常用泰勒展开式 常用泰勒展开式大全

教育资讯 2025-01-05 10:22:23

十个常用的泰勒展开公式分别是?

如下:

常用泰勒展开式 常用泰勒展开式大全常用泰勒展开式 常用泰勒展开式大全


常用泰勒展开式 常用泰勒展开式大全


常用泰勒展开式 常用泰勒展开式大全


1、x^a=x0^a+ax0^(a-1)(x-x0)+a(a-1)x0^(a-2)(x-x0)^2/2+…+a(a-1)…(a-n+1)(x-x0)^n/n!+o((x-x0)^n)。

2、(1+x)^a=(1+x0)^a+a(1+x0)^(a-1)(x-x0)+a(a-1)(1+x0)^(a-2)(x-x0)^2/2+…+a(a-1)…(a-n+1)(x-x0)^n/n!+o((x-x0)^n)。

3、1/x=1/x0-(x-x0)/x0^2+(x-x0)^2/x0^3-(x-x0)^3/x0^4+…+(-1)^n(x-x0)^n/x0^(n+1)+o((x-x0)^n)。

4、1/(1-x)=1/(1-x0)+(x-x0)/(1-x0)^2+(x-x0)^2/(1-x0)^3+(x-x0)^3/(1-x0)^4+…+(x-x0)^n/(1-x0)^(n+1)+o((x-x0)^n)。

5、e^x=e^x0+e^x0(x-x0)+e^x0(x-x0)^2/2+…+e^x0(x-x0)^n/n!+o((x-x0)^n)。

6、lnx=lnx0+(x-x0)/x0-(x-x0)^2/(2x0^2)+(x-x0)^3/(3x0^3)+…+(-1)^(n+1)(x-x0)^n/(nx0^n)+o((x-x0)^n)。

7、ln(1+x)=ln(1+x0)+(x-x0)/(1+x0)-(x-x0)^2/(2(1+x0)^2)+(x-x0)^3/(3(1+x0)^3)+…+(-1)^(n+1)(x-x0)^n/(n(1+x0)^n)+o((x-x0)^n)。

8、sinx=sinx0+(x-x0)sin(x0+π/2)+(x-x0)^2sin(x0+π)/2+…+(x-x0)^nsin(x0+nπ/2)/n!+o((x-x0)^n)。

9、cosx=cosx0+(x-x0)cos(x0+π/2)+(x-x0)^2cos(x0+π)/2+…+(x-x0)^ncos(x0+nπ/2)/n!+o((x-x0)^n)。

10、Tn(x)+o((x-x0)^n)=f(x0)+f'(x0)(x-x0)/1!+f"(x0)(x-x0)^2/2!+…+f^(n)(x0)(x-x0)^n/n!+o((x-x0)^n)。

泰勒展开公式常用

泰勒展开公式为e^x=1+x+x^2/2+x^3/3+……+x^n/n+……,arctanx=x-x^3/3+x^5/5-……(x≤1)等。

拓展资料:

泰勒公式,是一个用函数在某点的信息描述其附近取值的公式。如果函数满足一定的条件,泰勒公式可以用函数在某一点的各阶导数值做系数构建一个多项式来近似表达这个函数。

泰勒公式得名于英国数学家布鲁克·泰勒,他在1712年的一封信里首次叙述了这个公式。泰勒公式是为了研究复杂函数性质时经常使用的近似方法之一,也是函数微分学的一项重要应用内容。

泰勒公式是高等数学中的一个非常重要的内容,它将一些复杂的函数逼近近似地表示为简单的多项式函数,泰勒公式这种化繁为简的功能,使得它成为分析和研究许多数学问题的有力工具。

18世纪早期英国牛顿学派秀的代表人物之一的数学家泰勒( Brook Taylor),其主要著作是1715年出版的《正的和反的增量方法》,书中陈述了他于1712年7月给他老师梅钦信中提出的定理——泰勒定理。1717年,泰勒用泰勒定理求解了数值方程。

泰勒公式是从格雷戈里——牛顿插值公式发展而来,它是一个用函数在某点的信息描述其附近取值的公式。如果函数足够光滑,在已知函数某一点各阶导数的前提下,泰勒公式可以利用这些导数值作为系数构建一个多项式来近似该函数在这一点的邻域中的值。

1772年,拉格朗日强调了泰勒公式的重要性,称其为微分学基本定理,但是泰勒定理的证明中并没有考虑级数的收敛性,这个工作直到19世纪20年代,才由柯西完成。泰勒定理开创了有限分理论,使任何单变量函数都可以展开成幂级数,因此,人们称泰勒为有限分理论的奠基者。

泰勒公式是数学分析中重要的内容,也是研究函数极限和估计误等方面不可或缺的数学工具,泰勒公式集中体现了微积分“逼近法”的精髓,在近似计算上有独特的优势。

利用泰勒公式可以将非线性问题化为线性问题,且具有很高的度,因此其在微积分的各个方面都有重要的应用。泰勒公式可以应用于求极限、判断函数极值、求高阶导数在某点的数值、判断广义积分收敛性、近似计算、不等式证明等方面。

泰勒公式有哪些,能否列举一些常用的?

以下列举一些常用函数的泰勒公式 :

扩展资料泰勒公式形式:

泰勒公式是将一个在x=x0处具有n阶导数的函数f(x)利用关于(x-x0)的n次多项式来逼近函数的方法。

若函数f(x)在包含x0的某个闭区间[a,b]上具有n阶导数,且在开区间(a,b)上具有(n+1)阶导数,则对闭区间[a,b]上任意一点x,成立下式:

其中,表示f(x)的n阶导数,等号后的多项式称为函数f(x)在x0处的泰勒展开式,剩余的Rn(x)是泰勒公式的余项,是(x-x0)n的高阶无穷小。

参考资料:

常用的泰勒展开式

常用的泰勒展开式:f(x)=f(x0)+f'(x0)/1!(x-x0)+f''(x0)/2!(x-x0)^2+…+f^(n) (x0)/n!(x-x0)^n+o((x-x0)^n)。

在数学中,泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数足够光滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。泰勒公式还给出了这个多项式和实际的函数值之间的偏。

推导证明:

我们知道f(x)=f(x.)+f'(x.)(x-x.)+α(根据拉格朗日中值定理导出的有限增量定理有limΔx→0 f(x.+Δx)-f(x.)=f'(x.)Δx),其中误α是在limΔx→0 即limx→x.的前提下才趋向于0,所以在近似计算中往往不够;于是我们需要一个能够足够的且能估计出误的多项式:P(x)=A0+A1(x-x.)+A2(x-x.)^2+……+An(x-x.)^n

常见的泰勒公式展开式大全

泰勒公式展开式都有哪些?下面,我整理了一些常见的泰勒公式展开式,希望对你们有帮助。

常见的泰勒公式展开式

泰勒公式展开的技巧 泰勒公式在x=a处展开为

f(x)=f(a)+f'(a)(x-a)+(1/2!)f''(a)(x-a)^2+……+(1/n!)f(n)(a)(x-a)^n+……

设幂级数为f(x)=a0+a1(x-a)+a2(x-a)^2+……①

令x=a则a0=f(a)

将①式两边求一阶导数,得

f'(x)=a1+2a2(x-a)+3a3(x-a)^2+……②

令x=a,得a1=f'(a)

对②两边求导,得

f"(x)=2!a2+a3(x-a)+……

令x=a,得a2=f''(a)/2!

继续下去可得an=f(n)(a)/n!

所以f(x)在x=a处的泰勒公式为:

f(x)=f(a)+f'(a)(x-a)+[f''(a)/2!](x-a)^2+……+[f(n)(a)/n!](a)(x-a)^n+……

应用:用泰勒公式可把f(x)展开成幂级数,从而可以进行近似计算,也可以计算极限值,等等。

另外,一阶泰勒公式就是拉格朗日微分中值定理

f(b)=f(a)+f(ε)(b-a),ε介于a与b之间。

泰勒公式有什么用途 泰勒公式展开在物理学应用!

物理学上的一切原理定理公式都是用泰勒展开做近似得到的简谐振动对应的势能具有x^2的形式,并且能在数学上求解。为了处理一般的情况,物理学首先关注平衡状态,可以认为是“不动”的情况。为了达到“动”的效果,会给平衡态加上一个微扰,使物体振动。在这种情况下,势场往往是复杂的,因此振动的具体形式很难求解。这时,Taylor展开就开始发挥威力了!

理论力学中的小振动理论告诉我们,在平衡态附近将势能做Taylor展开为x的幂级数形式,零次项可取为0,一次项由于平衡态对应的极大/极小值也为0,从二次项开始不为零。如果到二级近似,则势能的形式与简谐运动完全相同,因此很容易求解。这种处理方法在量子力学、固体物理中有着广泛应用。

反思一下这么处理的原因:首先,x^2形式的势能对应于简谐运动,能求解;其次,Taylo数有较好的近似,x^2之后的项在一定条件下可以忽略。这保证了解的性。

常用泰勒展开公式有哪些?

常用泰勒展开公式如下:

1、e^x=1+x+x^2/2!+x^3/3!+……+x^n/n!+……。

2、ln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)(x^k)/k(|x|<1)。

3、sinx=x-x^3/3!+x^5/5!-……+(-1)^(k-1)(x^(2k-1))/(2k-1)!+……。(-∞

4、cosx=1-x^2/2!+x^4/4!-……+(-1)k(x^(2k))/(2k)!+……(-∞

5、arcsinx=x+1/2x^3/3+13/(24)x^5/5+……(|x|<1)。

6、arccosx=π-(x+1/2x^3/3+13/(24)x^5/5+……)(|x|<1)。

7、arctanx=x-x^3/3+x^5/5-……(x≤1)。

8、sinhx=x+x^3/3!+x^5/5!+……+(-1)^(k-1)(x^2k-1)/(2k-1)!+……(-∞

9、coshx=1+x^2/2!+x^4/4!+……+(-1)k(x^2k)/(2k)!+……(-∞

10、arcsinhx=x-1/2x^3/3+13/(24)x^5/5-……(|x|<1)。

11、arctanhx=x+x^3/3+x^5/5+……(|x|<1)。

泰勒公式的余项有两类:

一类是定性的皮亚诺余项,另一类是定量的拉格朗日余项。这两类余项本质相同,但是作用不同。

一般来说,当不需要定量讨论余项时,可用皮亚诺余项(如求未定式极限及估计无穷小阶数等问题);当需要定量讨论余项时,要用拉格朗日余项(如利用泰勒公式近似计算函数值)

版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。