2011广东高考数学 2011广东高考数学最难的一年

招生计划 2025-01-17 10:13:05

广东今年高考数学难不难

广东数学高考的难度相对较高。

2011广东高考数学 2011广东高考数学最难的一年2011广东高考数学 2011广东高考数学最难的一年


2011广东高考数学 2011广东高考数学最难的一年


2011广东高考数学 2011广东高考数学最难的一年


2011广东高考数学 2011广东高考数学最难的一年


1、广东数学高考的难度相对较数12,即此时有。高。

考试中出现了很多难题,这些题目需要学生具备较高的数学素养和解决问题的能力。这些题目考察了学生的逻辑思维能力、数学建模能力、空间想象能力等多个方面的能力。因此,很多考生都感到这次考试比较难。

2、广东数学高考难度较高的原因

一方面,今年考试题目的综合性比较强。这意味着考试中出现的题目往往涵盖了多个知识点或多个解题思路,需要学生具备较为扎实的基础和广泛的知识面。另一方面,今年考试题目的灵活性比较强。这意味着考试中出现的三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程和演算步骤.题目往往需要学生具备较高的解决问题的能力。

3、难度较高带来的积极影响。

首先,这次考试有助于筛选出真正具有数学天赋和素养的学生。其次,这次考试有助于督促学校和教师更加注重数学教育,提高数学教学水平和质量。,这次考试有助于激励学生更加努力地学习数学,提高数学素养和解决问题的能力。

提升数学成绩的技巧和建议:

1、理清基础知识。

数学是一个渐进的学科,建立在坚实的基础上。确其中,为真命题的是保你对数学的基本概念、公式和定理有清晰的理解。及时复习和填补知识漏洞,确保基础牢固。

2、创造学习环境。

为了有效学习数学,创造一个安静舒适、没有干扰的学习环境。减少手机、电视和其他娱乐设备的干扰,注重集中注意力,专心学习。

3、多做练习题。

数学是一个实践性的学科,在遇到不懂的问题时,多做练习题是提高成绩的关键。做大量的练习题有助于巩固已学知识,并提高解题能力和速度。

4、总结归纳。

对于每个学习的数学知识点,尝试自己总结一份简洁明了的笔记或手册。这有助于加深理解,并提供一个简洁的参考资料,方便复习和回顾。

葛军2012年参加了哪些省的高考命题

(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?

参加江苏2003、2010、2012,以及广东201设数列满足,, 。数列满足是非零整数,且对任意的正整数和自然数,都有。1。2003年,葛军参与江苏高考数学命题工作,江苏数学全省均分43(满分150)。2010年,葛军参与江苏高考数学命题工作,秒杀52万高三考生,平均分83.5分(总分160分)。2011在广东出卷,让广东考生戏称“回到原点”。2012,再次打击江苏考生,南京一些考生考完数学后在考场外直接就哭了。

.又数列成等比数列, ,所以 ;

广东高考理科数学难不难,难度系数解读点评解析

(四)考试时间与日期

数学试题点评】

19.(本小题满分13分)

由上表可以发现,广东卷依旧注重主干知识考查,考点稳定,并且注重双基(其它方法如①利用数量积求出进而求;②余弦定理正弦定理等!)考查。从命题题型上来看,第8、19、20、21题这些常规难题位置难度降低。

广东高考数学立体几何题分配多少时间才合理?

虽然一举考进全省前十名,但方添钡却说自己在学校从没考过年级,高三阶段的一次考试成绩是年级第二。“我觉得考年级第二挺好的,考年级压力挺大的,因为前面没有可以超过的人了。”方添钡笑着说。A、2 B、3 C、6 D、7

基础好的话选择题填空35分,前面三道大题30分,后面三道大题55分,而立体几何通常才都是放在第三题,因计算量大,不要超过十五分钟,如果基础不好,就要懂得保分,选择填空45,前面3道大题45,后面三道30,只做前面问的,广东高考不会太难,我2011年考,却很难,你们幸福,祝你好运

等等等等

今年高考分是多少

A、 B、 C、 D、

截至记者发稿前了解到,本市今年理科(满分750分)分为711分,为八中女生杨慧心(音),此外还有三好学生的加分因素,;文科(满分750分)分为二中女生何旋(音),试卷得分为672分,此外还有三好学生的加分因素。

广东高中理科数学考11本书。其中必修5本,选修6本。必修课本为必修1、必修2、必修3、必修4、必修5。选修课本为选修2-1,选修2-2,选修2-3,选修4-1,选修4-4,选修4-5。

713分 2011年高考河北省理科状元!

1.已知,,则=

浙江的738分

陕西 理科709 文科 680多

赖绮玫 文科672 广东

713分 2011年高考河北省理科状元!

738分

好像是630多点!

浙江的738分

每个省都不同,计算方法也不同,总分也不同

跪求05-10年广东省文科数学高考题(附解析的那种)

(注:框图中的赋值符号“=”,也可以写成“←”或“:=”)

我这里只有07-09年的,而且有些发不了,不如你留个邮箱,我三个都发给你。或者你可以用百度文档搜一下,我已经上传两个去了。

738

2007年广东省高考数学(文科)试题及详细解答

(1)请画出上表数据的散点图;

一、选择题:本大题共l0小题,每小题5分,满分50分.在每小题给出的四个选项中.只有一项是符合题目要求的.

A.{x|-1≤x<1} B.{x |x>1} C.{x|-1<x<1} D.{x |x≥-1}

【解析】,故,选(C).

2.若复数(1+bi)(2+i)是纯虚数(i是虚数单位,b是实数),则b=

A.-2 B. C. D.2

【解析】,依题意, 选(D).

3.若函数f(x)=x3(x∈R),则函数y=f(-x)在其定义域上是

A.单调递减的偶函数 B.单调递减的奇函数

C.单凋递增的偶函数 D.单涮递增的奇函数

【解析】函数单调递减且为奇函数,选(B).

4.若向量满足,与的夹角为,则

A. B. C. D.2

【解析】,选(B).

5.客车从甲地以60km/h的速度匀速行驶1小时到达乙地,在乙地停留了半小时,然后以80km/h的速度匀速行驶l小时到达丙地。下列描述客车从甲地出发,经过乙地,到达 丙地所经过的路程s与时间t之间关系的图象中,正确的是

【解析】依题意的关键字眼“以80km/h的速度匀速行驶l小时到达丙地”选得(C).

6.若是互不相同的空间直线,是不重合的平面,则下列命题中为真命题的是

【解析】逐一判除,易得(D).

7.图l是某县参加2007年高考的学 生身高条形统计图,从左到右的各条形表示的学生人数依次记为4,、A:、…、A,。(如A:表示身高(单位:cm)在[150,155)内的学生人数).图2是统计图l中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180cm(含160cm,不含180cm)的学生人数,那么在流程图中的判断框内应填写的条件是

A.i<9 B.i<8 C.i<7 D.i<6

8.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是

9.已知简谐运动的图象经过点(0,1),则该简谐运动的最小正周期T 和初相分别为

【解析】依题意,结合可得,易得,故选(A).

10.图3是某汽车维修公司的维修点环形分布图公司在年初分配给

A、 B、C、D四个维修点某种配件各50件.在使用前发现需将

A、B、C、D四个维修点的这批配件分别调整为40、45、54、61件,

但调整只能在相邻维修点之间进行.那么要完成上述调整,最少

的调动件次(n件配件从一个维修点调整到相邻维修点的调动件次为n)为

A.18 B.17 C.16 D.15

【解析】很多同学根据题意发现n=16可行,判除A,B选项,但对于C,D选项则难以作出选择,事实上,这是一道运筹问题,需要用函数的最值加以解决.设的件数为(规定:当时,则B调整了件给A,下同!),的件数为,的件数为,的件数为,依题意可得,,,,从而,,,故调动件次,画出图像(或的几何意义)可得最小值为16,故选(C).

二、填空题:本大题共5小题,每小题5分,满分20分.其中14~15题是选做题,考生只能选做一题,两题全答的,只计算前一题得分.

11.在平面直角坐标系xOy中,已知抛物线关于x轴对称,顶点在原点O,且过点P(2,4),则该抛物线的方程是 .

【解析】设所求抛物线方程为,依题意,故所求为.

12.函数f(x)=xlnx(x>0)的单调递增区间是 .

【解析】由可得,:.

13.已知数列{an}的前n项和Sn=n2-9n,则其通项an= ;若它的第k项满足5

【解析】{an}等,易得,解不等式,可得

14.(坐标系与参数方程选做题)在极坐标系中,直线l的方程为ρsinθ=3,则点(2,π/6)到直线l的距离为 .

【解析】法1:画出极坐标系易得2; 法2:化成直角方程及直角坐标可得2.

15.(几何证明选讲选做题)如图4所示,圆O的直径AB=6,C为圆周上一点,BC=3过C作圆的切线l,过A作l的垂线AD,垂足为D, 则∠DAC= .

【解析】由某定理可知,又,

故.

三、解答题:本大题共6小题,满分80分.

16.(本小题满分14分)

已知ΔABC_三个顶点的直角坐标分别为A(3,4)、B(0,0)、C(c,0).

(1)若,求c的值; (2)若C=5,求sin∠A的值.

【解析】(1)…………………………………………………………4分

由可得………………6分, 解得………………8分

(2)当时,可得, ΔABC为等腰三角形………………………10分

过作交于,可求得……12分 故……14分

17.(本小题满分12分)

已知某几何体的俯视图是如图5所示的矩形,正视图(或称主

视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视

图)是一个底边长为6、高为4的等腰三角形.

(1)求该儿何体的体积V;

(2)求该几何体的侧面积S

【解析】画出直观图并就该图作必要的说明. …………………3分

(2)……………7分 (3)………12分

18(本小题满分12分)

F表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生

产能耗Y(吨标准煤)的几组对照数据

3 4 5 6

y 2.5 3 4 4.5

(2)请根据上表提供的数据,崩最小二乘法求出Y关于x的线性回归方程Y=bx+a;

(参考数值:32.5+43+54+64.5=66.5)

【解析】(1)画出散点图. …………………………………………………………………………3分

(2), , , …………………………………7分

由所提供的公式可得,故所求线性回归方程为………10分

(3)吨. ………………………………………………………12分

在平面直角坐标系xOy巾,已知圆心在第二象限、半径为的圆C与直线相切于坐标原点0.椭圆与圆c的一个交点到椭圆两焦点的距离之和为10.

(1)求圆C的方程; (2)试探究圆C上是否存在异于原点的点Q,使Q到椭圆右焦点F的距离等于线段OF的长.若存在,请求出点Q的坐标;若不存在,请说明理由.

【解析】(1)设圆的方程为………………………2分

依题意,,…………5分

解得,故所求圆的方程为……………………7分

(注:此问若结合图形加以分析会大大降低运算量!)

(2)由椭圆的定义可得,故椭圆方程为,焦点……9分

设,依题意, …………………11分

解得或(舍去) ……………………13分 存在……14分

20.(本小题满分14分)

已知函数,是力程以的两个根(α>β),是的导数,设 (1)求的值;(2)已知对任意的正整数有,记,求数列的前项和.

【解析】(1)求根公式得, …………3分

(2)………4分 ………5分 ……7分

……10分

∴数列是首项,公比为2的等比数列………11分

∴………………………………………………………14分21.(本小题满分l4分)

已知是实数,函数.如果函数在区间[-1,1]上有零点,求的取值范围.

【解析】若,则,令,不符题意, 故………2分

当在 [-1,1]上有一个零点时,此时或………6分

解得或 …………………………………………………………………8分

当在[-1,1]上有两个零点时,则………………………………10分

解得即………………12分

综上,实数的取值范围为. ……………………………………14分

2008年普通高等学校招生全国统一考试(广东卷)(文科)全解析

一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求。

1.第二十九届夏季奥林匹克运动会将于2008年8月8日在举行,若A={参加奥运会比赛的运动员},B={参加奥运会比赛的男运动员}。C={参加奥运会比赛的女运动员},则下列关系正确的是

A.AB????? B.BC C.A∩B=C D.B∪C=A

【解析】送分题呀!为D.

2.已知0<a<2,复数(i是虚数单位),则|z|的取值范围是

A.(1,) B. (1,) C.(1,3) D.(1,5)

【解析】,而,即,,选B.

A、 B、 C、 D、

【解析】排除法:横坐标为,选B.

4.记等数列的前项和为,若,则该数列的公( )

【解析】,选B.

5.已知函数,则是( )

A、最小正周期为的奇函数 B、最小正周期为的奇函数

C、最小正周期为的偶函数 D、最小正周期为的偶函数

【解析】,选D.

6.经过圆的圆心C,且与直线垂直的直线方程是( )

A、 B、 C、 D、

【解析】易知点C为,而直线与垂直,我们设待求的直线的方程为,将点C的坐标代入马上就能求出参数的值为,故待求

的直线的方程为,选C.(或由图形快速排

除得正确.)

7.将正三棱柱截去三个角(如图1所示A、B、C分

别是三边的中点)得到的几何体如图2,则

该几何体按图2所示方向的侧视图(或称左视图)为

【解析】解题时在图2的右边放扇墙(心中有墙),可得A.

8. 命题“若函数在其定义域内是减函数,则”的逆否命题是( )

A、若,则函数在其定义域内不是减函数

B、若,则函数在其定义域内不是减函数

C、若,则函数在其定义域内是减函数

D、若,则函数在其定义域内是减函数

【解析】考查逆否命题,易得A.

9、设,若函数,,有大于零的极值点,则( )

【解析】题意即有大于0的实根,数形结合令,则两曲线交点在象限,结合图像易得,选A.

10、设,若,则下列不等式中正确的是( )

A、 B、 C、 D、

【解析】利用赋值法:令排除A,B,C,选D.

二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.

(一)必做题(11-13题)

11.为了调查某厂工人生产某种产品的能力,随机抽查 了20位工人某天生产该产品的数量.产品数量的分组区间为,,

由此得到频率分布直方图如图3,则这20名工人中一天生产该产品数量在的人数是 .

【解析】,故为13.

12.若变量x,y满足则z=3x+2y的 值是________。

【解析】画出可行域,利用角点法可得70.

13.阅读图4的程序框图,若输入m=4,n=3,则输出a=_______,i=________。

【解析】要结束程序的运算,就必须通过整除的条件运算,

而同时也整除,那么的最小值应为和的最小公倍

(二)选择题(14-15题,考生只能从中选做一题)

14.(坐标系与参数方程选做题)已知曲线的极坐标方程分别为,则曲线 交点的极坐标为

【解析】我们通过联立解方程组解得,即两曲线的交点为.

15.(几何证明选讲选做题)已知PA是圆O的切点,切点为A,PA=2.AC是圆O的直径,PC与圆O交于B点,PB=1,则圆O的半径R=________.

【解析】依题意,我们知道,由相似三角形的性质我们有,即。

已知函数的值是1,其图像经过点。

(1)求的解析式;(2)已知,且求的值。

【解析】(1)依题意有,则,将点代入得,而,,,故;

(2)依题意有,而,,

。17.(本小题满分12分)

某单位用2160万元购得一块空地,在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?

(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=)

【解析】设楼房每平方米的平均综合费为f(x)元,则

, 令 得

当 时, ;当 时,

因此 当时,f(x)取最小值;

答:为了楼房每平方米的平均综合费最少,该楼房应建为15层。

18.(本小题满分14分)

如图5所示,四棱锥P-ABCD的底面ABCD是半径为R的圆的内接四边形,其中BD是圆的直径,。

(1)求线段PD的长;

【解析】(1) BD是圆的直径 又 ,

(2 ) 在中,

又底面ABCD

三棱锥的体积为 .

某初级中学共有学生2000名,各年级男、女生人数如下表:

初一年级 初二年级 初三年级

女生 373 x y

男生 377 370 z

已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19.

求x的值;

现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名?

已知y245,z245,求初三年级中女生比男生多的概率.

(2)初三年级人数为y+z=2000-(373+377+380+370)=500,

(3)设初三年级女生比男生多的为A ,初三年级女生男生数记为(y,z);

由(2)知 ,且 ,基本空间包含的基本有:

(245,255)、(246,254)、(247,253)、……(255,245)共11个

A包含的基本有:(251,249)、(252,248)、(253,247)、(254,246)、(255,245) 共5个

20.(本小题满分14分)

设,椭圆方程为,抛物线方程为.如图6所示,过点作轴的平行线,与抛物线在象限的交点为,已知抛物线在点的切线经过椭圆的右焦点.

(1)求满足条件的椭圆方程和抛物线方程;

【解析】(1)由得,

当得,G点的坐标为,,,

过点G的切线方程为即,

令得,点的坐标为,由椭圆方程得点的坐标为,

即,即椭圆和抛物线的方程分别为和;

(2)过作轴的垂线与抛物线只有一个交点,以为直角的只有一个,

同理 以为直角的只有一个。

若以为直角,设点坐标为,、两点的坐标分别为和,

。关于的二次方程有一大于零的解,有两解,即以为直角的有两个,

因此抛物线上存在四个点使得为直角三角形。

21.(本小题满分14分)

(1)求数列和的通项公式;

(2)记,求数列的前项和。

【解析】(1)由得

又 , 数列是首项为1公比为的等比数列,

,由 得 ,由 得 ,…

同理可得当n为偶数时,;当n为奇数时,;因此

(2)

当n为奇数时,

当n为偶数时

令 ……①

①×得: ……②

①-②得:

因此

2009年普通高等学校招生全国统一考试(广东A卷)

数学(文科)本试卷共4页,21小题,满分150分。考试用时120分钟。

参考公式:锥体的体积公式V=,其中S是锥体的底面积,h是锥体的高。

一、选择题:本大题共10小题,每小题5分,满分50分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集U=R,则正确表示M={—1,0,1}和N={}关系的韦恩(Venn)图是

2.下列n的取值中,使in =1(i是虚数单位)的是

A.n=2 B.n=3 C.n=4 D.n=5

3.已知平面向量a =(x,1),b =(—x,x2 ),则向量a+b

A.平行于x轴 B.平行于、三象限的角平分线

C.平行于y轴 D.平行于第二、四象限的角平分线

4.若函数是函数的反函数,且,则

5.已知等比数列的公比为正数,且,,则

A. B. C. D.

6.给定下列四个命题:

①若一个平面内的两条直线与另外一个平面都平行,那么这两个平面相互平行;

②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;

③垂直于同一直线的两条直线相互平行;

④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直。

A.①和② B.②和③ C.③和④ D.②和④

7.已知中,的对边分别为。若,且 ,则

A.2 B. C. D.

8.函数的单调递增区间是

A. B.(0,3) C.(1,4) D.

9.函数是

A.最小正周期为的奇函数 B.最小正周期为的偶函数

C.最小正周期为的奇函数 D.最小正周期为的偶函数

二、填空题:本大题共5小题,考生作答4小题,每小题5分,(一)必做题(11~13题)

11.某篮球队6名主力队员在最近三场比赛中投进的三分球个数如下表所示:

图1是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,则图中判断框应填

,输出的= 。

(注:框图中的赋值符号“=”也可以写成“”或“:=”)

12.某单位200名职工的年龄分布情况如图2,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,,196~200号)。若第5组抽出的号码为22,则第8组抽出的号码应是 。若用分层抽样方法,则40岁以下年龄段应抽取 人。

13.以点(2,-1)为圆心且与直线相切的圆的方程是_______________________。

(二)选做题(14、15题,考生只能从中选作一题)

14.(坐标系与参数方程选做题)若直线(为参数)与直线垂直,则常数=________。

15.(几何证明选讲选做题)如图3,点A,B,C是圆上的点,且,,则圆的面积等于__________________。

三、解答题:本大题共6小题,满分80分。解答须写出文字说明、证明过程和演算步骤。

16.(本小题满分12分)

已知向量与互相垂直,其中.

求和的值;

若,求的值。

17.(本小题满分13分)

某高速公路收费站入口处的安全标识墩如图4所示。墩的上半部分是正四棱锥,下半部分是长方体。图5、图6分别是该标识墩的正(主)视图和俯视图。

(1)请画出该安全标识墩的侧(左)视图;

(2)求该安全标识墩的体积;

(3)证明:直线平面.

18.(本小题满分13分)

随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图7。

(1)根据茎叶图判断哪个班的平均身高较高;

(2)计算甲班的样本方;

(3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率。

19.(本小题满分14分)

已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为,两个焦点分别为和,椭圆G上一点到和的距离之和为12。圆:的圆心为点。

(1)求椭圆G的方程;

(2)求面积;

(3)问是否存在圆包围椭圆G?请说明理由。

20.(本小题满分14分)

已知点是函数的图像上一点。等比数列的前n项和为。数列的首项为c,且前n项和满足

(1)求数列和的通项公式;

(2)若数列的前项和为,问满足>的最小正整数是多少?

已知二次函数的导函数的图像与直线平行,且在处取得极小值。设函数。

(1)若曲线上的点到点的距离的最小值为,求的值;

(2)如何取值时,函数存在零点,并求出零点。

2009年普通高等学校招生全国统一考试(广东卷)

选择题

BCCAB DADAB

1、【解析】由N= { x |x+x=0}得,选B.

2、【解析】因为,故选C.

3、【解析】,由及向量的性质可知,C正确.

4、【解析】函数的反函数是,又,即,

所以,,故,选A.

5、【解析】设公比为,由已知得,即,因为等比数列的公比为正数,所以,故,选B

6、【解析】①错, ②正确, ③错, ④正确.故选D

7、【解析】

由a=c=可知,,所以,

由正弦定理得,故选A

8、【解析】,令,解得,故选D

9、【解析】因为为奇函数,,所以选A.

10、【解析】由题意知,所有可能路线有6种:

①,②,③,④,⑤,⑥,

故选B.

11、【】,

【解析】顺为是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,所图中判断框应填,输出的s=.

12、【】37, 20

【解析】由分组可知,抽号的间隔为5,又因为第5组抽出的号码为22,所以第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37.

40岁以下年龄段的职工数为,则应抽取的人数为人.

13、【解析】将直线化为,圆的半径,所以圆的方程为

14、【】

【解析】将化为普通方程为,斜率,

当时,直线的斜率,由得;

当时,直线与直线不垂直.

综上可知,.

15、【】

解答题

16、【解析】(1),,即

又∵, ∴,即,∴

又 ,

(2) ∵

, ,即

17、【解析】(1)侧视图同正视图,如下图所示.

(2)该安全标识墩的体积为:

(3)如图,连结EG,HF及 BD,EG与HF相交于O,连结PO.

由正四棱锥的性质可知,平面EFGH ,

又 平面PEG

又 平面PEG;

18、【解析】(1)由茎叶图可知:甲班身高集中于之间,而乙班身高集中于 之间。因此乙班平均身高高于甲班;

(2)

甲班的样本方为

=57

(3)设身高为176cm的同学被抽中的为A;

从乙班10名同学中抽中两名身高不低于173cm的同学有:(181,173) (181,176)

(181,178) (181,179) (179,173) (179,176) (179,178) (178,173)

(178, 176) (176,173)共10个基本,而A含有4个基本;

;19、【解析】(1)设椭圆G的方程为: ()半焦距为c;

则 , 解得 ,

所求椭圆G的方程为:.

(2 )点的坐标为

(3)若,由可知点(6,0)在圆外,

若,由可知点(-6,0)在圆外;

不论K为何值圆都不能包围椭圆G.

20、【解析】(1),

,,

又公比,所以 ;

又,, ;

数列构成一个首相为1公为1的等数列, ,

当, ;

();

(2)

;由得,满足的最小正整数为112.

21、【解析】(1)设,则;

又的图像与直线平行

又在取极小值, ,

, ;

, 设

则;

(2)由,

得当时,方程有一解,函数有一零点;

当时,方程有二解,若,,

函数有两个零点;若,

,函数有两个零点;

当时,方程有一解, , 函数有一零点

广东高考理科数学要学哪几本书?人教版!

数学(文科) 参

广东高考理科数学要学必修5本,选修3本。理科选修2-1,2-2,2-3,还有选修4-1,4-2,4-4,4-5,一般每个学校选修四选两本。

数学要学选修和必修两部分,必修一到五,文理都要学。(文科选修1-1,1-2)各所高中学校的学习进度不同,所以学习的高中数学教材也(别解:,题意转化为知求的值域,令得转化为勾函数问题.)可能会有异。

必修1是基础,整本重点掌握;必修2重点包括:立体几何初步、平面解析几何初步;必修3重点包括:算法初步、统计、概率;必修4重点包括:三角函数10.广州2010年亚运会火炬传递在A,B,C,D,E五个城市之间进行,各城市之间的路线距离(单位:百公里)见右表。若以A为起点,E为终点,每个城市经过且只经过一次,那么火炬传递的最短路线距离是、平面向量、三角恒等变换;必修5重点包括:解三角形、数列、不等式。

选修2-1重点包括:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何;选修2-2重点掌握;选修2-3重点包括:计数原理、统计与概率。

求葛军老师(数学)出的所有高考卷,哪几年?哪个省的?2012江苏卷他出的概率有多大?

(2)若,求三棱锥P-ABC的体积。

[1]2010年,21.(本小题满分14分)江苏数学帝葛军一个人——秒杀江苏52万考生

, ;

[2]2011年,广东数学高考的出卷人,难度较大,涉及大学学的泰勒公式等,本人亲身经历这次考卷,150分只得了108分

广东高考美术文化科包括哪些科目,那个2011高考文化科的分数线包括哪些科目?

A.20.6 B.21 C.22 D.23

艺术类专业的考试科目:语文、文科数学、外语、文科综合、美术术科。

文科综合中思想内容、历史梁思齐,理科697 内容、地理内容的卷面满分值各为100分;理科综合中物理内容、化学内容、生物内容的卷面满分值各为100分。

体育术科、音乐术科、美术术科考试成绩以原始分形式呈现,体育术科、音乐术科、美术术科满分值各为300分。

语文:119(本小题满分14分)50分钟。

文科数学/理科数学:120分钟。

文科综合/理科综合:150分钟。

外语(笔试):120分钟。

语文、数学、外语、文科综合、理科综合具体考试日期按统一要求。体育术科、音乐术科、美术术科考试一般在1-3月份;英语听说考试一般在3-4月份

文理科

版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。