(2)③求向量:求直线的方向向量或平面的法向量。
2018高考数学函数专题_2018年高考函数题
2018高考数学函数专题_2018年高考函数题
4.若 ,则
5.已知角 的顶点与原点重合,始边与 轴的正半轴重合,终边在直线 上,则
9.若 是第三象限的角,则
(9)已知 ,函数 在 单调递减,则 的取值范围是
(15)设当 时,函数 取得值,则 .
(14)函数 的值为 .
(6)如图,圆 的半径为 , 是圆上的定点, 是圆上的动点,角 的始边为射线 ,终边为射线 ,过点 作直线 的垂线,垂足为 . 将点 到直线 的距离表示成 的函数 ,则 在 的图像大致为
(8)设 ,且 ,则
(8)函数 的部分图像如图所示,则 的单调递减区间为
(7)若将函数 的图像向左平移 个单位长度,则平移后图像的对称轴为
(9)若 ,则
6.设函数 ,则下列结论错误的是
的一个周期为
的图像关于直线 对称
的一个零点为
在 单调递减
14.函数 的值是 .
9.已知曲线 ,则下面结论正确的是
A.把 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移 个单位长度,得到曲线
B.把 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移 个单位长度,得到曲线
D.把 上各点的横坐标缩短到原来的 倍,纵坐标不变,再把得到的曲线向左平移 个单位长度,得到曲线
10.若 在 是减函数,则 的值是
15.已知 则 .
10.已知 ,则
5.函数 在 的图像大致为
11.关于函数 有下述四个结论:
(1) 是偶函数
(2) 在区间 单调递增
(3) 在 有 4 个零点
-12(4) 的值为 2
其中所有正确结论的编号是
A.①②④
B.②④
D.①③
设函数 . 若存在 的极值点 满足 ,则 的取值范围是
设函数 ,已知 在 有且5个零点,下述四个结论:
① 在 有且3个极大值点
② 在 有且2个极大值点
③ 在 单调递增
④ 的取值范围是
其中所有正确结论的编号是
A.①④
B.②③
C.①②③
D.①③④
高考复习要注意的七大题型:
2018江苏高考数学题型难度分析 第11题:函数与导数,根据题目意思求函数的极值小值点即为零点,求到a的值即可求函数值与最小值.:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节
主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是个板块。
第二:平面5.递推归纳法:向量和三角函数
第三:数列
数列这个板块,重点考两个方面:一个通项;一个是求和。
第四:空间向量和立体几何
在里面重点考察两个方面:一个是证明;一个是计算。
第五:概率和统计
这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,……等可能的概率,第二………,第三是,还有重复发生的概率。
第六:解析几何
这是我们比较头疼的问题,是整个试卷里难度比较大,计算量的题,当然这一类题,我总结下面五类常考的题型,包括类所讲的直线和曲线的位置关系,这是考试最多的内容。考生应该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是2008年高考已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。
第七:押轴题
考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。这是高考所考的七大板块核心的考点。
2018年海南高考数学试卷试题及解析(WORD版)
2015年海南高考数学科目的考试结束,很多同学都反映难度在中等偏上。专业的数学老师怎么评价这份高考试题?南海网记者专访了海南华侨中学特级教师、正高级教师、省突出贡献专家李红庆老师,以及海南华侨中学数学教师、省骨干教师史利红老师,请他们对数学卷试题特点、难易程度进行专业点评。
老师给这次高考数学的试题做出了总体评价:遵循考纲与说明要求,注意设计创新题型,考查学生数学素养,注重能力立意,突出考查考生的五个能力与两个意识,并注重体现数学的学科价值和思辩价值。试题与往年相比在结构与难度上均保持稳定并略有下降,体现了较好的信度、效度,适当的灵活度和较强的区分度。尽管感觉比往年难度有所下降,但题目设计新颖,如空间几何;命题也没有落下套路,如文、理第17题仍然考查解三角形,而没有考查数列。
老师们认为,本次数学考试的文理科试题都比较有新意,考察了学生的能力和逻辑思维,主要有以下四个特点:
数学试题选取素材合理,设计创新题目的情境,能灵活、综合地考查基础知识,充分体现了对基础内容考查的.全面性、综合性和基础性。如文科第11题设计考查余弦定理,文、理第19题立体几何考查考生的空间想象能力和勾股定理的逆定理的应用;还有理科第17题考查设计未知数和内角平分线成比例定理,问题本身不难但学生想不到就会产生害怕心理,文科第12题考查两曲线的切线问题。
二、以能力立意为主轴突出考查逻辑思维
2015年数学试题坚持多视角、多层次以能力立意考查又f(x)关于x=2对称学生的思维能④结合性质求解。力、运算能力、空间想象能力、实践能力、图表数据处理能力和创新意识、应用意识,特别注意到对“五个能力”和“两个意识”的内涵的重新界定的考查。
数学既是一门工具性的基础学科也是一门思维的科学,逻辑思维能力是数学能力的核心,一定思维量考查考生的思维能力;试题体现了文、理思维强度的高低异性,如应用导数研究函数性质的第21题,文科侧重于对已知条件进行比较、分析、综合、抽象与概括,给定条件下求参量的取值范围。理科试题更侧重于能用演绎、归纳和类比方法进行推理,命题设计以抽象思维与逻辑思维为主。
三、关注应用两个维度体现工具性应用性
数学应用意识有两个维度:其一是实际应用,试题的选择题与解答题都注意到,如文科中第18题,理科中第18题;其二是数学知识内部应用,如文、理科中第21题,就是应用导数研究函数的性质,理科第19题立体几何解答题的第Ⅱ问,就是应用向量知识解决空间的直线、平面的位置关系。数学源于生活实践,它也是解决实际问题的有力工具,实际应用能力是考生必须具备的数学素养。今年理科第18题选择以两组数据为背景的实际应用问题,体现了数学学科的工具性与应用性,也体现了高考改革中加强应用性的特点,这些试题接地气,贴近现实,充满了数学中生活,生活中有数学的应用气息。
四、突出重点兼顾全面注意数学思想方法
数学试题考点覆盖全面,兼顾对高中基础知识与基本技能的全面考查,特别对教材内容的考查,如程序框图问题考查了教材中的案例更相减损术,同时突出对重点考点重点考查。今年考试大纲中增加的“数学方法”与删除了“增强应用性和能力型”的提法得到了体现,没有出现增强应用性和能力性的试题,以解析几何为背景考查了分析问题解决问题的能力,第21题考查了分类讨论与整合思想,理科第10题考查了数形结合思想。
所谓的压轴题就是对学生学习知识的一个综合考验。这个考验有可能是计算,也有可能是方法,或者两者的结合。下文我给大家整理了高考数学中最难的压轴题,供参考!
高考数学最难压轴题及解析
第12题:根据题目意思设点,利用垂直得到等量由上面的分析,我们要求x满足:关系.即可解决
第14题:方法众多,考查基本不等式.
第14题:等与等比数列前N项和公式的应用,可用列举法解决.
第15题:立体几何证明平行与垂直,难度不大.
第16题:三角函数的和公式、二倍角公式的应用.不难,但基础功底要厚实.
第17题:三角函数的实际应用,函数与导数求最值
第18题:圆锥曲线问题:其实是常规题,计算上有一定要求,在平常考试中也就这样的题目了.并不偏.
第19、20题:不盼着都拿满分,好歹这题是有区分度的,满分很难,但得到一定的分数还是比较简单的.
江苏卷相较于去年是简单一些,不能说整个试卷都简单,只能说区分度比较好,前面基础题中档题比较多,难题有几个,又log1/8 X中x必须大于0很好的区分了不同层次的学生,不得不说这是一份很好的高考试卷!
考虑两种情况:一种是0〈a〈1,另一种是a〉1。
又f(x)=-f(-x),f(x-4)=-f(x)当0〈a〈1时,函数单调递减,则f(-2)〈2
当a〉1时,函数单调递增,则f(2)〈2
两种情况的求解各算一下,的用并集,就是的
这种类型的题目属于“恒成立”范畴,就是给定一定的条件,在这个条件上总大于或小于或怎么样的题目,建议问题者,再去看看其他同类型的,这种类型是高考必考的题目。
ps:我就是今③求数列和通式。年刚考完的学生。
D
请看一下题是不是有写错的地方
取二、解题技巧。选择题只管结果,不管中间过程,因此在解题过程中可以大胆的简化中间过程,但简化毕竟是简化,数学是一门具有高度精密逻辑性的严谨的科学,没有充分的依据,所有的条件反射都是错误的,只有找到对的依据、逻辑思维过程、验证,才可确定,“做题不可以凭印象来,凡‘不多就是’的都是错误的,无十足把握的都是错误的”。选择题毕竟是简单的甚至可以口算的,思路也是简单的,如果没思路、做不下去或觉得复杂,或者发现做的时候需要大量计算的时候,可以明确的告诉自己,你的方向错了,可以换一种思路了。w最小
(2)①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。若在wx=-π/2时取到 (-π/3)w=-π/2 得w=1.5
若在wx=3/2π时取到 π/4w=3π/2 舍去
所以w=1.5
在近十年的高考中,导数综合解答题常常作为压轴之作.这类题由于其解答的方法灵活,没有固定的解题套路,对学生的综合能力要求较高,难度往往很大,得分率极低。下面是我为你整理关于高考函数导数解题方法的内容,希望大家喜欢!
2、构建答题模板高考函数导数解题方法
做导数题要细心一定要看看题目中有无lnx,log之类的别忘了看有无lnx,log之类的因为如果有lnx,log,x要>0还要细心地是分母不等于0还有很多导数选择题要看看能不能判断出奇函数还是偶函数一旦判断出来,离最终就近了一大步很多导数选择题要构造函数才能解出导数解答题一般要考虑分类讨论,如果是求单调区间,取值范围就只能用区间表示,不能用表示。对原函数求导前先看看能不能化简,先化简在求导可以省很多时间计算粗心率也大大减少也有很多导数题要求导2次如果函数中有一个未知数,一般将这个未知数捞出比如f(x)=ax?-3x+1>0应该化为a>3/x?-1/x?
高考数学小题答题技巧
选择题从难度上讲是比其他类型题目降低了,但知识覆盖面广,要求解题熟练、准确、灵活、快速。选择题的解题思想,渊源于选择题与常规题的联系和区别。它在一定程度上还保留着常规题的某些痕迹。
而另一方面,选择题在结构上具有自己的特点,即至少有一个(若一元选择题则只有一个)是正确的或合适的。因此可充分利用题目提供的信息,排除迷惑支的干扰,正确、合理、迅速地从选择支中选出正确支。选择题中的错误支具有两重性,既有干扰的一面,也有可利用的一面,只有通过认真的观察、分析和思考才能揭露其潜在的暗示作用,从而从反面提供信息,迅速作出判断。
“6大漏洞”是指:
有且只有一个正确;不问过程只问结果;题目有暗示;有暗示;错误有严格标准;正确有严格标准;
“8大原则”是指:
选项原则;范围原则;定量转定性原则;选项对比原则;题目暗示原则;选择项暗示原则;客观接受原则;语言的度原则。经过我的培训,很多的学生的选择题甚至1分都不丢。
下面是一些实例:
1.特值检验法:
对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
2.极端性原则:
将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。
3.剔除法:
利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的,从而达到正确选择的目的。这是一种常用的方法,尤其是为定值,或者有数值范围时,取特殊点代入验证即可排除。
4.数形结合法:
由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
通过题目条件进行推理(14)函数 的图像可由函数 的图像至少向右平移 个单位长度得到.,寻找规律,从而归纳出正确的方法。
6.顺推解除法:
利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。
7.逆推验证法(代入题干验证法):
将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。
8.正难则反法:
从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。
9.特征分析法:
对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。
10.估值选择法:
有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。
总结:高考中的选择题一般是容易题或中档题,个别题属于较难题,当中的大多数题的解答可用特殊的方法快速选择。例如:估值选择法、特值检验法、顺推解除法、数形结合法、特征分析法、逆推验证法等都是常用的解法.解题时还应特别注意:选择题的四个选择支中有且一个是正确的,因而在求解时对照选择支就显得非常重要,它是快速选择、正确作答的基本前提。
高考数学答题殊技巧
一、按部就班的解题方法。
1.直接法当选择题是由计算题、应用题、证明题、判断题改编成的时,可直接按计算题、应用题、证明题、判断题来做,确定之后,从选项里找即可。
2.筛选法(排除法)去伪存真,筛除一些较易判定的的、不合题意的结论,以缩小选择的范围,再从其余的结论中求得正确的。如筛去不合题意的以后,结论只有一个,则为应选项。
3.特殊值法根据中所提供的信息,选择某些特殊情况进行分析,或某些特殊值进行计算,或将字母参数换成具体数值代入,或将比例数看成具体数带人,总之,把一般形式变为特殊形式,再进行判断往往十分简单。
4.验证法(代入法)将各选项逐个代入题干中,进行验证、或适当选取特殊值进行检验、或采取其他验证手段,以判断选择支正误的方法。5.图象法可先根椐题意,作出草图,然后参照图形的作法、形状、位置、性质,综合图象的特征,得出结论。
6.试探法综合性较强、选择对象比较多的试题,要想条理清楚,可以根据题意建立一个几何模型、代数构造,然后通过试探法来选择,并注意灵活地运用上述多种方法。
7.猜答(语感法)选择题存在凭猜答得分的可能性,我们称为机遇分。这种机遇对每个考生是均等的。猜答,并不是“点一点二点三点四,点住谁了算谁嘞”或是“鸡毛蒜皮”类的。而是在筛选后的选项里进行猜答,而且猜时不能用上面说的类似弱智法,要看着谁顺眼就选谁,看哪个更可能选哪个。在答题中因找不到充分的根据确定正确选项时,可以将试题默读几遍,自己感觉读起来不别扭,语言流畅顺口,即可确定为。这方法是万不得已之时才用的,因为大多数人在考试上一遇到稍微难一点点的题就心慌,为了给后面的大题留时间,此时就要用此法。
8.特征法(对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法)。根据题干的特征,又加上做了那么多的题,一看题的特征再一看选项,条件反射,就能选出,但还要按部就班地去做用验证法得正确。利用选项之间的关系,即利用干扰选项做题。选择题除了正确外,其他的都是干扰选项,除非是乱出的选项,否则都是可以利用选项的干扰性做题。
一般出题者不会随意出个选项,总是和正确有点关系,或者是可能出错的结果,我们就可以借助这个命题过程得出正确的结论。如两个选项意思完全相反,则两个之间必有正确。四个选项中有一个选项不属于同一范畴,那么,余下的三项则为选择项。如有两个选项不能归类时,则根据优选法选出其中一个选项作为自己的选择项。只有一个,且是与其它选项比出来的。利用题干与选项的联系。选择题必定考察课本知识,做题过程中,可以判断和课本哪个知识相关?那个选项与这个知识点无关的可立即排除,与题干联系不太紧密的大半排除,答非所问的立即排除。
9.联想法(同似法)(归结法)直接法的变形法有时一读到题就有种做过的感觉,那么此时,你就联想以前做过的题和总结的结论,看是否相同伙相似,寻找联系及区别,此时要严谨,千万不能出现思维错误思维定势,不能不多就是它了
10.估值法有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。
猜你感兴趣:
1. 高考数学函数与导数易错知识点汇总
2. 高考数学函数与导数易错知识点
3. 2017高考数学函数与导数专项练习题及
4. 高三数学函数与导数复习
5. 高中数学常用导数公式
专题一、三角变换与三角函数的性质问题
一、注意设计创新题型考查学生数学素养1、解题路线图
①不同角化同角
②降幂扩角
②整体代换:将ωx+φ看作一个整体,利用y=sinx,y=cosx的性质确定条件。
③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。
④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。
专题二、解三角形问题
1、解题路线图
(1)①化简变形;②用余弦定理转化为边的关系;③变形证明。
①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。
③求结果。
④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。
专题三、数列的通项、求和问题
1、解题路线图
①先求某一项,或者找到数列的关系式。
①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。
③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。
④写步骤:规范写出求和步骤。
⑤再反思:反思回顾,查看关键点、易错点及解题规范。
专题四、利用空间向量求角问题
1、解题路线图
①建立坐标系,并用坐标来表示向量。
②空间向量的坐标运算。
③用向量工具求空间的角和距离。
①找垂直:找出(或作出)具有公共交点的三条两两垂直的直线。
④求夹角:计算向量的夹角。
⑤得结论:得到所求两个平面所成的角或直线和平面所成的角。
专题五、圆锥曲线中的范围问题
1、解题路线图
①设方程。
②解系数。
③得结论。
①提关系:从题设条件中提取不等关系式。
②找函数:用一个变量表示目标变量,代入不等关系式。
③得范围:通过求解含目标变量的不等式,得所求参数的范围。
专题六、解析几何中的探索性问题
1、解题路线图
①一般先设这种情况成立(点存在、直线存在、位置关系存在等)
②将上面的设代入已知条件求解。
③得出结论。
①先定:设结论成立。
②再推理:以设结论成立为条件,进行推理求解。
③下结论:若推出合理结果,经验证成立则肯。定设;若推出矛盾则否定设。
④再回顾:查看关键点,易错点(特殊情况、隐含条件等),审视解题规范性。
专题七、离散型随机变量的均值与方
1、解题路线图
(1)①标记;②对分解;③计算概率。
(2)①确定ξ取值;②计算概率;③得分布列;④求数学期望。
①定元:根据已知条件确定离散型随机变量的取值。
②定性:明确每个随机变量取值所对应的。
③定型:确定的概率模型和计算公式。
④计算:计算随机变量取每一个值的概率。
⑤列表:列出分布列。
⑥求解:根据均值所以,数形结合、方公式求解其值。
专题八、函数的单调性、极值、最值问题
1、解题路线图
(1)①先对函数求导;②计算出某一点的斜率;③得出切线方程。
(2)①先对函数求导;②谈论导数的正负性;③列表观察原函数值;④得到原函数的单调区间和极值。
①求导数:求f(x)的导数f′(x)。(注意f(x)的定义域)
②解方程:解f′(x)=0,得方程的根。
③列表格:利用f′(x)=0的根将f(x)定义域分成若干个小开区间,并列出表格。
④得结论:从表格观察f(x)的单调性、极值、最值等。
⑤再回顾:对需讨论根的大小问题要特殊注意,另外观察f(x)的间断点及步骤规范性。
由于f是偶函数,所以在y轴两侧对称;
由于f(1/3)=0且f在正轴上递增,所以f在(-1/3,1/3)上小于0;
1,使log1/8 X有意义,即x〉0;
2,使log1/8 X大于1/3或者小于-1/3.
再注意到log1/8 X关于x单调减少,于是x的取值范围是
0 x>(1/8)^(-1/3)=2 整理可得:(0,1/2)并上(2,④再回顾:注意目标变量的范围所受题中其他因素的制约。正无穷) 因为f(x)为偶函数,所以f(-1/3)也等于0,因为偶函数具有对称性,所以结合条件f(log1/8x)>0,可得出-1/3>log1/8x和log1/8x>1/3,经计算得出x<1/2,x>2所以的取值范围是{x<1/2,x>2,X不等于0}.这只是大概思路,你自己再整理,祝你高考成功. 因为f(x)是定义R在上的偶函数,且在[0,正无穷)上是增函数 所以当x大于1/3或小于负1/3时f(x)大于0 所以log1/8 X大于1/3或小于负1/3 所以x(5)若 ,则大于0小于1/2或x大于2 已知f(x)在[0,+∞)上是增函数,f(1/3)=0 则当x大于1/3时或当x小于负1/3时,f(x)大于0 且要求f(log1/8 X)大于0 则log1/8 X大于1/3或小于负1/3 由此可得x的取值范围是(0,1/2)U(2,+∞) 分两种情况讨论 当log1/8 X>0时 log1/8 X>1/3 解得0 当log1/8 X<0时 因为函数为偶函数 所以F(-1/3)=0且在x<0时递减 所以log1/8 X<-1/3 解得x>2 取并 你检查下对不对 比较匆忙 我也后天高考 来查资料碰巧看到了 f(x)是偶函数,关于y轴对称,又有在[0,+&]上单递增,可知该函数为一开口向上的抛物线并且与x轴交点为(1/3,0)和(-1/3,0)现在再结合图像就很好解决了,log1/8x>1/3或log1/8x<-1/3.手机有字数限制,自己解吧
版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。