,是关于a, b的齐次多项式。

④通项:展开式的第r+1项,记作Tr+1= C%an-rb"(r= 0.1.2..n) 。

2、几个提醒。

①项数:展开式共有n+1项。

②顺序:注意正确选择a与b,其顺序不能更改,即:(a+b)n和(b+a)n是不同的。

④系数:正确区分二项式系数与项的系数:二项式系数指各项前面的组合数;项的系数指各项中除去变量的部分(含二项式系数)。

二项式定理介绍:

二项式定理(Binomial theorem,牛顿二项式定理)是艾萨克·牛顿于1664年、1665年间研究提出。二项式定理指出两个数之和的整数次幂诸如展开为余弦等于角A的邻边比斜边类似项之和的恒等式,该定理可以推广到任意实数次幂。

二项式定理最初用于开高次方。在,成书于1世纪的《九章算术》提出了世界上最早的多位正整数方、开立方的一般程序。11世纪中叶,贾宪在其《释锁算书》中给出了“开方作法本原图,满足了三次以上开方的需要。

此图即为直到六次幂的二项式系数表,但是,贾宪并未给出二项式系数的一般公式,因而未能建立一般正整数次幂的二项式定理。13世纪,杨辉在其《详解九章算法》中引用了此图,并注明了此图出自贾宪的《释锁算书》。

贾宪的著作已经失传,而杨辉的著作流传至今,所以今称此图为“贾宪三角”或“杨辉三角”。14世纪初,朱世杰在其《四元玉鉴》中复载此图,并增加了两层,添上了两组平行的斜线。

高二上期数学知识点有哪些

积的关系:

数学作为主科之一,在高考中是非常容易拉分的科目之一,那么高二数学知识点有哪些呢。以下是由我为大家整理的“高二上期数学知识点有哪些”,仅供参考,欢迎大家阅读。

高二上期数学知识点

一、不等式的性质

1.两个实数a与b之间的大小关系

2.不等式的性质

(4)(乘法单调性)

3.不等式的性质

(2)如果a>0,那么

(3)|a?b|=|a|?|b|.

(5)|a|-|b|≤|a±b|≤|a|+|b|.

二、不等式的证明

1.不等式证明的依据

(2)不等式的性质(略)

(3)重要不等式:①|a|≥0;a2≥0;(a-b)2≥0(a、b∈R)

②a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)

(1)比较法:要证明a>b(a0(a-b<0),这种证明不等式的方法叫做比较法.

用比较法证明不等式的步骤是:作——变形——判断符号.

(2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法.

证明不等式除以上三种基本方法外,还有反证法、数学归纳法等.

三、解不等式

1.解不等式问题的分类

(1)解一元一次不等式.

(2)解一元二次不等式.

(3)可以化为一元一次或一元二次不等式的不等式.

①解一元高次不等式;

②解分式不等式;

③解无理不等式;

④解指数不等式;

⑥解带的不等式;

⑦解不等式组.

2.解不等式时应特别注意下列几点:

(1)正确应用不等式的基本性质.

(2)正确应用幂函数、指数函数和对数函数的增、减性.

(3)注意代数式中未知数的取值范围.

(5)|f(x)|0)

(6)|f(x)|>g(x)①与f(x)>g(x)或f(x)<-g(x)(其中g(x)≥0)同解;②与g(x)<0同解.

(9)当a>1时,af(x)>ag(x)与f(x)>g(x)同解,当0ag(x)与f(x)

四、《不等式》

解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。

高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。

证不等式的方法,实数性质威力大。求与0比大小,作商和1争高下。

直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。

还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。

五、《立体几何》

点线面三位一体,柱锥台球为代表。距离都从点出发,角度皆为线线成。

垂直平行是重点,证明须弄清概念。线线线面和面面、三对之间循环现。

方程思想整体求,化归意识动割补。计算之前须证明,画好移出的图形。

立体几何辅助线,常用垂线和平面。射影概念很重要,对于解题最关键。

异面直线二面角,体积射影公式活。公理性质三垂线,解决问题一大片。

六、《平面解析几何》

有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称。

笛卡尔的观点对,点和有序实数对,两者—一来对应,开创几何新途径。

两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。

三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。

解析几何是几何,得意忘形学不活。图形直观数入微,数学本是数形学

七、《排列、组合、二项式定理》

加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。

两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。

排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。

不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。

关于二项式定理,杨辉三角形。两条性质两公式,函数赋值变换式。

八、《复数》

对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是辐角度。

箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。

代数运算的实质,有i多项式运算。i的正整数次慕,四个数值周期现。

一些重要的结论,熟记巧用得结果。虚实互化本领大,复数相等来转化。

利用方程思想解,注意整体代换术。几何运算图上看,加法平行四边形,

减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。

三角形式的运算,须将辐角和模辨。利用棣莫弗公式,乘方开方极方便。

辐角运算很奇特,和是由积商得。四条性质离不得,相等和模与共轭,

两个不会为实数,比较大小要不得。复数实数很密切,须注意本质区别。

sin^2α+cos^2α=1

1+tan^2α=sec^2α

1+cot^2α=csc^2α

sinα=tanα×cosα

cosα=cotα×sinα

cotα=cosα×cscα

secα=tanα×cscα

cscα=secα×cotα

倒数关系:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

商的关系:

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα

直角三角形ABC中,

角A的正弦值就等于角A的对边比斜边,

[1]三角函数恒等变形公式

两角和与的三角函数:

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

三角和的三角函数:

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

辅助角公式:

Asinα+Bcosα=(A2+B2)^(1/2)sin(α+t),其中

sint=B/(A2+B2)^(1/2)

cost=A/(A2+B2)^(1/2)

tant=B/A

Asinα-Bcosα=(A2+B2)^(1/2)cos(α-t),tant=A/B

倍角公式:

sin(2α)=2sinα·cosα=2/(tanα+cotα)

cos(2α)=cos2(α)-sin2(α)=2cos2(α)-1=1-2sin2(α)

tan(2α)=2tanα/[1-tan2(α)]

三倍角公式:

sin(3α)=3sinα-4sin3(α)=4sinα·sin(60+α)sin(60-α)

cos(3α)=4cos3(α)-3cosα=4cosα·cos(60+α)cos(60-α)

tan(3α)=tana·tan(π/3+a)·tan(π/3-a)

半角公式:

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1+cosα)/2)

tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

降幂公式

sin2(α)=(1-cos(2α))/2=versin(2α)/2

cos2(α)=(1+cos(2α))/2=covers(2α)/2

tan2(α)=(1-cos(2α))/(1+cos(2α))

公式:

sinα=2tan(α/2)/[1+tan2(α/2)]

cosα=[1-tan2(α/2)]/[1+tan2(α/2)]

tanα=2tan(α/2)/[1-tan2(α/2)]

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

和化积公式:

sinα+sinβ=2sin[(α+β)/2]cos已知三角形两边a,b,这两边夹角C,则S=absinC/2[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

推导公式

tanα+cotα=2/sin2α

tanα-cotα=-2cot2α

1+cos2α=2cos2α

1-cos2α=2sin2α

1+sinα=(sinα/2+cosα/2)2

拓展阅读:高中怎么提升数学成绩

1.制定学习

到了高三,数学基础的同学只有一年的时间来弥补。所以你要明白这一年的时间里,你的数学要达到什么样的目标。比如你现在的数学成绩是60分(150满计算),经过一年的努力你想达到什么样的成绩,以此作为依据来分配好自己的学习。

2.懂得舍弃

在高三一年的时间里,你不可能将全部的数学知识都完全掌握,所以这个时候你就要懂得舍弃,要做到抓大放小。根据考试大纲,把重心放在基础题目上和分数多的题目上,像是难题和压轴题就可以适当的选择放弃。

3.学习数学要有越挫越勇的精神

在提升数学成绩的过程中,暂时看不到进步是很正常的事情。这个时候一定不要泄气,要相信在高考之前,你只要努力就不会晚。对于试卷中出现的问题要科学分析,也可以找老师或同学帮自己分析,快速解决,不要把时间浪费在“丧失信心的没状态中”。

高三学生快速提高数学成绩方法

高三快速提高数学成绩的方法首先一个是多做题,哪个专题知识点不会就做哪方面的题,直到把类型题都做会了为止。光做题也不是解决问题的办法,要想学好数学,还必须学会用数学思维去思考问题,只有入门了才能真正学好数学。

数学成绩提高也是分档次的,数学要想及格容易,但考高分是比较难的,尤其是考140多分甚至是满分更难。考高分,基础题必须不丢分,难题争取得步骤分。选择题2道和大题2道算是比较难的,其余题目尽量都得分。

学数学方法就是多写写、画画、算算,已知递推公式求通项常见方法:也就是看题目给什么条件就画什么图或是推导出一个无知条件,因为每个条件都不是白给的,都是有价值的,所以不要小看每个条件甚至是每个字。

一道关于基本不等式的高考数学题

3.不等式的同解性

解:4x^2+y^2+xy=1

可变为:(2x+y)^2=1+3xy=1+3/22xy≤1+3/2[(2x+y)/2]^2

即:5/8 (2x+y)^2≤1

(2x+y)^2x≤8/5

2x+y≤2√10/5

以上等号成立的条件是当x,y是正实数,且仅当2x=y,可以代入4x^2+y^2+xy=1验证.

所(6)|a1+a2+……+an|≤|a1|+|a2|+……+|an|.以值为2√10/5。

高考,数学,不等式

(3)分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法.

∴2x+y≥2√(2xy)

∴2x+y+6=x4.证明高考数学中不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法。要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点。比较法的一般步骤是:作(商)→变形→判断符号(值)。y≥2√(2xy)+6

即xy-2√2√(xy)-6≥0

解不等式,得

√(xy)≥3√2 (√(xy)≤-√2舍弃)

∴xy≥(3√2)^2=18

∴xy的最小值是18

∴2x+y>=2√(2xy),

由2x+y+6=xy得

xy>=2√(2xy)+6,

[√(xy)]^-2√2√(xy)-6>=0,√(xy)>0,

∴√(xy)>=3√2,

∴xy>=18,当2x=∵正实数x,y,∴xy>0y,x=3,y=6时取等号,

∴xy的最小值是18.

本题有多种解法。

2x+y=xy-6

高中数学基本不等式解题技巧

③指数:a的指数从n到0, 降幂排列;b的指数从0到n,升幂排列。各项中a,b的指数之和始终为n。

1、配凑法

表面积:πR2+πR[(h2+R2)的平方根]、体积:πR2h/3(r为圆锥体低圆半径,h为其高),

基本不等式使用的环境就是,和定积、积定和最小,所以必须有和或者乘积是定值的时候才可以使用,如果不是定值,我们就可以通过增减配数的方法,构成和或者乘积是定值的情况,然后再使用基本不等式求值即可。

2.整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法。方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用。

2、1的妙用

这种题型格式比较固定,一般是两个变量为正实数,有一个代数式的值已知,求另一个代数式的最值问题,根据任意数乘以1以后数值不变的性质,已知和所求式相乘,变成互为倒数式的形式,然后再使用基本不等式求值即可。

扩展资料:

均值定理,又称基本不等式。主要内容为在正实数范围内,若干数的几何平均数不超过他们的算术平均数,且当这些数全部相等时,算术平均数与几何平均数相等。均值定理是高中数学学习中的一个非常重要的知识点,在函数求最值问题中有十分频繁的应用。

基本不等式的实际应用:

有关函数最值的实际问题的解题技巧:

1、根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值。

2、设变量时一般要把求值或最小值的变量定义为函数。

3、解应用题时,一定要注意变量的实际意义及其取值范围。

基本不等式的综合应用:

基本不等式是高考考查的热点,常以选择题、填空题的形式出现.通常以不等式为载体综合考查函数、方程、三角函数、立体几何、解析几何等问题.主要有以下几种命题方式:

1、应用基本不等式判断不等式是否成立或比较大小.解决此类问题通常将所给不等式(或式子)变形,然后利用基本不等式求解。

2、条件不等式问题.通过条件转化成能利用基本不等式的形式求解。

3、求参数的值或范围.观察题目特点,利用基本不等式确定相关成立条件,从而得到参数的值或范围。

高一数学不等式解题技巧有哪些?

2证明不等式时,从待证命题出发,分析使其成立的充分条件,利用已知的一些基本原理,逐步探索,将命题成立的条件归结为一个已经证明过的定理、简单事实或题设的条件,这种证明的方法称为分析法,它是执果索因的方法。、圆锥体:

基本不等式和不等4、在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解。式,尤其是基本不等式:几何平均值<=算术平均值。注意到“一正”,“二定”,“三相等”,一般用采用拼凑法或待定系数法来构造满足条件的两项或三项,使其乘积为一定值。

一般在各个省市的高考中都会或多或少的考到,比较容易以一道选择题或填空题出现,以及大题中的应用题中求极值会频繁用到基本不等式(一般这种求极值的问题,通过求导也能得到相同,但利用基本不等式会使计算更简单)。

由因导果,证明不等式时,从已知的不等式及题设条件出发,运用不等式性质及适当变形推导出要证明的不等式. 合法又叫顺推证法或因导果法。

执果索因,证明不等式时,从待证命题出发,寻找使其成立的充分条件. 由于”分析法“证题书写不是太方便,所以有时我们可以利用分析法寻找证题的途径,然后用”综合法“进行表述。

高考数学中容易出错的知识点都有哪些?

高中数学基本不等式解题技巧如下:

三角函数篇:三角函数是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。

不等式篇:一般地,用纯粹的大于号“>”、小于号“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)“≥”、不大于号(小于或等于号)“≤”连接的不等式称为非严格不等式,或称广义不等式。总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。

数列篇:数列是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。排在位的数称为这个数列的第1项(通常也叫做首项),排在第二位的平方关系:数称为这个数列的第2项……排在第n位的数称为这个数列的第n项,通常用an表示。

篇:是数学中一个基本概念,它是论的研究对象,论的基本理论直到19世纪才被创立。最简单的说法,即是在最原始的论——朴素论中的定义,就是“一堆东西”。里的“东西”,叫作元素。更多知识点可关注下新东方中学全科教育的高考数学寒住宿班课程。

其实哪里都需要仔细认真吧,从开始的映射函数,定义域,对应关系,图像,指数函数幂函数,对数函数,导数求解,解析几何方面,异面直线,面与面线和面之间夹角,三角函数和平面向量,基本的定理和运算,数列求通项,求和,不等式求解,一元二次方程求解,直线方程,圆的方程,对称性,统计概率,二项式定理等等。多在生活中锻炼数学思维,也是不容易出错的。

高考数学常用公式及结论

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

掌握数学公式,对你的考试是有所帮助的。下面是学习啦小编网络整理的2016高考必备数学公式以供大家学习。

积化和公式:

2016高考必备数学公式(一)

通项公式的求法:

(1)构造等比数列:凡是出现关于后项和前项的一次递推式都可以构造等比数列求通项公式;

(2)构造等数列:递推式不能构造等比数列时,构造等数列;

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)(3)递推:即按照后项和前项的对应规律,再往前项推写对应式。

①已知a1=a,an+1=qan+b,求an时,利用待定系数法求解,其关键是确定待定系数λ,使an+1 +λ=q(an+λ)进而得到λ。

②已知a1=a,an=an-1+f(n)(n≥2),求an时,利用累加法求解,即an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)的方法。

③已知a1=a,an=f(n)an-1(n≥2),求an时,利用累乘法求解。

高考数学必考知识点 高考数学不等式知识点总结

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

不等式在高中数学教学中占有很重要的位置,在实际问题中的应用也非常广泛,下面是我给大家带来的高考数学不等式知识点总结,希望对你有帮助。

③用数轴表示一元一次不等式(组)的解集

高考数学不等式知识点

一、高考数学中不等式考试要求

在解决问题时,要依据题设与结论的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明。高考数学中不等式的应用范围十分广泛,它始终贯串在整个中学数学之中。诸如问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。

(1)理解不等式的性质及其证明。

(2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用。

(3)掌握分析法、综合法、比较法证明简单的不等式。

(4)掌握简单不等式的解法。

(5)理解不等式│a│-│b│≤│a+b│≤│a│+│b│。

二、高考数学中不等式证明方法

1、高考数学不等式证明方法之比较法

包括比和比商两种方法。

证明不等式时,从命题的已知条件出发,利用公理、定理、法则等,逐步推导出要证明的命题的方法称为综合法,它是由因导果的方法。

3、高考数学不等式证明方法之分析法

证明不等式时,有时根据需要把需证明的不等式的值适当放大或缩小,使其化繁为简,化难为易,达到证明的目的,这种方法称为放缩法。

5、高考数学不等式证明方法之数学归纳法

用数学归纳法证明不等式,要注意两步一结论。

在证明第二步时,一般多用到比较法、放缩法和分析法。

6、高考数学不等式证明方法之反证法

证明不等式时,首先设要证明的命题的反面成立,把它作为条2.不等式的证明方法件和其他条件结合在一起,利用已知定义、定理、公理等基本原理逐步推证出一个与命题的条件或已证明的定理或公认的简单事实相矛盾的结论,以此说明原设的结论不成立,从而肯定原命题的结论成立的方法称为反证法。

三、高考数学中不定式解题思路

1.解高考数学中不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化。在解不等式中,换元法和图解法是常用的技巧之一。通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰。

3.在高考数学中不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰。

版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。