平面向量 a5、a·b=0<=>a⊥b⊥b 的公式是 a·b = 0。其中,a·b 表示向量 a 与向量 b 的数量1、AB-AC=CB,这种计算法则叫做向量减法的三角形法则,简记为:共起点、指被减。积(也称为点积或内积)。当 a·b = 0 时,表示向量 a 和向量 b 是垂直(正交)的。具体计算过程是将向量 a 和向量 b 的对应分量相乘并相加,如果结果为0,则表示它们垂直。
旧高考平面向量的所有公式 高考题平面向量
旧高考平面向量的所有公式 高考题平面向量
旧高考平面向量的所有公式 高考题平面向量
向量a垂直向量b的公式是:向量a=(x1,y1),向量b=(x2,y2),若向量a与向量b平行,则平行公式为x1y2=x2y1,若向量a与向量b垂直,则垂直公式为x1x2+y1y2=0。
平面向量用a、b、c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。
有关推论
1、三角形ABC内一点O,OA·OB=OB·OC=OC根据放的天数,大家要把时间安排好。这个期不同于以往的期,应该以学习为主,放应该看成是在家中上课,建议大家就按照课表上的时间标准,按时上、下课,全天分成上午、下午和晚上三个时间段,数学还是安排在上午。但每门课时间不宜太长,最多不要超过1.5小时。春节期中三天可以放松一下,但不宜长距离的旅行,可在住所周围活动,主要是放松一下心情。·OA,则点O是三角形的垂心。
3、若O和三角形ABC共面,且满足OA+OB+OC=0,则O是三角形ABC的重心。
4、三|a+c|^2=4|a-b|^2=4(a^2+b^2-2abcos60)=43=12点共线:三点A,B,C共线推出OA=μOB+aOC(μ+a=1)。
5、平面三角形ABC内有一点O,则S△BCOOA+S△ACOOB+S△ABOOC=0。
高考越来越近,同学们的高考数学公式都记下了吗?下面是我分享的高考必备的数学公式,一起来看看吧。
高考必备的数学公式 乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b||a|+|b| |a-b||a|+|b| |a|b=-ba
|a-b||答:向量分为空间向量和平面向量。解决向量问题首先理解其向量的基本定义,例如两个向量的积就是一个向量的模乘另一个向量的模在它上面的射影。平面向量一般用设基向量的方法求解较为简单,把你所需向量用两个不共线表示出来a|-|b| -|a|a|a|
一元二次方程的解 -b+(b2-4ac)/2a -b-(b2-4ac)/2a
根与系数的关系 X1+X2=-b/a X1X2=c/a 注:韦达定理
判别式
2-4ac=0 注:方程有两个相等的实根
2-4ac0 注:方程有两个不等的实根
2-4ac0 注:方程没有实根,有共轭复数根
三角函数公式
两角和公式
in(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
cos(A/2)=((1+cosA)/2) cos(A/2)=-((1+cosA)/2)
tan(A/2)=((1-cosA)/((1+cosA)) tan(A/2)=-((1-cosA)/((1+cosA))
ctg(A/2)=((1+cosA)/((1-cosA)) ctg(A/2)=-((1+cosA)/((1-cosA))
和化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
inA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
某些数列前n项和
1+2+3+4+5+6+7+8+9++n=n(n+1)/2 1+3+5+7+9+11+13+15++(2n-1)=n2
2+4+6+8+10+12+14++(2n)=n(n+1) 12+22+32+42+52+62+72+82++n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+n3=n2(n+1)2/4 12+23+34+45+56+67++n(n+1)=n(n+1)(n+2)/3
直棱柱侧面积 S=ch 斜棱柱侧面积 S=ch
正棱锥侧面积 S=1/2ch 正棱台侧面积 S=1/2(c+c)h
圆台侧面积 S=1/2(c+c)l=pi(R+r)l 球的表面积 S=4pir2
弧长公式 l=ar a是圆心角的弧度数r 0 扇形面积公式 s=1/2lr
锥体体积公式 V=1/3SH 圆锥体体积公式 V=1/ir2h
斜棱柱体积 V=SL 注:其中,S是直截面面积, L是侧棱长
柱体体积公式 V=sh 圆柱体 V=pir2h
(1)构造等比数列:凡是出现关于后项和前项的一次递推式都可以构造等比数列求通项公式;
(2)构造等数列:递推式不能构造等比数列时,构造等数列;
(3)递推:即按照后项和前项的对应规律,再往前项推写对应b=(x2,y2)式。
已知递推公式求通项常见方法:
①已知a1=a,an+1=qan+b,求an时,利用待定系数法求解,其关键是确定待定系数,使an+1 +=q(an+)进而得到。
②已知a1=a,an=an-1+f(n)(n2),求an时,利用累加法求解,即an=a1+(a2-a1)+(a3-a2)++(an-an-1)的方法。
③已知a1=a,an=f(n)an-1(n2),求an时,利用累乘法求解。
高三数学的复习 一、时间的安排
二、的安排
做什么事情都应该有一个,这也是大家应该学习的一部分,寒很短暂,如果没有,可能会在忙碌中很快过去,同样建议大家把高三的课表整合一下,对各科进行重新的排列,这里应该突出安排自己的薄弱科目。不要指望某一学科,希望用这门课的成绩来弥补“瘸腿”的科目,这是不可能的。数学科还是要每天至少安排一节课,自己对数学各个知识块儿——函数、导数、数列、不等式、平面向量、解析几何、立体几何、概率统计等等的掌握也应有充分的认识,针对自己的薄弱环节,加强复习和练习。对于感觉困难的知识块儿,不应该回避,而应该安排多一些的时间,力争在期中克服它。
三、总结的安排
如何找到自己的薄弱环节,这就要通过很好的总结,总结课上老师讲的例题、课后做的作业、统练中的考题,看看自己在哪个知识上老出错,这就应该是薄弱环节。对于薄弱环节,首先还是要解决基本知识的问题,然后可以和同学讨论一下,向老师(学校会安排答疑时间、网校也有老师值班)请教一下。同时,做完一个题目也应该有一个反思(总结),即:这个题目考察了几个知识点,易错点是什么,与以往做的题目有哪些类似点,变换条件与结论题目还能做吗等等,不一定每道题都反思,但每天反思一道还是必要的,这个过程就是能力提高的过程。
高三提高数学成绩的建议 多做题
对于基础知识薄弱的同学来说,首要的就是先掌握基础知识,平时的学习就以课本为主,通过做书上的的习题和例题来巩固基础知识,等掌握了基础,再攻克重点难点。
对于基础知识掌握得好的同学来说,平时就多做一些经典例题,以及高考真题,积累做题经验,提高做题速度,分析一下历年高考试题的考察方向。
整理知识点
高中理综数学总共是5本必修,5本选修,所以复习起来比较麻烦,为了复习的时候便于查找,可以把高中数学内容分类归纳,有针对性的复习。
这样一来节省了翻阅书本的时间,还有利于针对自己的薄弱环节进行专项复习。
整理错题集
准备一个笔记本,把自己平时出错的内容都整理上去,每隔一段时间把错题集上的问题解决一下,在高考试前一周专门y=(y1+λy2)/(1+λ)。(定比分点坐标公式)针对错题集进行复习。这样就能避免之前烦的错误考试时再出现。整理错题集能很大程度提高复习效率。
合理分配考试时间
a=(平面向量公式汇总x1,y1)
数量积的性质ma=(mx1,my1),其中m是实数
a+b=(x1+x2,y1+y2)
ma+nb=(mx1+nx2,my1+ny2),n是实数
平面向量的坐标运算
你要哪个?
向量a点乘向量b = 向量a的模乘向量b的模乘cos(夹角)
向量a‖b的公式有:x1x2+y1y2=0。
平面向量的公式包括向量加法的运算律:a+b=b+a、(a+b)+c=a+(b+c)。
对于两个向量a(向量a≠向量0),上:计算向量a和向量b的内积,得到a·b;向量b,当有一个实数λ,使向量b=λ向量a(记住向量是有方向的)则向量a‖向量b。反之,当向量a‖向量b时,有且只有一个实数λ,能使向量b=λ向量a。
数量积的性质:
已知两个非零向量a、b,那么a·b=|a||b|cosθ(θ是a与b的夹角)叫做a与b的数量积或内积,记作a·b。零向量与任意向量的数量积为0。数量积a·b的几何意义是:a的长度|a|与b在a的方向上的投影|b|cos θ的乘积。
两个向量的数量积等于它们对应坐标的乘积的和。即:若a=(x1,y1),b=(x2,y2),则a·b=x1·x2+y1·y2。a+c=a+a-2b=2(a-b)
平面向量是新编中学数学教材新增的内容,也是高考数学考试的难点之一,下面是我给大家带来的高考数学平面向量必考知识点2017,希望对你有帮助。
印刷体记作黑体(粗体)的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。高考数学平面向量必考知识点
win10系统平面设计软件常用的有哪些平面向量概念:
(1)向量:既有大小又有方向的量。向量不能比较大小,但向量的模可以比较大小。
(2)零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行。
(3)单位向量:模为1个单位长度的向量
(4)平行向量:方向相同或相反的非零向量
(5)相等向量:长度相等且方向相同的向量
平面向量数量积解析
1、平面向量数量积:已知两个非零向量a、b,那么|a||b|cosθ(θ是a与b的夹角)叫做a与b的数量积或内积,记作a·b。零向量与任意向量的数量积为0。数量积a·b的几何意义是:a的长度|a|与b在a的方向上的投影|b|cosθ的乘积。
两个向量的数量积等于它们对应坐标的乘积的和。即:若a=(x1,y1),b=(x2,y2),则a·b=x1·x2+y1·y2
1、a·a=|a|2≥0
2、a·b=b·a
3、k(a·b)=(ka)b=a(kb)
4、a·(b+c)=a·b+a·c
6、a=kb<=>a//b
7、e1·e2=|e1||e2|cosθ
平面向量加法解析
已知向量AB、BC,再作向量AC,则向量AC叫做AB、BC的和,记作AB+BC,即有:AB+BC=AC。
注:向量的加法满足所有的加法运算定律,如:交换律、结合律。
平面向量减法解析
-(-a)=a;a+(-a)=(-a)+a=0;a-b=a+(-b)。
1、定比分点
定比分点公式(向量P1P=λ?向量PP2)
设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数 λ,使 向量P1P=λ?向量PP2,λ叫做点P分有向线段P1P2所成的比。
若P1(x1,y1),P2(x2,y2),P(x,y),则有
OP=(OP1+λOP2)(1+λ);(定比分点向量公式)
x=(x1+λx2)/(1+λ),
我们把上面的式子叫做有向线段P1P2的定比分点公式
若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线
三角形重心判断式
在△ABC中,若GA +GB +GC=O,则G为△ABC的重心
[编辑本段]向量共线的重要条件
若b≠0,则a//b的重要条件是存在实数λ,使a=λb。
a//b的重要条件是 xy'-x'y=0。
零向量0平行于任何向量。
[编辑本段]向量垂直的充要条件
a⊥b的充要条件是 a?b=0。
a⊥b的充要条件是 xx'+yy'=0。
零向量0垂直于任何向量.
设a=(x,y),b=(x',y')。
向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的运算律:
交换律:a+b=b+a;
4、向量的减法
如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0
AB-AC=CB. 即“共同起点,指向被减”
a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').
5、数乘向量
当λ<0时,λa与a反方向;
当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
已知两个非零向量a、b,那么|a||b|cosθ(θ是a与b的夹角)叫做a与b的数量积或内积。记作a·b,两个向量数量积等于它们对应坐标的乘积的和。即若a=(x1,y1),b=(x2,y2),则a·b=x1·x2+y1·y2。
向量的数量积公式:ab=|a||b|cosθ,a,b表(2)下部分:是a与b的模的乘积:设a=(x1,y1),b=(x2,y2),则(|a||b|)=根号下(x1平方+y1平方)根号下(x2平方+y2平方)示向量,θ表示向量a,b共起点时的夹角,很明显向量的数量积表示数,不是向量。
扩展资料:
1、设e是单位向量,且e与a的夹角为θ,则e·a=a·e=|a||e|cosθ
2、a⊥b等价于a·|a+c|^2=4|a-b|^2=4(a^2+b^2-2abcos60)=43=12b=0
3、当a与b同向时,a·b=|a||b|;当a与b反向时,a·b=-|a||b| ;a·a=|a|2=a2或|a|=√a·a
4、|a·b|≤|a|·|b|,当且仅当a与b共线时,即a∥b时等号成立
5、cosθ=a·b╱|a||b|(θ为向量a.b的夹角)
6、零向量与任意向量的数量积为0。
win10系统平面设计软件常用的有哪些?有些刚学的朋友可能还不知道平面设计是什么意识,顾名思义主要平面的设计。电脑ps学的人多,主要做图文,修图好用。cdr,矢量软件,排版设计图标好用。ai,排版用的多
append,prepend方法是为html添加元素的,前面是添加在容器的面,后者是添加在容器的最前面。
接着有val方法,不带参数的是获得控件的值,带参数的是设置控件的值,比如输入框,下拉框等的值。
html方法类似,是设置带获取某个dom元素的html值。
常用的还有绑定的方法,on方法,或bind方法。代码如下
高中数学一对一辅导平面向量的概念及线性运算
给出下列命题:①有向线段就是向量,向量就是有向线段;②向量a与向量b平行,则a与b的方向相同或相反;③向量→与向量→共线,则A、B、C、D四点共线;④如果a∥b,b∥c,那么a∥c.其中正确命题的个数为
向量的两个特征:有大小和方向,向量既可以用有向线段和字母表示,也可以用坐标表示;相等向量不仅模相等,而且方向也相同,所以相等向量一定是平行向量,而平行向量则未必是相等向量;向量与数量不同,数量可以比较大小,向量则不能,但向量的模是非负实数,故可以比较大小.
给出下列命题:①两个具有公共终点的向量一定是共线向量;②两个向量不能比较大小,但它们的模能比较大小;③若λa=0,则λ必为零;④若λa=μb,则a与b共线.其中错误命题的个数为A.1B.2C.3D.4
平面向量的线性运算包括向量的加、减及数乘运算,是高考考查向量的热点.常以选择题、填空题的形式出现.高考对平面向量的线性运算的考查主要有以下两个命题角度:用已知向量表示未知向量;求参数的值.在△ABC中,点M,N满足→=2→,→=→.若→=x→+y→,则x=________;y=________.
向量的加减常用的法则是平行四边形法则和三角形法则,一般共起点的向量求和用平行四边形法则,求用三角形法则,求首尾相连向量的和用三角形法则.找出图形中的相等向量、共线向量,将所求向量与已知向量转化到同一个平行四边形或三角形中求解.
在等腰梯形ABCD中,→=-2→,M为BC的中点,则→=
2.已知D为三角形ABC的边BC的中点,点P满足→+→+→=0,→=λ→,则实数λ的值为________.
设两个非零向量a与b不共线.若→=a+b,→=2a+8b,→=3,求证:A,B,D三点共线;试确定实数k,使ka+b和a+kb共线.
答:注意体会课本上的知识,其实每一道题都是用书上的基本知识来解答的。另外还要锻炼自己的空间想象力,对每道题型行总结。建立属于自己的知识体系。
答:。。。如果d对。。。那就是d了。。如果不是向量:。。。你可以试下用解析几何来算。。把任意一个三角形放到平面直角坐标系中,三个顶点定好坐标,然后|b|=√(x2^2+y2^2),设p用两点距离公式来算吧
答:是不是坐标向量?a向量=b向量=a向量+b向量=相减一样a向量平行b向量:a1b1=a2b2垂直:a1b1+a2b2=0共线:a向量=m乘b向量,即a1=m乘b1,a2=m乘b2a向量
答:同时考查三角方面的知识和方法及综合解题能力.二、平面向量在力的平衡上的应用例2帆船是借助风帆推动船只在规定距离内竞速的一项水上运动.1900年第2届奥运会开始列为正式比赛项目,帆船的动力来源是伯努利效应.如果
答:没什么技巧,多看多练,还有就是熟练运用代换,要常用根与系数的关系找X1X2+Y1Y2在平面几何中二次曲线要巧用设而不求
答:根据定义,任取平面上两点A,B,则向量AB=,即一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标。
答:圆柱侧面积 S=ch=2pih 圆锥侧面积 S=1/2cl=pirl
设a=(x,y),b=(x',y')。 1、向量的加法 向量的加法满足平行四边形法则和三角形法则。 AB+BC=AC。 a+b=(x+x',y+y')。 a+0=0+a=a。 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c)。 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减” a=(x,y) b=(x',y') 则 a-b=(x-x',y-y'). 4、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣∣a∣。 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意。 当a=0时,对于任意实数λ,都有λa=0。 注:按定义知,如果λa=0,那么λ=0或a=0。 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。 数与向量的乘法满足下面的运算律 结合律:(λa)b=λ(ab)=(aλb)。 向量对于数的分配律(分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。 3、向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作ab。若a、b不共线,则ab=|a||b|cos〈a,b〉;若a、b共线,则ab=+-∣a∣∣b∣。 向量的数量积的坐标表示:ab=xx'+yy'。 向量的数量积的运算律 ab=ba(交换律); (λa)b=λ(ab)(关于数乘法的结合律); (a+b)c=ac+bc(分配律); 向量的数量积的性质 aa=|a|的平方。 a⊥b 〈=〉ab=0。 |ab|≤|a||b|。 向量的数量积与实数运算的主要不同点 1、向量的数量积不满足结合律,即:(ab)c≠a(bc);例如:(ab)^2≠a^2b^2。 2、向量的数量积不满足消去律,即:由 ab=ac (a≠0),推不出 b=c。 3、|ab|≠|a||b| 4、由 |a|=|b| ,推不出 a=b或a=-b。 4、向量的向量积 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a||b|sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。 向量的向量积性质: ∣a×b∣是以a和b为边的平行四边形面积。 a×a=0。 a‖b〈=〉a×b=0。 向量的向量积运算律 a×b=-b×a; (λa)×b=λ(a×b)=a×(λb); (a+b)×c=a×c+b×c. 注:向量没有除法,“向量AB/向量CD”是没有意义的。 向量的三角形不等式 1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣; ① 当且仅当a、b反向时,左边取等号; ② 当且仅当a、b同向时,右边取等号。 2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。 ① 当且仅当a、b同向时,左边取等号; ② 当且仅当a、b反向时,右边取等号。 定比分点 定比分点公式(向量P1P=λ向量PP2) 设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数 λ,使 向量P1P=λ向量PP2,λ叫做点P分有向线段P1P2所成的比。 若P1(x1,y1),P2(x2,y2),P(x,y),则有 OP=(OP1+λOP2)(1+λ);(定比分点向量公式) x=(x1+λx2)/(1+λ), y=(y1+λy2)/(1+λ)。(定比分点坐标公式) 我们把上面的式子叫做有向线段P1P2的定比分点公式 三点共线定理 若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线 三角形重心判断式 在△ABC中,若GA +GB +GC=O,则G为△ABC的重心 [编辑本段]向量共线的重要条件 若b≠0,则a//b的重要条件是存在实数λ,使a=λb。 a//b的重要条件是 xy'-x'y=0。 零向量0平行于任何向量。 [编辑本段]向量垂直的充要条件 a⊥b的充要条件是 ab=0。 a⊥b的充要条件是 xx'+yy'=0。 零向量0垂直于任何向量.
2、若O是三角形ABC的外心,点M满足OA+OB印刷体:只用小写字母表示时,采用加粗黑体;用首尾点大写字母+OC=OM,则M是三角形ABC的垂心。版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。