我比较了解数学竞赛,因为我就是这样一路走来的:数学竞赛的一试与高考不多,数列,函数…都对高3立体几何(问基本是证明线平行或垂直,第二问基本是二面角线面角,有难度)考有“画龙点睛”的启示,难度都略高于高考。
高考竞赛数学试题 高考数学竞赛原题
高考竞赛数学试题 高考数学竞赛原题
高考竞赛数学试题 高考数学竞赛原题
但是,二试,是分值最重,也是最花时间和功夫,同时也是最难得分的一项(经常有高手训练了很久却败在二试上的)。而且二试的题型高考绝不会考。
所以建议要搞竞赛就专心整,大部分会和高考相甚远,不要太功利,你要有心理准备,加油。
2、其次高考主要还是以基础知识为主,只会有少量的拔高题出现,如果想在高考中取得好的成绩,只要按照高考大纲认真复习就可以了,浪费宝贵的复习时间参加各类数学竞赛对于高考的益处并不是很大。
只能说是在研究竞赛题的过程中可以锻炼自己的拓展性思维,说实话,想要如果不是对其真正感兴趣,数学竞赛对高考没有多少实质的益处,至少说很局限。个人觉得还是在于兴趣。
竞赛能提升自己的思维能力,如果只是应付高考,做一试就够了,如果想拿保送,多做二试题,但可能花时间多而收效较小,的是多做高考真题
高考数学命题创新试题形式,教学注重培养核心素养和数学能力。下面是我为大家收集的关于2022年全国新高考1卷数及详解。希望可以帮助大家。
二元一次不等式表示的区域。2022年全国新高考1卷数
2022年全国新高考1卷数学详解
如何提升高考数学成绩
1.对数学的认知。由于成绩长期没有提升,很多学生觉得数学本身就难,或者觉得自己不具备某种天赋、某种 方法 ,于是对自己怀疑,甚至对自己没有信心,那么这样的话很容易挫伤学习数学的积极性。
2.备考的方向。很多考生觉得多做题就行了,还有一些考生进行“题海战术”,每天面对大量的习题,同时也有好像永远都做不完题,结果是成绩没有提升上去。那么这个方向,当然也有一些考生走向了另一个极端,不喜欢做题甚至很少做题,这些考生有的觉得自己很聪明,应该能学好理科,特别是数学,结果拿到试卷后,觉得生疏,在短时间内很难把题目做好,对以上两类考生,都是属于备考方向的问题。
3.训练方式。备考中学习和考试其实既有区别又有联系,现实中学习努力的考生有的不一定会考试,会考试的学生不一定努力学习。当然前者远远多于后者。无论是会考试还是不会考试的学生,要想把试考好,对于绝大多数考生来讲,还是需要合理的训练,例如说数学学科来说,你需要在平时训练中注重这些:时间分配、正确率、题型以及相关的解题方法、步骤等等。很多学生没有训练的目标,甚至一些考生做题的目标仅仅是为了完成老师布置的作业,这样训练方式肯定很难让自己的成绩提升上去。
4.教师教学等客观原因。在 毕业 班中老师重视成绩的考生是普遍的现象,当然如果面对一些平时努力学习,成绩没有提升的同学,作为老师肯定要给学生们出谋划策,帮他们做改变,把成绩提升上去,同时现实中也并非所有老师都能这样去做,有的老师精力也不允许。但是无论怎样,考生成绩上不去,帮他们提升成绩更是老师的。如果我带一个班级的学生,肯定不会一刀切去布置作业,让每一个学生都按照同样的模式去走,要根据他们的实际需要,给出建议和方向。还是那句话,很多时候学习数学不是你做了多少题而是做了多少有效的题。
高考后如何调节心理
1、客观看待高考成绩
考试结束后,考生和家长的视线转移也会使情绪心理出现新变化,比较集中体现在对考试分数和能报考什么样的大学等方面的担忧。
建议考生应积极面对高考,懂得高考并不是人生的出路,高考只是人生中的一段旅程,要将其当作人生中的一个,是高中生活的结束,也是未来新生活的开始。考生不妨利用这段时间,好好规划一下自己的未来,比如考虑怎么选大学专业,或者要不要复读。每个人都可以有梦想,并为之去努力。同时家长也要保持平常心态,充分发挥好家庭“避风港”的作用,给孩子更多关心和呵护。
2、主动调整心理状态
考生考后常见的心理问题,主要表现为过度放纵、抑郁自责、焦虑不安、思维、失眠多梦、躯体不适等。如果考生出现连续失眠、茶饭不思、无诱因腹疼腹泻、无故发火、易发脾气等情况,家长要注意考生可能存在的不良情绪,需引起关注并及时和积极、干预。
曾干指出,考生完成考试后,应保持平和的心态,正确调节自己的生活和心境,尤其要避免两种极端现象:一是过分放松、娱乐无度。不少考生认为反正考完了,要么一天到晚睡觉,要么长时间玩电脑、打游戏或与同学狂欢,结果反而招致身心疲惫;二是过度焦虑、自我封闭。考后出现适当的紧张、担忧是一种正常的心理状态,但是过度担心就不正常了,有些考生甚至足不出户,觉得自己考砸了,将自己封闭在家里,这些都是不可取的做法。
数学竞赛一是黑心老师赚钱的工具,二是倍太子读书,三是高考是要总分,就是一课满分作用也不大,总后要的是总分。3、适当充实期生活
建议考生在高考结束后,应遵循正常的生活和作息规律,并充分利用这段时间对自己中学时代的生活进行一个 总结 ,对未来的大学生涯进行一些“设想”,让自己能够平稳度过高考后的这段时光。
另外,高考后的暑,考生还可根据各自不同的 兴趣 爱好 ,在注意人身安全和做好防疫的前提下,利用期去参加有益身心健康的活动,学习课堂之外的知识,比如 体育运动 、考驾照、短途旅游等,也可从事志愿服务等 实践 ,增加阅历,从不同 渠道 去缓解高考成绩和填报志愿带来的压力。
★ 2022高考甲卷数试卷及
★ 2022年新高考Ⅱ卷数试卷及
★ 2022高考全国甲卷数学试题及
★ 2022高考全国甲卷文综试题及一览
★ 2022高考数学大题题型总结
★ 2022全国乙卷理科数及解析
★ 2022年高考数学必考知识点总结
竞赛题。根据查询找源教育网显示。
1、数学竞赛题目往往涉及更为深入和高级的数学概念和技巧,追求更丰富的解题思路和更深入的推理能力。题目中会包含一些高等数学、数论、几何等更为高级的知识点,要求学生在解题过程中运用多种不同的数学方法和技巧。
2、竞赛题目的形式更加多样,不拘泥于传统题型,会给出更具有创造性和探索性的问题。这要求学生具备更强的逻辑推理和抽象思维能力,能够灵活运用数学知识来解决由AD=2,∠ADB=120°可得∠ADC=60°,所以根据面积公式1/2AD×DC×Sin60°=3-√3,所以可得DC为2√3-2,所以可得BD为√3-1,有余弦定理可求出AC,AB,再由正弦定理可求出∠ABD,∠C,根据三角形内角和180°,最根据中学数学教学大纲的要求,有关概率与统计的内容在新课程中分为必修和选修两部分,其中必修部分包括:随机的概率,等可能的概率,互斥有一个发生的概率,相互的概率,重复试验等.在选修部分分为文科、理科两种要求,选修I为文科的要求,只含统计的内容,包括:抽样方法,总体分布的估计,总体期望值和方的估计.选修Ⅱ为理科的要求,包括:离散型随机变量的分布列,离散型随机变量的期望值和方,抽样方法,总体分布的估计,正态分布,线性回归.在高考试卷中,概率和统计的内容每年都有所涉及,以必修概率内容为主,不过随着对新内容的深入考查,理科的解答题也会设计包括离散型随机变量的分布列与期望为主的概率与统计综合试题.终求出∠BAC问题,而不仅仅是机械地运用既定的解题方法。
数学竞赛挑选的是专攻型人才,数学要很拔尖,高考具有普适性,拿百分制来说,高考中中低难度题目的分值占百多面角,多面角的性质。三面角、直三面角的基本性质。 正多面体,欧拉定理。分制八十,剩下百分之二十为高难度,而数学竞赛应该正好翻一翻
首先高中数学竞赛会比高考数学所要求的内容要求掌(3)量化突出.数量关系是数学领域研究的一个重要方面,也是数学测试不可缺少的内容,因此数学试题中定量性占有较重.试题中的定量要求一般不是简单、机械的计算,而是把概念、法则、性质寓于计算之中,在运算过程中考查考生对算理、运算法则的理解程度、灵活运用的能力及准确严谨的科学态度.由此可见,突出量化是数学试题的一个明显特点,并有重要的意义.握得更灵活
其次高中数学竞赛会包括数论、平几这类高考数学基本不会接触到的内容
竞赛是拔尖,高考是筛选
2.体现要求层次,控制试卷难度60
一题的立体几何,是按照某套全国数学能力竞赛试题改编的,对于高考来说不具有参考价值,因为目前来说不太可能是立体几何作为压轴题。1.普通高等学校招生数学科的考试,按照“考查基础知识的同时,注重考查能力”的原则,测试中学数学基础知识、基本技能、基本思想和方法,考查思维能力、运算能力、空间想象能力以及运用所学数学知识和方法分析、解决实际问题的能力.数学科的命题,在考查基础知识的基础上,注重对数学思想和方法的考查,注重对数学能力的考查,在强调综合性的同时,重视试题的层次性,合理调控综合程度,坚持多角度、多层次的考查.
2.数学学科的特点是高考数学命题的基础,在命题过程中命题人会充分考虑这些特点,发挥其内部的选拔机制,实现高考的选拔功能
数学是研究现实世界空间形式和数量关系的科学,高度的抽象性结论的确定性和应用的广泛性是数学的特点.数学的研究对象和特点体现在数学考试中就形成数学考试的学科特点.
(1)概念性强.数学是由概念、命题组成的逻辑系统,而概念是基础,是使整个体系联结成一体的结点.数学中每一个术语、符号和习惯用语都有着明确具体的内涵.这个特点反映到考试中就要求考生在解题时首先要透彻理解概念的含义,弄清不同概念之间的区别和联系,切忌将数学语言和日常用语混为一谈,更不应出现“望文生义”之类的错误.
例1、已知{a,b,c} {-1,0,1,2,4,8},以a,b,c为系数,组成二次函数y=ax2+bx+c,开口向上且不过原点的不同的抛物线有__________条。
在解此题中,学生容易犯两种概念性的错误,一个是将{a,b,c} {-1,0,1,2,4,8}与a,b,c∈{-1,0,1,2,4,8},混淆前者是,其元素具有互异性,而后者可以相同,二是二次函数y=x2+4x+2与y=2x2+8x+4是两个不同的函数,而方程x2+4x+2=0 与2x2+8x+4=0却有相同的解。
因此,我们在高三后期复习中,要注意发现学生在概念的理解上还有哪些错误和不严谨的地方;选题中,不要选语义不清,容易引起歧异的题;而在复习教学中,.同时应注意各种符号和图形的运用,减少生活语言对数学语言的干扰,影响学生的正常复习和思维方向。
(2)充满思辨性.这个特点源于数学的抽象性、系统性和逻辑性.数学知识不是经过观察实验总结出来的,而是经演绎推理而形成的逻辑体系,逻辑推理是其基本的研究方法;数学不是知识性的学科,而是思维型的学科.
数学试题靠机械记忆,只凭直觉和印象就可以作答的很少.为了正确解答,总要求考生具备一定的观察、分析和推断能力.因此,在高三后期复习中,不要给学生补充太多的中间性的公式和结论,而应教会学生理解此中间性的公式和结论的本质和推导。
(4)解法多样.一般数学试题的结果虽确定,但解法却多种多样,这有利于考生发挥各自的特点,灵活解答,真正显现其水平.命题时应考虑各种等价解法的考查重点和难度大致相同,解答到同样深度给同样的分值,不同解法的考查要求符合命题的初衷,实现考查目的.
例3、(04年)不等式 | x+2| 》| x | 的解集是___________。
在解此题中,学生可以用平方法,零点分段法,函数图象(数形结合)、数轴等多种方法,每一种方法都能体现相应的数学思想。我们在高三后期复习中,选讲的题尽量能象本题一样能体现出解法的多样性。
二、 数学命题的结构、题型、难度
1.全面考查考生素质,在选拔中应强调,只有各方面的素质都比较好的学生才是高校所需的学生.因此,试卷应有合理的知识结构和能力层次结构.知识结构是指试卷中包含学科各部分知识的比例.在编制双向细目表时,应根据各部分内容的教学时数和普通高考对考生知识结构的要求,确定试卷中各部分知识内容的分数比例,全面考查概念、定理、公式和法则等各项基础知识.试卷能力层次结构反映试卷对能力要求的层次和比例.试卷对能力要求的层次和比例,反映着考查的性质和要求.同样的学科知识内容,不同性质的考试对能力要求的层次和比例是不同的.在高考中,应既考查数学能力,又考查一般认识能力,如观察力、注意力、记忆力、想象力和思维能力;既考查较高层次的能力,又考查较低层次的能力.数学高考中,考试目标包括基本方法的内容?因此还应注意结合各项知识考查数学方法.将知识内容、数学方法和能力层次三者有机结合,并融入具体试题,才能有效地全面考查考生素质.
高考的目的是为高校选拔新生,但其要求仍要以高中教学内容为基础.数学高考不同于数学竞赛.高考兼有速度要求,试卷难度适中,一般考生都能得到基本分;而竞赛是典型的难度考试,试卷难度很大,只有极少数考生能取得较好成绩.
例4、若椭圆 内有一点P(1,-1),F为椭圆的右焦点,椭圆上有一点M,使 |MP| +2|MF| 最小,则点M的坐标为____________
3 .根据教育测量学原理,大规模考试的整卷难度在0.5左右最为理想,可以使考生成绩呈正态分布,标准比较大,各分数段考生人数分布比较合理,对考生总体的区分能力最强.但考虑到中学的评价方法和评价机制尚不健全,高考事实上对高中教学有着较强的评价导向作用,为稳定高中教学秩序,照顾全省总体的实际教学水平,整卷难度控制在0.55左右比较合适.估计应比03年容易,比05年难一点,大体与04年难度相当.
试卷中各种难度的档次一般这样界定,难度在0.7以上为易题,0.4—0.7为中档题,0.4以下为难题.从过去的全国高考来看,试卷中易、中、难三种试题的比例为3:5:2比较合适,各种题型中易、中、难题目的比例分别为选择题3:2:1,填空题2:1:1,而解答题一般不安排易题,中档题和难题的比例为1:1.其次各个试题的难度,一般在0.2—0.8之间,并在每种题型中编拟一些有一定难度的试题,从而实现选拔的目的.如果一道考题过难,就达不到选拔的目的。
4.高考要以考查能力和素质为主.为真正考查出学生的潜能和素质,必须给学生更多的思考空间和时间,控制运算量,增加考生思考时间是高考改革的方向.因此,教师在选题、编题、教学、制卷中,应尽量避免繁、难的运算,控制计算量,排除由于计算过多过繁造成耗时较多,或由计算错误而造成学生分析障碍,以便学生集中思考问题.
5.由于文、理科所学习的内容上有许多不同的地方,并且文、理科学生的数学思维能力也有很大的距,因此,文理科试卷在难度上是有别的,试卷中交叉共用的部分多数属于中等难度的试题.文科考生能力的距很大,水平异更为明显,高考试题难度的起点较理科有所降低,而试题难度的终点应与理科相同.所以对于文理跨科的教师要注意在教学的各个环节中,一定要针对学生的不同情况,采用有一定异的例题,练习题和考题,即使同一题,采取讲解方法,也会有所异。
第三节 各章节内容在高考中考题特点
数学科有近200个知识点,而现在离高考仅两个月的时间,再分章节复习是不可能,同时高考命题强调知识之间的交叉、渗透和综合,分章节复习也不利于学生综合能力的提高,因此,高三后期复习应强化主干知识,因为主干知识是支撑学科知识体系的主要内容,在高考中,保持较高的比例,并达到必要的深度,构成数学试题的主体.我们应从高中数学的整体上设计教学,教学中应淡化特殊技巧,强调通法通解,强调数学思想和方法,同时又根据各章节内容在高中数学中的作用和特点,及其相互之间的关联,采取一些有所侧重的教学。
一、 函数、三角函数、导数
函数和导数是高中教学内容的知识主干,是高考重中之重.函数内容有三块:一、函数的圆锥曲线的切线和法线。概念,函数的图像与性质,指数函数和对数函数,反函数和函数的关系、函数的单调性;二、同角、诱导、和、倍角公式,三角函数,函数的奇偶性和周期性;三、函数极限、函数连续性、函数的导数,导数的应用,使用导数的方法研究函数的单调性、极大(小)值和(小)值。
高考对函数内容的考查是考查能力的重要素材,一般考查能力的试题都是以函数为基础编制的,在旧课程卷中多与不等式、数列等内容相综合,在新课程卷中函数问题更多是与导数相结合,发挥导数的工具作用,应用导数研究函数的性质,应用函数的单调性证明不等式,体现出新的综合热点。随着函数与导数内容的结合,一般的问题都是先从求导开始,而求导又有规范的方法,利用导数判断函数的单调性,有规定的尺度,具有较强的可作性,难度适中.
函数和导数的内容在高考试卷中所占的比例较大,每年都有题目考查.考查时有一定的综合性,并与思想方法紧密结合,对函数与方程的思想、数形结合的思想、分类讨论的思想、有限与无限的思想等都进行了深入的考查.这种综合地统揽各种知识、综合地应用各种方法和能力,在函数的考查中得到了充分的体现.
函数和导数的解答题在文、理两卷中往往分别命制,这不仅是由教学内容要求的异所决定的,也与文、理科考生的思维水平异有关.文科卷中函数与导数的解答题,其解析式只能选用多项式函数;而理科卷则可在指数函数、对数函数以及三角函数中选取.在选择题和填空题中更多地涉及函数图像、反函数、函数的奇偶性、函数的极限、函数的连续性和导数的几何意义等重点内容.在高考时往往不是简单地考查公式的应用,而是与数学思想方法相结合,突出考查函数与方程的思想、有限与无限的思想.
在新教材中,三角函数公式要求弱化,并对公式作了较大的删减,同角公式由8个删为3个;删去了余切的诱导公式;删去了半角公式、积化和与和化积公式;删去了反三角函数与简单三角方程的绝大部分内容,只保留了反正弦、反余弦、反正切的意义与符号表示,而简单三角方程的内容只要求由已知三角函数值求角.因此,新课程卷对三角函数的考查内容也随之进行了调整.由于新教材中删去了复数的三角式,删去了参数方程的部分内容,因此三角函数的工具性作用有所减弱,而新增内容如平面向量、极限与导数,它们在新教材中的工具性作用替代了三角函数在原教材中的工具性作用.
在高考中把三角函数作为函数的一种,突出考查它的图像与性质,尤其是形如y=Asin(ωx+φ)的函数图像与性质,对三角公式和三角变★ 2022全国甲卷高考数学文科试卷及解析形的考查或与三角函数的图像与性质相结合,或直接化简求值.在化简求值的问题中,不仅考查考生对相关变换公式掌握的熟练程度,更重要的是以三角变形公式为素材,重点考查相关的数学思想和方法,主要是方程的思想和换元法.
二、数列
数列的内容很少,但在高考中,数列内容却占有重要的地位。主要内容有一般数列的概念与性质,等数列与等比数列,及其通项公式与前n项和公式.高考历来把数列当作重要的内容来考查,对这部分的要求达到相应的深度,题目有适当的难度和一定的综合程度.数列问题在考查演绎推理能力中发挥着越来越重要的作用.高考试卷的数列试题中,有的是从等数列或等比数列人手构造新的数列,有的是从比较抽象的数列人手,给定数列的一些性质,要求考生进行严格的逻辑推证,找到数列的通项公式,或证明数列的其他一些性质.在这里也有一些等数列或等比数列的公式可以应用,但更多的是应用数列的一般的性质,如an=Sn-Sn-1等.这些试题对恒等证明能力提出了很高的要求,要求考生首先明确变形目标,然后根据目标进行恒等变形.在变形过程中,不同的变形方法也可能简化原来的式子,也可能使其更加复杂,所以还存在着变形路径的选择问题.
高考对数列的考查把重点放在对数学思想方法的考查,放在对思维能力以及创新意识和实践能力的考查上.使用选择题、填空题形式考查的数列试题,往往突出考查函数与方程的思想、数形结合的思想、特殊与一般的思想、有限与无限的思想等数学思想方法,除了考查教材中学习的等数列与等比数列外,也考查一般数列.高考数列解答题,其内容往往是一般数列的内容,其方法是研究数列通项及前n项和的一般方法,并且往往不单一考查数列而是与其他内容相综合,过去,常将数列与函数,数列与不等式综合,而现在有数列与导数、解析几何相结合出题的新特点.
三、不等式
不等式是高中数学的重要内容之一,学生在高中阶段要学习不等式的性质、简单不等式的解法、不等式的证明以及不等式的应用.在新教材中,不等式的内容与原教材相比,作了一些调整.在解不等式部分,新大纲和新教材中删去了无理不等式、指数不等式和对数不等式的解法,只保留了二次不等式、分式不等式以及含有的简单不等式的解法;平均值定理由原来的三个正数降低为两个正数的要求.由于这些变化,高考命题也相应作出了调整.
在高考试题中,对不等式内容的考查包括不等式的性质,解简单的不等式以及平均值定理的应用等.对不等式性质的考查突出体现对基础知识的考查,其中也能体现出对相应思想方法的考查.以选择题、填空题形式考查解不等式,不仅仅考查解不等式时经常使用的同解变形的代数方法,更突出体现数形结合的思想以及特殊化的思想.对使用平均值定理求最值的考查,由于教学要求的变化,考查要求有所降低,突出常规方法,淡化特殊技巧。在解答题中,一般是解不等式或证明不等式.不等式的证明与应用常与其他知识内容相综合,尤其是理科试卷,不等式的证明往往与函数、导数、数列的内容综合,属于在知识网络的交汇处设计的试题,有一定的综合性和难度,突出体现对理性思维的考查.解不等式的应用往往以求取值范围的设问方式呈现,通过相关知识,转化为解不等式或不等式组的问题,并且往往含有参数,也有一定的综合性和难度.总之,以解答题的形式对不等式内容的考查,往往不是单一考查,而是与其他知识内容相综合,有较多的方法和较高的能力要求.
例如:下题就是一道不等式和解析几何、数列结合的题
四、立体几何
高考试卷中对空间想象能力的考查集中体现在立体几何试题上.在新旧教材中立体几何内容有较大的异,主要是新教材编制了A、B两种版本,在B版教材中增加了空间向量的方法.
新教材中删去了圆柱、圆锥、圆台,只保留了球;而多面体中删去了棱台,保留了棱柱和棱锥,并且删去了体积的大部分内容.由于教材内容的变化,高考对这部分内容的考查也进行了相应的调整,删去的内容不再考查.不过多面体的内容在小学和初中都学习过,也学过相关几何体体积的计算,因此,在高考试题中出现多面体体积的计算应属于正常范围.
在立体几何中引入空间向量以后,很多问.题都可以用向量的方法解决.由于应用空间向量的方法,可以通过建立空间坐标系,将几何元素之间的关系数量化,进而通过计算解决求解、证明的问题,空间向量更显现出解题的优势.
解析几何问题着重考查解析几何的基本思想,利用代数的方法研究几何问题是解析几何的基本特点和性质。因此,在解题的过程中计算占了很大的比例,对运算能力有较高的要求,但计算要根据题目中曲线的特点和相互之间的关系进行,所以曲线的定义和性质是解题的基础,而在计算过程中,要根据题目的要求,利用曲线性质将计算简化,或将某一个“因式”作为一个整体处理,这样就可大大简化计算,这其中体现的是“模块”的思想,也就是换元法.
解析几何试题除考查概念与定义、基本元素与基本关系外,还突出考查函数与方程的思想、数形结合的思想、特殊与一般的思想等思想
例如:下面的题就是在传统的解析几何中,加入了向量
六、概率与统计
概率统计在研究对象和方法上与以前学习的确定数学有所不同,是一种处理或然的或随机的方法,对过去的必然的因果关系的处理方法是一种完善和补充.
概率与统计的引入拓广了应用问题取材的范围,概率的计算、离散型随机变量的分布列和数学期望的计算等内容都是考查实践能力的良好素材.
第四节 我在高三后期复习中的一些策略
高三后期学生普遍感到什么知识都知道,各种题型也见过,自己做题也基本都会,但就是模拟考试经常考不好,达不到理想的效果,而时间越来越少,高考越来越近,又没有好的方法,摆脱困境,只有拼命练题,练了又忘,忘了再练,加班加点,疲劳之至。
因此,我们做为教师有必要采取一些科学、合理、切实、高效的方法和策略,和帮助学生,有效地整合旧知识,熟练基本方法,形成更强的综合运用的能力,以一种积极、健康的心态,高昂的士气去迎接高考的到来。
选择题:,函数(图像),立体几何,圆锥曲线,概率,基本上不会难,有两道会是偏南的题,一般为立体几何和圆锥曲线或概率的设难
填空:这个不好说
大题:1三角函数(很简单,准确率是重要的)
2概率(有可能和线性规划,函数联系,也不会难的,只要考虑周全)
4数列(基本是问求通向公式第二问数列和)
5圆锥曲线(问一般是求曲线方程,第二问就比较难了,而且问题类型很多,一般和向量,函数,线性规划,三角函数都会联系的)
对于A省的方案,学生要把过多的时间放在各自的六项科目上,不会有太多的时间去体会自己到底有多少兴趣在这些科目上,也不会了解到自己对什么感兴趣。这些学生虽然学了很多知识,但是不能保证是学一、 数学命题原则生自己想学的,大部分是在家庭的压力进行学习的,这样即使取得了高分,也无助于学生的成长。
文科,理科有一科好的,选A;文科,理科六门中有几门好的(比如在解此题中,学生会用椭圆的焦点三角形的面积公式b2 tan 快速地解答出,但本题可以有多种变化,如:椭圆改成双曲线,或改焦点为长轴顶点等(当然数据也要做相应调整),学生就不一定做得来了。:化学生物历史地理;或物理和),选B。
对于一个高一的学生,我建议你还是别做竞赛题了,因为你的知识面还不够,大多高中的竞赛题考的知识面都很广,它是很多知识的综合,现在做这些题对于提高思维能力基本上没什么用,还是先把书上的整懂了再说
★ 2022年新高考1卷语文真题及解析没有任何帮助。即使是考数学系本科生的话,在之后的学习当中,这些知识中的绝大部分也永远不会用得到。
y082011年
要学竞赛首先要把高中课本学完,大概高一上学期要完成这个目标,这时做《奥数教程》,从高一到高三的三本,还有《赛前集训》,这是一试难度的。从高二开始要解决四本奥赛经典及奥林匹克小丛书。刚开始可能觉得很难,实际上这几本书恰是联赛加试难度的。做完这些就可以考虑冬令营的事了。另,普及一下知识,高中数学联赛分一试和加试,满分300。一试8填空3大题,均为高考难题难度,总分120。加试四个题,分别为平面几何,代数,数论,组合。前两题每题40,后两题每题50,总分180。联赛全省前4~9名可进入省队参加冬令营,即CMO。冬令营之后还有队选拔考试及IMO,在此就不说了。
有号的内容二试中暂不考,但在冬令营中可能考。总之:学竞赛作用不大。三思而后行。
我明天就要去考试了,建议你在网上搜几套题做做,我校也举办数学竞赛了
因为原方程有6个自然数解,故原方程可同解为每个因式=0所构成的三个方程(且各不相同,即c1、c2、c3各不相同;三个方程之间为或的关系)。也即每个因式可在有理数范围内因式分解为(x-a)(x-b)的形式(其中a、b就是原方程的解,为不同的自然数,且满足a+b=6,ab=c1、c2、c3)。故根据自然数a、b满足a+b=6得a、b=0和6或★ 2022卷高考文科数学试题及解析1和5或2和4。所以c1、c2、c3为0或5或8,故所求的值为8-0=8
版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。