高考数学有几道大题,分别是考哪几个知识点 6题
高考数学大题的出题顺序 高考数学大题出题规律
高考数学大题的出题顺序 高考数学大题出题规律
高考数学大题的出题顺序 高考数学大题出题规律
高考数学大题的出题顺序 高考数学大题出题规律
1数列或三角函式
2概率与排列组合
3立体几何
4圆锥曲线
5导数
6三选一,4-1几何证明选讲,4-4座标系与引数方程,4-5不等式选讲
高考数学的大题 涉及到6个考点分别圆锥曲线、导数、概率、数列、三角函式和立体几何。
2015浙江高考数学有几道题
8道选择
7道填空
5道解答题
高考数学理科考试一般考多少知识点,分别是什么?
必修一。函式两道小题,函式,导数一起一小题一大题
必修二。立体几何两小题一大题,圆一小题
必修三。程式框图,一小题
必修四,必修五。解三角形,三角函式共两小题一大题。数列大小个一,不等式肯定一道小题,不知道boss题第三问会不会有
2-1,大小各一。2-2,复数一小题,导数和函式一起说了。2-3,二项式定理,排列组合,其他的各一小题,期望那个什么大题。
选修4-X,3本,一本一小题,只选一题做
我们湖北的,应该不多的。
除了2-2,一些生可以不怎么管(复数还是要的!),2-1有些很难的地方(一般是补充的)可以无视,其他都不要忽视!
浙江省高考数学卷有几个选择,几个填空,几个大题,分值分别是多少?
选择10道,每道5分;填空7道,每道4分;解答题5道,共72分,第1、2、5小题14分,第3、4小题15分.
高考数学知识点赋分比
这个一般不会扣分,因为d是公,q是公比是约定俗成的,就是用d表示公等,但是注意些更好
高考数学各知识点分值分布
你看一下考试大纲,上面都有的
这好象没准确的吧!只有多做几次模拟,自己感受效果才好。我也是今年考的,数学,希望我们都考好!
高考数学大题重点在哪几章内容
第十五题 三角函式或者解三角形
第十六题 大部分情况是 立体几何
第十七题 应用题
第十八题 函式题
第二十题 综合探究题(据说连出考卷的人,出题之前都不知道自己要出什么题目)
道大题一般是三角函数
第二道一般是立体几何(可用立体向量求解)
第三道一般是概率、统计;
第四道一般还有,答题一定要清楚,不清楚的话,本来你可以得10分满分,是数列;
第五道一般是圆锥曲线;
一道一般是导数与不等式。
个别情况下第四道与一道的内容可互换。
三角函数
立体几何(可以建立坐标系,用向量求解)
概率、统计
数列
圆、曲线等,如双曲线
导数等
这得看你是在什么地方参加高考了。江苏一般两题都是综合题双曲线与函数、平几等等结合,可结合东西太多了,看出题者程度。压轴题要么是抽象函数题要么是复杂数列。
普通高中学校招生全国统一考试,是为普通高等学校招生设置的全国性统一考试,一般是每年6月7日-8日考试。 参加考试的对象一般是全日制普通高中 毕业 生和具有同等学历的中华公民,下面是我整理的关于2022高考数学大题题型 总结 ,欢迎阅读!
2022高考数学大题题型总结
一、三角函数或数列
数列是高考必考的内容之一。高考对这个知识点的考查非常全面。每年都会有等数列,等比数列的考题,而且经常以综合题出现,也就是说把数列知识和指数函数、对数函数和不等式等其他知识点综合起来。
近几年来,关于数列方面的考题题主要包含以下几个方面:
(1)数列基本知识考查,主要包括基本的等数列和等比数列概念以及通项公式和求和公式。
(2)把数列知识和其他知识点相结合,主要包括数列知识和函数、方程、不等式、三角、几何等其他知识相结合。
(3)应用题中的数列问题,一般是以增长率问题出现。
二、立体几何
高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着多一点思考,少一点计算的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。
三、统计与概率
1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。
3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。
4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。
5.了解随机的发生存在着规律性和随机概率的意义。
6.了解等可能性的概率的意义,会用排列组合的基本公式计算一些等可能性的概率。
7.了解互斥、相互的意义,会用互斥的概率加法公式与相互的概率乘法公式计算一些的概率。
8.会计算在n次重复试验中恰好发生k次的概率.
四、解析几何(圆锥曲线)
高考解析几何剖析:
1、很多高考问题都是以平面上的点、直线、曲线(如圆、椭圆、抛物线、双曲线)这三大类几何元素为基础构成的图形的问题;
2、演绎规则就是代数的演绎规则,或者说就是列方程、解方程的规则。
有了以上两点认识,我们可以毫不犹豫地下这么一个结论,那就是解决高考解析几何问题无外乎做两项工作:
(1)、几何问题代数化。
(2)、用代数规则对代数化后的问题进行处理。
五、函数与导数
1.导数的常规问题:
(1)刻画函数(比初等 方法 细微);
(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);
2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。
高考数学题型特点和答题技巧
1.选择题——“不择手段”
(1)概念性强:数学中的每个术语、符号,乃至习惯用语,往往都有明确具体的含义,这个特点反映到选择题中,表现出来的就是试题的概念性强,试题的陈述和信息的传递,都是以数学的学科规定与习惯为依据,决不标新立异。
(2)量化突出:数量关系的研究是数学的一个重要的组成部分,也是数学考试中一项主要的内容,在高考的数学选择题中,定量型的试题所占的比重很大,而且许多从形式上看为计算定量型选择题,其实不是简单或机械的计算问题,其中往往蕴含了对概念、原理、性质和法则的考查,把这种考查与定量计算紧密地结合在一起,形成了量化突出的试题特点。
(3)充满思辨性:这个特点源于数学的高度抽象性、系统性和逻辑性。作为数学选择题,尤其是用于选择性考试的高考数学试题,只凭简单计算或直观感知便能正确作答的试题不多,几乎可以说并不存在,绝大多数的选择题,为了正确作答,或多或少总是要求考生具备一定的观察、分析和逻辑推断能力。思辨性的要求充满题目的字里行间。
(4)形数兼备:数学的研究对象不仅是数,还有图形,而且对数和图形的讨论与研究,不是孤立开来分割进行,而是有分有合,将它们辩证统一起来。这个特色在高中数学中已经得到充分的显露。因此,在高考的数学选择题中,便反映出形数兼备这一特点,其表现是几何选择题中常常隐藏着代数问题,而代数选择题中往往又寓有几何图形的问题。因此,数形结合与形数分离的解题方法是高考数学选择题的一种重要且有效的思想方法与解题方法。
(5)解法多样化:以其他学科比较,“一题多解”的现象在数学中表现突出,尤其是数学选择题由于它有备选项,给试题的解答提供了丰富的有用信息,有相当大的提示性,为解题活动展现了广阔的天地,大大地增加了解答的途径和方法。常常潜藏着极其巧妙的解法,有利于对考生思维深度的考查。
解题策略:
(1)注意审题。把题目多读几遍,弄清这个题目求什么,已知什么,求、知之间有什么关系,把题目搞清楚了再动手答题。
(2)答题顺序不一定按题号进行。可先从自己熟悉的题目答起,从有把握的题目入手,使自己尽快进入到解题状态,产生解题的和欲望,再解答陌生或不太熟悉的题目。若有时间,再去拼那些把握不大或无从下手的题。这样也许能超水平发挥。
(3)数学选择题大约有70%的题目都是直接法,要注意对符号、概念、公式、定理及性质等的理解和使用,例如函数的性质、数列的性质就是常见题目。
(4)挖掘隐含条件,注意易错易混点,例如中的空集、函数的定义域、应用性问题的限制条件等。
(5)方法多样,不择手段。高考试题凸现能力,小题要小做,注意巧解,善于使用数形结合、特值(含特殊值、特殊位置、特殊图形)、排除、验证、转化、分析、估算、极限等方法,一旦思路清晰,就迅速作答。不要在一两个小题上纠缠,杜绝小题大做,如果确实没有思路,也要坚定信心,“题可以不会,但是要做对”,即使是“蒙”也有25%的胜率。
(6)控制时间。一般不要超过40分钟,是25分钟左右完成选择题,争取又快又准,为后面的解答题留下充裕的时间,防止“超时失分”。
2.填空题——“直扑结果”
填空题和选择题同属客观性试题,它们有许多共同特点:其形态短小精悍,考查目标集中,简短、明确、具体,不必填写解答过程,评分客观、公正、准确等等,不过填空题和选择题也有质的区别。首先,表现为填空题没有备选项,因此,解答时既有不受诱误的干扰之好处,又有缺乏提示的帮助之不足。对考生思考和求解,在能力要求上会高一些。长期以来,填空题的答对率一直低于选择题的答对率,也许这就是一个重要的原因。其次,填空题的解构,往往是在一个正确的命题或断言中,抽去其中的一些内容(即可以使条件,也可以是结论),留下空位,让考生填上,考查方法比较灵活,在对题目的阅读理解上,较之选择题有时会显得较为费劲。当然并非常常如此,这将取决于命题者对试题的设计意图。
填空题的考点少,目标集中。否则,试题的区分度,其考试的信度和效度都难以得到保证。这是因为:填空题要是考点多,解答过程长,影响结论的因素多,那么对于答错的考生便难以知道其出错的真正原因,有的可能是一窍不通,入手就错了;有的可能只是到了一步才出错,但他们在答卷上表现出来的情况一样,得相同的成绩,尽管他们的水平存在很大的异。
解题策略:
由于填空题和选择题有相似之处,所以有些解题策略是可以共用的,在此不再多讲,只针对不同的特征给几条建议:
一是填空题绝大多数是计算型(尤其是推理计算型)和概念(或性质)判断性的试题,应答时必须按规则进行切实的计算或合乎逻辑的推演和判断;
3.解答题——“步步为营”
解答题与填空题比较,同居提供型的试题,但也有本质的区别。
首先,解答题应答时,考生不仅要提供出的结论,还得写出或说出解答过程的主要步骤,提供合理、合法的说明,填空题则无此要求,只要填写结果,省略过程,而且所填结果应力求简练、概括的准确;
其次,试题内涵解答题比起填空题要丰富得多,解答题的考点相对较多,综合性强,难度较高,解答题成绩的评定不仅看的结论,还要看其推演和论证过程,分情况判定分数,用以反映其别,因而解答题命题的自由度较之填空题大得多。
评分办法:
数学评分实行懂多少知识给多少分的评分办法,叫做“分段评分”。而考生“分段得分”的基本策略是:会做的题目力求不失分,部分理解的题目力争多得分。会做的题目若不注意准确表达和规范书写,常常会被“分段扣分”,有阅卷 经验 的老师告诉我们,解答立体几何题时,用向量方法处理的往往扣分少。
解答题阅卷的评分原则一般是:问,错或未做,而第二问对,则第二问得分全给;前面错引起后面方法用对但结果出错,则后面给一半分。
解题策略:
(1)常见失分因素:
①对题意缺乏正确的理解,应做到慢审题快做题;
②公式记忆不牢,考前一定要熟悉公式、定理、性质等;
③思维不严谨,不要忽视易错点;
④解题步骤不规范,一定要按课本要求,否则会因不规范答题失分,避免“对而不全”如解概率题,要给出适当的文字说明,不能只列几个式子或单纯的结论,表达不规范、字迹不工整等非智力因素会影响阅卷老师的“感情分”;
⑤计算能力失分多,会做的一定不能放过,不能一味求快,例如平面解析中的圆锥曲线问题就要求较强的运算能力;
⑥轻易放弃试题,难题不会做,可分解成小问题,分步解决,如最起码能将文字语言翻译成符号语言、设应用题未知数、设轨迹的动点坐标等,都能拿分。也许随着这些小步骤的罗列,还能悟出解题的灵感。
对于同一道题目,有的人理解的深,有的人理解的浅;有的人解决的多,有的人解决的少。为了区分这种情况,高考的阅卷评分办法是懂多少知识题型特点:就给多少分。这种方法我们叫它“分段评分”,或者“踩点给分”——踩上知识点就得分,踩得多就多得分。与之对应的“分段得分”的基本精神是,会做的题目力求不失分,部分理解的题目力争多得分。
对于会做的题目,要解决“会而不对,对而不全”这个老大难问题。
有的考生拿到题目,明明会做,但最终却是错的———会而不对。
有的考生虽然对,但中间有逻辑缺陷或概念错误,或缺少关键步骤———对而不全。
对绝大多数考生来说,更为重要的是如何从拿不下来的题目中分段得点分。我们说,有什么样的解题策略,就有什么样的得分策略。把你解题的真实过程原原本本写出来,就是“分段得分”的全部秘密。
①缺步解答:如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败。特别是那些解题层次明显的题目,或者是已经程序化了的方法,每一步得分点的演算都可以得分,结论虽然未得出,但分数却已过半,这叫“大题拿小分”。
②跳步答题:解题过程卡在某一过渡环节上是常见的。这时,我们可以先承认中间结论,往后推,看能否得到结论。
如果不能,说明这个途径不对,立即改变方向;
如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。
由于考试时间的限制,“卡壳处”的攻克如果来不及了,就可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底。也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面。若题目有两问,问想不出来,可把问作“已知”,先做第二问,这也是跳步解答。
③退步解答:“以退求进”是一个重要的解题策略。如果你不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从较强的结论退到较弱的结论。总之,退到一个你能够解决的问题。为了不产生“以偏概全”的误解,应开门见山写上“本题分几种情况”。这样,还会为寻找正确的、一般性的解法提供有意义的启发。
④辅助解答:一道题目的完整解答,既有主要的实质性的步骤,也有次要的辅助性的步骤。实质性的步骤未找到之前,找辅助性的步骤是明智之举。
如:准确作图,把题目中的条件翻译成数学表达式,设应用题的未知数等。答卷中要做到稳扎稳打,字字有据,步步准确,尽量一次成功,提高。试题做完后要认真做好解后检查,看是否有空题,答卷是否准确,所写字母与题中图形上的是否一致,格式是否规范,尤其是要审查字母、符号是否抄错,在确信万无一失后方可交卷。
(3)能力不同,要求有变:
由于考生的层次不同,面对同一张数学卷,要尽可能发挥自己的水平,考试策略也有所不同。
针对二本及部分一本的同学而言要“以准取胜”——他们基础比较扎实,但也会犯低级错误,所以,考试时要做到准确无误(指会做的题目),除了两题的第三问不一定能做出,其他题目大都在“火力范围”内。但前面可能遇到“拦路虎”,要敢于放弃,把会做的题做得准确无误,再回来“打虎”。
针对志愿为大学的考试而言要“以新取胜”——这些考生的主攻方向是能力型试题,在快速、正确做好常规试题的前提下,集中精力做好能力题。这些试题往往思考强度大,运算要求高,解题需要新的思想和方法,要灵活把握,见机行事。如果遇到不顺手的试题,也不必恐慌,可能是试题较难,大家都一样,此时,使会做的题不丢分就是上策。
高中数学答题技巧
(1)填写好全部,检查试卷有无问题;
(3)对于不能立即作答的题目,可一边通览,一边粗略地分为A、B两类:A类指题型比较熟悉、容易上手的题目;B类指题型比较陌生、自我感觉有困难的题目,做到心中有数。
2022高考数学大题题型总结_数学大题题型相关 文章 :
★ 高考数学答题技巧方法及易错知识点
★ 做好高考数学题的方法技巧有哪些
★ 2022高三数学学习方法总结
★ 2022年高考数学前十天如何复习最有效
★ 高三选择题在三十到四十分钟之间。不要超过四十五分钟,如果不是数学十分拔尖的话,不要小于二十五分钟,两道题的时间适量多一些数学二轮复习策略2022
★ 高考数学知识点归纳
★ 2022高三数学知识点整理
★ 2022年高三数学第二轮复习方法
★ 2022年高考复习技巧及方法()
★ 高三数学知识点总结框架
1.三角和数列出一个题
2.(2)何为“分段得分”:统计
3.立体几何
试题难度及分配比例:(1)较易试题、(2)中等试题、(3)较难试题4.圆锥曲线
5.导数题
希望对你有帮助
全国卷一道题是二选一的,极坐标和参数方程或者不等式,一般情况下都选极参,问基本送分,数学成绩好一点的都可以拿全分,难度系数不是很高
链(22)(本小题满分10分)选修4-4:坐标系与参数方程接:
若资源有问题欢迎追问~
如果17题出数列,那难度不会太大。你说的导数、函数综合应用出题面不大。道大题(17题)一般要分两问,要是像楼主所说的,考到数列题等比等的基本性质,会在第1问来出。第二问,一般会出一些固定题型,像求数列的
通项公式三是《考试说明》中对解答填空题提出的要求是“正确、合理、迅速”,因此,解答的基本策略是:快——运算要快,力戒小题大做;稳——变形要稳,防止之过急;全——要全,避免对而不全;活——解题要活,不要生搬硬套;细——审题要细,不能粗心大意。
、数列求和
等。辽宁高考这两年很注重计算,所以给的数会很纠结,需要楼主认真地计算。祝高考成功!
填空题在二十五到三十分钟,不要超过四十分钟,一般在或其他位置会有1道拔高或比较麻烦的题,要有心理准备,留出时间
解答题会有50到65分钟,最少也有三十五分钟。前面的几何题数列之类十五分钟左右,后两道大题要给充足的时间
但不是固定的,在发下试卷写好名字后还会有几分钟,将卷子大体浏览一遍,对难易程度难易分布心中有数,根据实际调整用时,遇见不会的在心中给自己定个时,考场都有表,一旦不会果断跳过,不要“虎头蛇尾”,在前面浪费太多时间,后面可能很简单
也切忌用最短的时间把会的做错,剩下的时间思考不会的
我认为应该把题目全扫一遍,掌握大致难度.
做题应从头到尾的做,当然这并不是说要一题不落地做完,而是指从前往后一题一题地看,不会的(暂时想不出)先跳过,并做上明显的记号,以防.
在处理完会做的题目之后,反过来做前面剩下的,集中精力攻题.
检查一下.9、注意平均分组、不完全平均分组问题。
有很多的同学是非常想知道,高考数学基础题占多少分,高考数学分值分布,我整理了相关信息,希望会对大家有所帮助!
高考数学基础题占试卷的比例
基础题占的比例是70%,20%是中等的,10%是难的。
其实文科、理科是有一些异的。不过一般来说,都是7:2:1,基础题百分之七十,中档题百分之二十,难题百分之十,但是高考每年都是不一样的,比如说它会一年简单,一年难,所以最终会在百分之十左右。所以,尽量不要去管什么难题,将基础题和中档题复习好,高考数学每道题的知识点分布一定会有个不错的成绩。
数学试卷分布情况
试卷内容及分配比例:(1)、简易逻辑10分、(2)数列19分、(3)三角函数19分、(4)立体几何18分、(5)圆锥曲线18分、(6)概率与统计18分、(7)导数18分、(8)算法5分、(9)线性规划5分、(10)不等式5分、(11)向量5分、(12)复数5分、(13)三视图5分
试题题型及分配比例:(1)选择题40分、(的不出结果,放下不管,有时间再说,也不要慌,因为步骤就是分数,遇到2)填空题30分、(3)解答题80分
高考抓基础题的方法
做题训练
这里我建议同学们无论是出于冲刺角度还是做题速度训练角度,都用简单题和中等题来训练。并且顺序是从选择题开始,然后是简单、中等的解答题,而后是填空题,有时间了才去练习所谓的“一题”。
通过做题来养成正确的考试习惯
先查看一下答题卡因此,会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被“分段扣分”。经验表明,对于考生会做的题目,阅卷老师则更注意找其中的合理成分,分段给点分,所以“做不出来的题目得一二分易,做得出来的题目得满分难”。和卷面是否完整,有误要及时和老师沟通,确定后大概浏览整体题目,有个印象,然后从前往后作答。
首先拿到试卷后将卷子从开头到结尾浏览一遍,正反面也看一遍有误印刷问题,然后从开头开始写,写完后记得检查。
检查试卷无误后填涂个人信息,然后稳住心态开始做题,不要慌张,做完之后检查整体试卷。
有些考生高考数学成绩不理想,不仅是因为高考紧张导致失误,还有很大的一部分原因是没有分配好考试时间,没拿到理想的分数。下面是我分享的高考数学考试时间的分配方法,一起来看看吧。
高考数学考试时间的分配方法
充分利用考前5分钟
很多学生或家长不知道,按照大型的考试的要求,考前五分钟是发卷时间,考生填写准考证。这五分钟是不准做题的,但是可以看题。发现很多考生拿到试卷之后,就从个题开始看,给大家的建议是,拿过这套卷子来,这五分钟是用来制定整个战略的关键时刻。之前没看到题目,你只是空想,当你看到题目以后,你得利用这五分钟迅速制定出整个考试的战略来。
进入考试先审题
考试开始后,很多学生喜欢奋笔疾书;但切记:审题一定要仔细,一定要慢。数学题经常在一个字、一个数据里边暗藏着解题的关键,这个字、这个资料没读懂,要么找不着解题的关键,要么你误读了这个题目。你在误读的基础上来做的话,你可能感觉做得很轻松,但这个题一分不得。所以审题一定要仔细,你只有把题意弄明白了,这个题目才有可能做对。会做的题目是不耽误时间的,真正耽误时间的是在审题的过程中,在找思路的过程中,只要找到思路了,单纯地写那些步骤并不占用时间。
做题选择由简到难的方式
高考考生们,想要在高考中取得高分,切记遇到难题不愿意、不甘心放弃,要懂得适当地迂回战术,遇到难题先将其略过,等到其他题目都完成以后,利用剩下的时间再慢慢研究,避免得不偿失的状况出现,还可以节省时间,分配出高考数学难题答题时间。并且,数学解答题每写出一个步骤,所得到的分数,都远远可能高于一道数学选择题或者填空题的分数,因此,做题也要分清轻重。
养成检查的好习惯
有很大一部分高考考生,都会在公布之后大呼遗憾,因为很多失分都是不应该的,都是不经意地疏忽造成的。所以,当这种习惯养成,即便是在紧张的高考场上,也能够自然而然地以平和的心态检查下去,减少不必要的数学失分情况出现。
节约时间的关键是一次做对
有些学生,好不容易遇到一个简单的题目,就一味地求快,争取时间去做不会做的题目。殊不知,前面的选择题和后边的大题,难易距是很大的,但是分值的含金量是一样的,有些学生看不上前边小题的分数,觉得后边大题的分数才“值钱”,这是的误区。
希望学生在考试的时候,一定要培养一次就做对的习惯,不要指望通过的检查力挽狂澜。越是重要的考试,往往越没有时间回来检查,因为题目越往后越难,可能你陷在里面出不来,抬起头来的时候已经开始收卷了。
高考数学选择题答题技巧
排除选项法
选择题因其是四选一,必然只有一个正确,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的,那么留下的一个自然就是正确的。
赋予特殊值法
即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。用特殊值法解题要注意所选取的值要符合条件,且易于计算。
通过猜想、测量的方法,直接观察或得出结果
这类方法在近年来的高考题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。
极端性原则
将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何、立体几何上面,很多计算步骤繁琐、计算量大的题,采用极端性去分析,就能瞬间解决问题。如下题,直接取ab⊥cd的极端情况,取ab中点e,cd中点f,连结ef,令ef⊥ab且ef⊥cd,算出的值即值,无须过多说明。
顺推法
利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。如下题,根据题意,依次将点代入函式及其反函式即可。
5.逆推验证法代入题干验证法:将选项代入题干进行验证,从而否定错误选项而得出正确的方法。常与排除法结合使用;如下题,代入x=0,显然符合,排除ad;代入x=-1显然不符,排除c。选b。
数形结合法
由题目条件,做出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。如下题,作图后直接得出选项a符合。
递推归纳法
通过题目条件进行推理,寻找规律,从而归纳出正确的方法,例如分析周期数列等相关问题时,就常用递推归纳法。如下题,找找规律即可分析出。
特征分析法
对题设和选择项的特点进行分析,发现规律,归纳得出正确判断的方法。如下题,如果不去分析该几何体的特征,直接用一般的割补方法去做,会比较头疼。细细分析,其实该几何体是边长为2的正方形体积的一半,如此这般,不用算都知道选c。
估演算法
有些问题,由于题目条件限制,无法或没有必要进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。如下题,这种没办法解的方程,只能通过估算求解。当然,在可以使用计算器的情况下,估算也可以也,使用table 或者solve功能,可计算约等于0.42。
做选择题时注意各种方法的运用,比较简单的自己会的题正常做就可以了,遇到比较复杂的题时,看看能否用做选择题的技巧进行求解,一般可以综合运用各种方法,达到快速做出选择的效果。填空题也是,比较简单的会的就正常做,复杂的题如果是一个确定的值时,看能否用特殊值代入法以及特例求解法。选择填空题的答题时间要自己掌握好,遇到不会的先放下往后答,我们的目标是把卷子上所有会的题都答上了、都答对了,审题要仔细一个字一个字读题,计算要准确一步一步计算,千万不要有马虎的地方。
高考数学大题目的解题技巧
一、三角函式题
注意归一公式、诱导公式的正确性转化成同名同角三角函式时,套用归一公式、诱导公式奇变、偶不变;符号看象限时,很容易因为粗心,导致错误!一著不慎,满盘皆输!。
二、数列题
1、证明一个数列是等等比数列时,下结论时要写上以谁为首项,谁为公公比的等等比数列;
2、一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法用数学归纳法时,当n=k+1时,一定利用上n=k时的设,否则不正确。利用上设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;
3、证明不等式时,有时建构函式,利用函式单调性很简单所以要有建构函式的意识。
三、立体几何题
1、证明线面位置关系,一般不需要去建系,更简单;
3、注意向量所成的角的余弦值范围与所求角的余弦值范围的关系符号问题、钝角、锐角问题。
四、概率问题
1、搞清随机试验包含的所有基本和所求包含的基本的个数;
2、搞清是什么概率模型,套用哪个公式;
3、记准均值、方、标准公式;
4、求概率时,正难则反根据p1+p2+...+pn=1;
5、注意计数时利用列举、树图等基本方法;
6、注意放回抽样,不放回抽样;
7、注意“零散的”的知识点茎叶图,频率分布直方图、分层抽样等在大题中的渗透;
8、注意条件概率公式;
五、圆锥曲线问题
1、注意求轨迹方程时,从三种曲线椭圆、双曲线、抛物线着想,椭圆考得最多,方法上有直接法、定义法、交轨法、引数法、待定系数法;
2、注意直线的设法法1分有斜率,没斜率;法2设x=my+b斜率不为零时,知道弦中点时,往往用点法;注意判别式;注意韦达定理;注意弦长公式;注意自变数的取值范围等等;
3、战术上整体思路要保7分,争9分,想12分。
六、导数、极值、最值、不等式恒成立或逆用求参问题
1、先求函式的定义域,正确求出导数,特别是复合函式的导数,单调区间一般不能并,用“和”或“,”隔开知函式求单调区间,不带等号;知单调性,求引数范围,带等号;
2、注意一问有应用前面结论的意识;
3、注意分论讨论的思想;
4、不等式问题有建构四、审题要慢,做题要快,下手要准。函式的意识;
5、恒成立问题分离常数法、利用函式影象与根的分布法、求函式最值法;
6、整体思路上保6分,争10分,想14分。
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1-12题,满分60分。
二、填空题:本大题共4小题,每小题5分
17-21题,满分60分。
22-24题,满分10分。
请考生在22、23、24题中任选一题作答,如果多做,则按所做的题计分,做答时请写清题号。
(22)(本小题满分10分)选修4-1:几何证明选讲
(24)(本小题满分10分)选修4-5:不等式选讲
选择题和填空题的题型一般是:、复数、向量、数列、概率、三视图、线性规划、程序框图、函数图像、圆锥曲线、函数与导数等,从这些方面进行考察。当然每年都会有两到两个比较新颖的题目,例如选择题一题,一般以信息题的形式考查。
一般解答题题型也不会有很大的变化,从17-21题分别是三角函数(数列)、概率统计、立体几何、圆锥曲线、函数与导数。
17题一般考查解三角形、三角函数或者数列,复习时,同学们要首先考生拿到试卷一定要写好自己的名字,学校,准考证号,确认无误以后再开始答题,答题的时候先做容易的再做难的,做完在检查一边就可以了。注意重点题型和方法的掌握;
18题概率统计,原本各省市都是简单题,然而全国1卷可能有点区别了,在理解上有一定的难度,很多同学看几遍都看不懂,而解答它非常简单,同学们在复习时,要重点关注这类理解题,否则一下就丢掉12分。
19题,立体几何,一般是中等题,同学们在平时训练中多注意辅导线的作法,很多同学考场上怎么都想不到;
20题,圆锥曲线,存在计算黑洞,同学们平时要注意特别加强计算;
21函数与导数压轴题。
版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。