21届数学高考解答 21届高考数学试卷

教育资讯 2025-01-04 10:30:38

高考数学选择题解题小妙招

【】C

导语:选择题从难度上讲是比其他类型题目降低了,但知识覆盖面广,要求解题熟练、准确、灵活、快速。下面就由我为大家分享10个高考数学选择题解题小妙招,希望能给大家带来帮助!

21届数学高考解答 21届高考数学试卷21届数学高考解答 21届高考数学试卷


21届数学高考解答 21届高考数学试卷


21届数学高考解答 21届高考数学试卷


高考数学选择题解题小妙招

1.特值检验法:

对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

例:△ABC的三个顶点在椭圆4x2+5y2=6上,其中A、B两点关于原点O对称,设直线AC的斜率k1,直线BC的斜率k2,则k1k2的值为

A. -5/4 B.-4/5 C.4/5 D. 2√5/5

解析:因为要求k1k2的值,由题干暗示可知道k1k2的值为定值。题中没有给定A、B、C三点的具置,因为是选择题,我们没有必要去求解,通过简单的画图,就可取最容易计算的值,不妨令A、B分别为椭圆的长轴上的两个顶点,C为椭圆的短轴上的一个顶点,这样直接确认交点,可将问题简单化,由此可得,故选B。

2.极端性原则3.剔除法::

将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。

利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的,从而达到正确选择的目的。这是一种常用的方法,尤其是为定值,或者有数值范围时,取特殊点代入验证即可排除。

4.数形结合法:

由题目条件,作出符合题意的`图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

5.递推归纳法:

通过题目条件进行推理,寻找规律,从而归纳出正确的方法。

6.顺推法:

利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。

例:银行将某资金给项目M和N投资一年,其中40%的资金给项目M,60%的资金给项目N,项目M能获得10%的年利润,项目N能获得35%的年利润,年终银行必须回笼资金,同时按一定的回扣率支付给储户. 为了使银行年利润不小于给M、N总投资的10%而不大于总投资的15%,则给储户回扣率最小值为

A.5% B.10% C.15% D.20%

解析:设共有资金为α, 储户回扣率χ, 由题意得解出0.1α≤0.1×0.4α+0.35×0.6α-χα≤0.15α

解出0.1≤χ≤0.15,故应选B.

7.逆推验证法(代入题干验证法):

将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。

例:设M和N都是正整数N,映射f:M→把M中的元素n映射到N中的元素2n+n,则在映射f下,象37的原象是

A.3 B.4 C.5 D.6

8.正难则反法:

从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。

9.特征分析法:

对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。

例: 256-1可能被120和130之间的两个数所整除,这两个数是:

A.123,125 B.125,127 C.127,129 D.125,127

解析:初中的平方公式,由256-1=(228+1)(228-1)=(228+1)(214+1)(27+1)(27-1)=(228+1)(214+1)·129·127,故选C。

10.估值选择法:

有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。

总结:高考中的选择题一般是容易题或中档题,个别题属于较难题,当中的大多数题的解答可用特殊的方法快速选择。例如:估值选择法、特值检验法、顺推法、数形结合法、特征分析法、逆推验证法等都是常用的解法. 解题时还应特别注意:选择题的四个选择支中有且一个是正确的,因而在求解时对照选择支就显得非常重要,它是快速选择、正确作答的基本前提。

21届湖南数学平均分

【【解4】原不等式化为-1<(x+1)/(x-1)<1,即(x+1)/(x-1)>-1且(x+1)/(x-1)<1;解析】由题意得:所求封闭图形的面积为 ,故选A。

想知道2011年数学高考试题和(浙江卷)

【命题意图】本题考查不等式中的线性规划知识,画出平面区域与正确理解目标函式 的几何意义是解答好本题的关键。

2011年普通高等学校招生全国统一考试(浙江卷)

理科数学

一、选择题

(1)设函数 ,则实数 =

(A)-4或-2 (B)-4或2 (C)-2或4 (D)-2或2

(2)把复数 的共轭复数记作 ,i为虚数单位,若

(3)若某体的三视图如图所示,则这个体的直观图可以是

(4)下列命题中错误的是

(A)如果平面 ,那么平面 内一定存在直线平行于平面

(B)如果平面 不垂直于平面 ,那么平面 内一定不存在直线垂直于平面

(C)如果平面 ,平面 , ,那么

(D)如果平面 ,那么平面 内所有直线都垂直于平面

(5)设实数 满足不等式组 若 为整数,则 的最小值是

(A)14 (B)16 (C)17 (D)19

(6)若 , , , ,则

(A) (B) (C) (D)

(7)若 为实数,则“ ”是 的

(A)充分而不必要条件 (B)必要而不充分条件

(C)充分必要条件 (D)既不充分也不必要条件

(8)已知椭圆 与双曲线 有公共的焦点, 的一条渐近线与以 的长轴为直径的圆相交于 两点, 若 恰好将线段 三等分,则

(A) (B) (C) (D)

(9)有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率

(A) (B) (C) D

(10)设a,b,c为实数,f(x) =(x+a) .记S= 若 , 分别为元素S,T的元素个数,则下列结论不可能的是

(A) =1且 =0 (B)

(C) =2且 =2 (D) =2且 =3

非选择题部分 (共100分)

二、填空题:本大题共7小题,每小题4分,共28分

(11)若函数 为偶函数,则实数 = 。

(12)若某程序图如图所 示,则该程序运行后输出的k的值是 。

(13)设二项式(x- )n(a>0)的展开式中X的系数为A,常数项为B, 若B=4A,则a的值是 。

(14)若平面向量α,β满足|α|≤1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为 ,则α与β的夹角 的取值范围是 。

(15)某毕业生参加人才会,分别向甲、乙、丙三个公 司投递了,定该毕业生得到甲公司面试的概率为 ,得到乙公司面试的概率为 ,且三个公司是否让其面试是相互的。记X为该毕业生得到面试得公司个数。若 ,则随机变量X的数学期望

(16)设 为实数,若 则 的值是 .。

(17)设 分别为椭圆 的焦点,点 在椭圆上,若 ;则点 的坐标是 .

三、解答题;本大题共5小题,共72分。解答应写出文字说明、证明过程或演算步骤。

(18)(本题满分14分)在 中,角 所对的边分别为a,b,c.

已知 且【解析】 .

(Ⅰ)当 时,求 的值;

(Ⅱ)若角 为锐角,求p的取值范围;

(19)(本题满分14分)已知公不为0的等数列 的首项 为a( ),设数列的前n项和为 ,且 , , 成等比数列

(1)求数列 的通项公式及

(2)记 , ,当 时,试比较 与 的大小.

(20)(本题满分15分)如图,在三棱锥 中, ,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上,已知BC=8,PO=4,AO=3,OD=2

(Ⅰ)证明:AP⊥BC;

(Ⅱ)在线段AP上是否存在点M,使得二面角A-MC-β为直二面 角?若存在,求出AM的长;若不存在,请说明理由。

(21)(本题满分15分)已知抛物线 : = ,圆 : 的圆心为点M

(Ⅰ)求点M到抛物线 的准 线的距离;

(Ⅱ)已知点P是抛物线 上一点(异于原点),过点P作圆 的两条切线,交抛物线 于A,B两点,若过M,P两点的直线 垂直于 AB,求直线 的方程

(22)(本题满分14分)

设函数

(I)若 的极值点,求实数 ;

(II)求实数 的取值范围,使得对任意的 ,恒有 成立,注: 为自然对数的底数。

自己去考试吧找卷子吧

去考试吧找

求今年高考全国卷1数学的选择题详细解析过程

你们老师太残忍了,十套太多了吧...如果基础不好的话多做点基础题吧...

网上提供的选择题没有解题过程,以下是我做的解答,尽量给出各种解法。

【1】A={4,5,7,9},B={3,4,7,8,9},U=A∪B,则CU(A∩B)的元素共有(A)。(A)3个 (B)4个 (C)5个 (D)6个

【解】U={3,4,5,7,8,9}, A∩B={4,7,9} ,则|CU(A∩B)|=6-3=3.

【2】(z的共轭)/(1+i)=2+i,则z=(B)。(A)-1+3i (B)1-3i (C)3+i (D)3-i

【解】(z的共轭)=(1+i)(2+i)=1+3i;于是z=1-3i.

【3】不等式|x+1|/|x-1|<1的解集是(D)。

(A){x|01} (B){x|0

【解1】4个选项中(D)的范围,干脆走极端,取x=-100代入不等式左边,能满足:|-100+1|/|-100-1|=99/101<1,这说明前三个选项都不对。

【解2】代入发现x=0.5∈(0,1)不满足不等式:1.5/0.5>1,可见(A)、(B)都应排除;再取x=-1代入发现能使不等式成立:0 <1,可见排除(C).

【解3】原不等式即|x+1|<|x-1|,几何上表示数轴上到点-1的距离小于到点1的距离的动点,这样的点肯定在原点左侧(画个数轴一看便知)。

即 2x/(x-1)>0且2/(x-1)<0;即x<0或x>1,且x<1。综上得到x<0.

【注】本题还有别的解法,不过都很繁琐,算了吧。

【4】双曲线(x2/a2)-(y2/b2)=1(a>0 ,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率为(C)。 (A)根号3 (B)2 (C)根号5 (D)根号6

【解1】显然该双曲线与抛物线相切的渐近线方程是y=bx/a;另一方面,抛物线y=x2+1在点(x0,y0)的切线是(y+y0)/2=x0x+1. 依题意该切线过原点,即y0/2=1,所以y0=2,则x0=1.则切点坐标是(1,2);由于切点也在渐近线上,则2=b/a,于是c=(根号5)a;e=根号5.

【解2】直线y=bx/a与曲线y=x2+1相切,在切点(x0,y0)处有x02+1=bx0/a,2x0=b/a;解此方程组得到b=2a【以下同解1】。

【5】甲组有5名男生、3名女生,乙组有6名男生、2名女生。从这两组各选2人,则选出4人中恰有1名女生的不同选法共有(D)种。 (A)150 (B)180 (C)300 (D)345

【解】一组选1男1女,且另一组选2男:C15C13C26+ C25 C16 C12=225+120=345.

【6】设a,b,c都是单位向量,且ab=0,则(a-c)并且注意除a_1外{a_n}的任何一项必同时属于某个A_u和某个B_v。(b-c)的最小值为(D)。

(A)-2 (B)(根号2)-2 (C)-1 (D)1-(根号2) 注:暂以表示向量数量积运算。

【解1】(a-c)(b-c)=ab+cc-c(a+b)=1-|c||a+b|cos(c,a+b);注意a⊥b,所以|a+b|=根号2,则

(a-c)(b-c)=1-(根号2)cos(c,a+b)>=1-(根号2);其中等号当且仅当cos(c,a+b)=0即c与a+b同向时成立。

【解2】(坐标法)让a、b分别与x、y轴正向重合,则a(1,0),b(0,1). 设c(x,y),则x2+y2=1.于是

(a-c)(b-c)=(1-x,-y)(-x,1-y)=x2+y2-x-y=1-(x+y);为求上式最小值,只需求x+y值,故此不妨设x>0,y>0,于是由平均值不等式有x+y<=根号下(2(x2+y2))=根号2,其中等号当且仅当x=y=(根号2)/2时成立。

【7】三棱柱ABC-A1B1C1的侧棱与底边相等,A1在底面ABC的射影为BC的中点。则异面直线AB与CC1所成角的余弦为(D)。

(A)(根号3)/4 (B)(根号5)/4 (C)(根号7)/4 (D)3/4

【解1】设棱长及底边长均为1。设BC的中点为D,B1在底面的射影为E。易知所求角等于AB与BB1所成的角。作BF⊥AB并交AB的延长线于F,连EF,由三垂线定理有EF⊥BF。于是只需求cos∠B1BF=BF/BB=BF;

在Rt△BFE中,BF=BEcos30o=AD(根号3)/2=[(根号3)/2][ (根号3)/2]=3/4.

【解2】(向量法)设棱长边长均为1。【注:以下以UV表示U为起点V为终点的向量】

cos(AB,CC1)=ABCC1/|AB||CC1|=ABBB1=AB(BE+EB1)=AB(AD+DA1)=ABAD 【AB⊥DA1】

=|AB||AD|cos30o=3/4.

【解3】(坐标法)设棱长及底边长均为1。设BC的中点为O,以O为原点,射线OB、AD的延长线、射线OA1分别为x、y、z轴,建立空间直角坐标系。则有关各点坐标分别为

B(1/2,0,0),A(0,-(根号3)/2,0),A1(0,0,1/2),B1(1/2, (根号3)/2,1/2). 向量AB=(1/2, (根号3)/2,0),

向量BB1=(0, (根号3)/2,1/2). 所以 cos=ABBB1/|AB||BB1|=3/4.

【8】函数y=3cos(2x+θ)的图像关于点(4π/3,0)中心对称,则|θ|的最小值为(A).

(A)π/6 (B)π/4 (C)π/3 (D)π/2

【解1】0=y(4π/3)=cos((2π/3)+θ),则θ+2π/3=kπ+π/2,k是整数;

即θ=kπ-π/6 (k是整数);可见k=0时|θ|=π/6最小。

【解2】y=3cos(2x+θ)=3sin((π/2)-(2x+θ))=-3sin(2x+θ-π/2);

0= y(4π/3)=-3sin((13π/6)+θ)=-3sin(θ+π/6); 则θ+π/6=kπ(k是整数)【以下同解1】。

【9】直线y=x+1与曲线y=ln(x+a)相切,a的值为(B)。 (A)1 (B)2 (C)-1 (D)-2

【解】在切点处有x+1=ln(x+a), 1=1/(x+a). 解该方程组:x=-1,a=2.

【10】二面角α-m-β=60o,动点P,Q分别在平面α,β内,P到β的距离为(根号3),Q到α的距离为2(根号3),则|PQ|的最小值为(C)。 (A)根号2 (B)2 (C)2(根号3) (D)4

【解】作PA⊥β,QC⊥α;作PB⊥m,QD⊥m;连AB、CD. 易知PB‖CD,QD‖AB,并且∠PBA=∠QDC=60o. 由题设PA=根号3,QC=2(根号3);则PB=2,CD=2,即PB=CD. 这意味着当P点与C点重合时|PQ|=2(根号3)为最小值。

【11】函数f(x)的定义域是R,f(x-1)和f(x+1)都是奇函数,则(D)。

(A)f(x)是偶函数 (B)f(x)是奇函数 (C)f(x)=f(x+2) (D)f(x+3)是奇函数

【解】(特例排除法)取f(x)=sin(πx),则f(x+1)=-sin(πx),f(x-1)=sin(πx)都是奇函数,满足题干要求。此时(A)不成立。

再取f(x)=cos(πx/2),则f(x+1)=-sin(πx/2),f(x-1)=sin(πx/2)都是奇函数,满足题干要求,此时(B)不成立;(C)不成立,因为f(x+2)=-cos(πx/2)≠f(x). 可见应选(D).

【12】椭圆C:x2/2+y2=1的右焦点为F,右准线为L,点A∈L,AF交C于B,向量FA=3(向量FB),则|AF|=(A)。 (A)根号2 (B)2 (C)根号3 (D)3

【解】a2=2,b=1,则c=1,焦点F(1,0),准线方程为x=2. 设B(x,y),准线与x轴交于P点,再作BQ⊥x轴,垂足为Q.

因为向量FA=3(向量FB),所以|FQ|/|FP|=1/3,即(x-1)/(2-1)=1/3,z则x=4/3;代入椭圆方程解得y=1/3;

再由|AP/|BQ|=3,可得到A的纵坐标是3y=1,则点A(2,1);|FA|=根号2.

去书店

2011江苏高考数学20题第二问详解你怎么做的啊

解:(1)由M={1},根据题意可知k=1,所以n≥2时,Sn+1+Sn-1=2(Sn+S1),

即(Sn+1-Sn)-(Sn-Sn-1)=2S1,又a1=1,

则an+1-an=2a1=2,又a2=2,

所以数列{an}除去首项后,是以2为首项,2为公的等数列,

故当n≥2时,an=a2+2(n-2)=2n-2,

所以a5=8;

(2)根据题意可知当k∈M={3,4},

且n>k时,Sn+k+Sn-k=2(Sn+Sk)①,且Sn+1+k+Sn+1-k=2(Sn+1+Sk)②,

②-①得:(Sn+1+k-Sn+k)+(Sn+1-k-Sn-k)=2(Sn+1-Sn),

即an+1+k+an+1-k=2an+1,可化为:an+1+k-an+1=an+1-an+1-k

所以n≥8时,an-6,an-3,an,an+3,an+6成等数列,且an-6,an-2,an+2,an+6也成等数列,

从而当n≥8时,2an=an-3+an+3=an-6+an+6,()且an-2+an+2=an-6+an+6,

所以当n≥8时,2an=an-2+an+2,即an+2-an=an-an-2,

于是得到当n≥9时,an-3,an-1,an+1,an+3成等数列,从而an-3+an+3=an-1+an+1,

由()式可知:2an=an-1+an+1,即an+1-an=an-an-1,

当n≥9时,设d=an-an-1,

则当2≤n≤8时,得到n+6≥8,从而由()可知,2an+6=an+an+12,得到2an+7=an+1+an+13,

两式相减得:2(an+7-an+6)=an+1-an+(an+13-an+12),

则an+1-an=2d-d=d,

因此,an-an-1=d对任意n≥2都成立,

又由Sn+k+Sn-k-2Sn=2Sk,可化为:(Sn+k-Sn)-(Sn-Sn-k)=2Sk,

当k=3时,(Sn+3-Sn)-(Sn-Sn-3)=9d=2S3;同理当k=4时,得到16d=2S4,

两式相减得:2(S4-S3)=2a4=16d-9d=7d,解得a4= d,

因为a4-a3=d,解得a3= d,同理a2= d,a1= ,

则数列{an}为等数列,由a1=1可知d=2,

所以数列{an}的通项公式为an=1+2(n-1)=2n-1.

既然有人给你解答了,我就讲一下思路。

第题主是否想询问”21届湖南高考数学平均分“?文科数学65.39,理科数学100.62。据统计2021年湖南高考各科平均分数为语文96.88,英语83.69,文科数学65.39,理科数学100.62,文科综合164.03,理科综合141.45。湖南省,简称“湘”,是中华省级行政区,省会长沙市,东临江西省,西接重庆市、贵州省,南毗广东省、广西壮族自治区,北连湖北省。1问就不写了。

第2问道理不多,首先要相信只有等数列才能同时满足那两个条件,在这个前提下大胆猜测结论,然后就是证明。高考难度通常比较低,中学生知识又少,要相信结论只能是很简单的。

先把条件用一遍

n>3时(S_{n+3}-S_{n})+(S_{n}-S_{n-3})=2S_3,即

a_{n+3}+a_{(A)3-i (B)3+i (C)1+3i (D)3n+2}+a_{n+1}-a_{n}-a_{n-1}-a_{n-2}=2S_3 ()

把n用n+1代之后和这个式子减一下得到

a_{n+4}-2a_{n+1}+a_{n-2}=0,即a_{n+4}-a_{n+1}=a_{n+1}-a_{n-2}

这样就得到了类的三组间隔为3的等子列A_1={a_2,a_5,...}, A_2={a_3,a_6,...}, A_3={a_4,a_7,...}

同理把k=4的条件

a_{n+4}+a_{n+3}+a_{n+2}+a_{n+1}-a_{n}-a_{n-1}-a_{n-2}-a_{n-3}=2S_4 ()

用一遍可以得到第二类的四组间隔为4的等子列B_1={a_2,a_6,...}, B_2={a_3,a_7,...}, B_3={a_4,a_8,...}, B_4={a_5,a_9,...}

下一步证明每一类内部的几个等数列的公是一样的,因为3和4互质,做到这里应该已经可以相信结论一定是对的。

用()-()得到a_{n+4}-a_{n-3}=2a_4,也就是说又得到一类间隔为7的等子列。定A_u的公为d_u,那么对于任何a_n属于A_u,利用7d_u=a_{n+21}-a_{n}=6a_4,所以d_u=6/7a_4,即类的三组序列的公相同,简记为d。同理考察a_{n+28}-a_{n}得第二类的四组序列公也相同,简记为D,其大小为D=2a_4。

(如果没有想到()-()这步,那么可以考察a_{n+12}-a_{n},注意a_{n}可以取遍所有的A_u和B_v,可以得到d_u和D_v和u,v无关,只不过无法直接得到d,D及a_4的关系)

下一步目标就很明确了,证明整个{a_n}(项除外)就是等数列,同样是从两类序列的公共点着手,取几个特殊点解方程即可。

利用

a_8 = a_2+2d = a_4+D

a_10 = a_2+2D = a_4+2d

解出d/3=D/4,再代入 a_{n+4} = a_{n}+D = a_{n+1}+d 即得从a_2开始{a_n}是等数列且公为D-d。

结合前面的d=6/7a_4, D=2a_4即得D=8,d=6,a_4=7,从而得到a_n=2n-1,这恰好对第1项也成立。

(如果前面没想到()-()那步的话就把()变形成3d=2S_3,把()变成4D=2S_4,也可以解出同样的结论。总之一步纯粹是解线性方程组,已经不用动脑子了,大不了多取几个点)

这个问题很复杂,不做数学N年了

a1=1、an=3奇、an=4偶

问题是需要自己去做的,而不是去靠别人。

题目呢。高考过去这么多天。谁记得啊。

请教恩师呀

2n-1

2022高考数学难度

而根据权威部门所发布的消息,2022年新高考全国卷的数学题处于中上等难度,相比往年的高考难度增加了一些,而这样做的目的就是加大考生与考生之间的竞争。

而高考中的数学题的基础分大概在30~50分之间,因为这个基础分是最基本的一些题型,只要考生在上课期间认真听课,认真复习这些分都能拿满。

一、2022年新高考全国卷的数学题处于中上等难度(11)函式y=2x - 的影象大致是

根据相关媒体,本次出题是由全国的高考专家库出题的,而这次高考数学题的难度为中上等,要比往年的高考难度增加了许多。

而本年度的高考很多考生都在反映数学题非常难,都是一些在课程上没有见过的题型,而这又从侧面反映了学校在教课期间并没有对数学题的一些知识内容进行扩展,而只是把重点放在了书本上,所以从这一点上考生们没有接触到新型题型,自然会感觉很难。

一般来讲,全国数学题考试卷总分在150分,而基础分都会设置在30分到50分左右,而根据专家透露的消息,2022年的高考基础分在30分到50分左右,这些题型在课本上都是能见得到的,只要考生在上课期间认真听讲,认真做笔记那么是完全可以拿到这些分数的,因为这是最基础的一种题型。

三、总结

总的来说,本年度的高考确实很难,甚至把深圳中学的一个学霸都给考哭了,而很多数学教师在做数学高考试卷的时候都感觉很难

通常要花费两个小时以上才能把所有题型做完,并且还拿不到满分。而还有考生反映往年的高考都有人保证数学成绩能拿满分,而今年的考生则反映没有人敢保证敢拿数学成绩的满分,这就直接表明本年度高考数学这个难度是很难的。

2010年全国高考一卷理科数学的一题的第二问。求详细解答

2022高考数学难度介绍如下:

2010年全国高考一卷理科数学的一题的第二问。求详细解答 方法一:

由题意可知:数列an单调递增而且有界,根据极限存在定理,可知道,必然会有一个极限h使得lim(n→∞)an=h,対原式两边取极限,有lim(n→∞)a(n+1)=lim(n→∞) (c-1/an ),可得c=

h+1/h,显然h>a1,即h>1,又由题意有a(n+1)<3,因此h≤3,可得c的范围是(2,10/3]

方法二:

首先因为an递增,显然a2>a1,代入递推式可知:c>2,然后设c=k+1/k,bn=1/(an-k),由于c>2,显然对于任意k>0且k≠1均满足,对递推式两边同时减去k,然后整理有:1/(a(n+1)-k)=(kan-k^2+k^2)/(an-k),继续化简有:b(n+1)=k+k^2bn看,又b1=1/1-k,根据不动点或者构造等比数列,可知:

bn=k^2(n-1)(1/1-k^2)+k/1-k^2,从而an=[1-k^2/k^2(n-1)+k]+k,显然对于任意k>0且k≠1,1-k^2/k^2(n-1)+k均递减且趋向于0,因此an也趋向于k,但是,若k<1,从第二项开始均小于1,不满足题意,排除。又an<3,所以k≤3,综合上述k的范围是(1,3],从而可知可得c的范围是(2,10/3]

一开始审题只是想到种方法,第二种方法是做完问的时候察觉到的,我觉得为什么要c=5/2的情况下,an必须减2才能构造等比数列?而且问的时候顺便把an也算出来了,结果an也是等于一个无穷小+2,也就是说趋向于2,显然不仅c值,还有an的极限都与2有关,于是就把它推广,思路就清晰起来了,当an-k时,c=k+f(k),然后必然有an趋向于k,之后对递推式两边减k,有:a(n+1)-k=f(k)-1/an,因此只要保证右边有q1(an-k)/q2an(q1,q2是未知常量)就能像问一样的思路把bn求出来,对比一下就发现,q1/q2=f(k),q1k/q2=1,消去q1/q2,有f(k)=1/k,也就是c=k+1/k的由来了。

求07上海高考文科数学一题的详细解答!

去书店买今年的高考真题,那道题全上海都没几个人做出来,你在这是指望不上了,我高考数学139,就栽这道题上了

求2010年全国二卷理科数学一题的。要详细,谢谢!

2010高考数学理科全国卷2 :edu.qq./zt/2010/2010gkst/index.s

2011,2010新课标理科数学一题详细解答

给我你的email吧,我给你发过去

10年高考理科数学全国卷地8题 求详细解答 线上等!

a=log3,2=1/log2,3

b=ln2=1/log2,3

而 log2,3>log2,e>1,所以a

c=1/根号5,而根号5>2=log2,4

所以c

综上所得有:c

求助:2008全国卷1理科数学第15题的详细解答。O(∩_∩)O谢谢!

设AB=BC=m,在△ABC中,由余弦定理,可求得AC=5m/3,由椭圆定义可得2a=BC+AC=8M/3,2C=M,

∴e=3/8

2010年全国高考理科数学试题山东卷

2010年普通高等学校招生全国统一考试(山东卷)

理科数学解析版

注意事项:

1答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上.并将准考证

号条形码贴上在答题卡上的指定位置,用2B铅笔将答题卡上试卷型别B后的方框涂黑。

2选择题的作答:每小题选出后,用2B铅笔把答题卡上对应题目的标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他标号。答在试题卷、草稿纸上无效。

3填空题和解答题用0 5毫米黑色墨水箍字笔将直接答在答题卡上对应的答题区

域内。答在试题卷、草稿纸上无效。

4考生必须保持答题卡的整洁。考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷(共60分)

一、选择题:本大题共l0小题.每小题5分,共50分在每小题给出的四个选项中,只

有一项是满足题目要求的.

(1) 已知全集U=R,M={x||x-1| 2},则

(A){x|-13} (D){x|x -1或x 3}

【解析】因为 ,全集 ,所以

【命题意图】本题考查的补集运算,属容易题.

(2) 已知 (a,b∈R),其中i为虚数单位,则a+b=

【】B

【解析】由 得 ,所以由复数相等的意义知 ,所以 1,故选B.

【命题意图】本题考查复数相等的意义、复数的基本运算,属保分题。

(3)在空间,下列命题正确的是

(A)平行直线的平行投影重合

(B)平行于同一直线的两个平面平行

(C)垂直于同一平面的两个平面平行

(D)垂直于同一平面的两条直线平行

【】D

【解析】由空间直线与平面的位置关系及线面垂直与平行的判定与性质定理可以得出。

【命题意图】考查空间直线与平面的位置关系及线面垂直与平行的判定与性质,属基础题。

(4)设f(x)为定义在R上的奇函式,当x≥0时,f(x)= +2x+b(b为常数),则f(-1)=

(A) 3 (B) 1 (C)-1 (D)-3

【】D

(7)由曲线y= ,y= 围成的封闭图形面积为[来源:ks5u.]

(A) (B) (C) (D)

【】A

【命题意图】本题考查定积分的基础知识,由定积分求曲线围成封闭图形的面积。

(8)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在第四位、节目乙不能排在位,节目丙必须排在一位,该台晚会节目演出顺序的编排方案共有

(A)36种 (B)42种 (C)48种 (D)54种

【】B

可知当直线 平移到点(5,3)时,目标函式 取得值3;当直线 平移到点(3,5)时,目标函式 取得最小值-11,故选A。

【】A

【解析】因为当x=2或4时,2x - =0,所以排除B、C;当x=-2时,2x - = ,故排除D,所以选A。

【命题意图】本题考查函式的图象,考查同学们对函式基础知识的把握程度以及数形结合的思维能力。

(12)定义平面向量之间的一种运算“ ”如下,对任意的 , ,令

,下面说法错误的是( )

A.若 与 共线,则 B.

C.对任意的 ,有 D.

【】B

【解析】若 与 共线,则有 ,故A正确;因为 ,而

,所以有 ,故选项B错误,故选B。

【命题意图】本题在平面向量的基础上,加以创新,属创新题型,考查平面向量的基础知识以及分析问题、解决问题的能力。

二、填空题:本大题共4小题,每小题4分,共16分.

(13)执行右图所示的程式框图,若输入 ,则输出 的值为 .

【】

【解析】当x=10时,y= ,此时|y-x|=6;

当x=4时,y= ,此时|y-x|=3;当x=1时,y= ,此时|y-x|= ;

当x= 时,y= ,此时|y-x|= ,故输出y的值为 。

【命题意图】本题考查程式框图的基础知识,考查了同学们的试图能力。

【】

【解析】由题意,设所求的直线方程为 ,设圆心座标为 ,则由题意知:

,解得 或-1,又因为圆心在x轴的正半轴上,所以 ,故圆心座标为(3,0),因为圆心(3,0)在所求的直线上,所以有 ,即 ,故所求的直线方程为 。

【命题意图】本题考查了直线的方程、点到直线的距离、直线与圆的关系,考查了同学们解决直线与圆问题的能力。

(18)(本小题满分12分)

已知等数列 满足: , , 的前n项和为 .

(Ⅰ)求 及 ;

(Ⅱ)令bn= (n N),求数列 的前n项和 .

【解析】(Ⅰ)设等数列 的公为d,因为 , ,所以有

,解得 ,

所以 ; = = 。

(Ⅱ)由(Ⅰ)知 ,所以bn= = = ,

所以 = = ,

即数列 的前n项和 = 。

【命题意图】本题考查等数列的通项公式与前n项和公式的应用、裂项法求数列的和,熟练数列的基础知识是解答好本类题目的关键。

(19)(本小题满分12分)

如图,在五棱锥P—ABCDE中,PA⊥平面ABCDE,AB‖CD,AC‖ED,AE‖BC, ABC=45°,AB=2 ,BC=2AE=4,三角形PAB是等腰三角形.

(Ⅰ)求证:平面PCD⊥平面PAC;

(Ⅱ)求直线PB与平面PCD所成角的大小;

(Ⅲ)求四棱锥P—ACDE的体积.

【解析】(Ⅰ)证明:因为 ABC=45°,AB=2 ,BC=4,所以在 中,由余弦定理得: ,解得 ,

所以 ,即 ,又PA⊥平面ABCDE,所以PA⊥ ,

又PA ,所以 ,又AB‖CD,所以 ,又因为

,所以平面PCD⊥平面PAC;

(Ⅱ)由(Ⅰ)知平面PCD⊥平面PAC,所以在平面PAC内,过点A作 于H,则

,又AB‖CD,AB 平面 内,所以AB平行于平面 ,所以点A到平面 的距离等于点B到平面 的距离,过点B作BO⊥平面 于点O,则 为所求角,且 ,又容易求得 ,所以 ,即 = ,所以直线PB与平面PCD所成角的大小为 ;

(Ⅲ)由(Ⅰ)知 ,所以 ,又AC‖ED,所以四边形ACDE是直角梯形,又容易求得 ,AC= ,所以四边形ACDE的面积为 ,所以四棱锥P—ACDE的体积为 = 。

2011新课标高考理科数学填空一题的详细解题过程22.(本小题满分10分)。

y=c+2a

a/sinA=b/sinB=c/sinC=2

y=2sinC+4sinA=2sin(180-60-A)+4sinA=5sinA+√3cosA

值为2√7

2007年高考全国卷1数学一题的第二问,怎么求Bn通项

问题你也要贴出来把!!!

2009年全国高考理科数学卷第二卷的第11题怎么做?请帮忙

不要做了 都高考完了 还做个鸟啊 好好玩 玩了就出成绩了~~

求近三年高考数学题

不满意

几何

满意

买“五年高考,三年模拟”试题都是按章节分类的,很好找

天利38套,很全

也不错

买本《十年高考》

既然你不会下,就只好去买了

把常用的公式和一些妙招一定要背熟,配合着题练习~

昨一百道公式方法记不住也是白搭~

可怜的孩子,被老师逼迫成这样了

去书店买吧!

2019年全国卷2高考数学试卷试题及解析(WORD版)

(A)-1 (B)1 (C)2 (D)3

2015年高考全国卷2理科数学试题及解析(word精校版)

二、基础分大概在30~50分

注意事项:

1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。答卷前,考生务必先将自己的姓名、准考证号码填写在答题卡上。

2.回答第I卷时,选出每小题的后,用铅笔把答题卡上对应题目的标号涂黑,如需改动,用橡皮擦干净后,再选涂其他标号。写在本试卷上无效。

3.回答第II卷时,将写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知A={-2,-1,0,1,2},B={x|(X-1)(x+2)<0},则A∩B=()

(A){--1,0}(B){0,1}(C){-1,0,1}(D){,0,,1,2}

【】A

【解析】由已知得

,故 ,故选A

(2)若a为实数且(2+ai)(a-2i)=-4i,则a=()

(A)-1(B)0(C)1(D)2

【】B

(3)根据下面给出的2004年至2013年我国排放量(单位:万吨)柱形图。以下结论不正确的是()

(A)逐年比较,2008年减少排放量的效果最显著

(B)2007年我国治理排放显现

(C)2006年以来我国年排放量呈减少趋势

(D)2006年以来我国年排放量与年份正相关

【】D

【解析】由柱形图得,从2006年以来,我国排放量呈下降趋势,故年排放量与年份负相关.

(4)等比数列{an}满足a1=3,

=21,则 ()

(A)21(B)42(C)63(D)84

【】B

(5)设函数

, ()

(A)3(B)6(C)9(D)12

【解析】由已知得

,又 ,所以 ,故 .

(6)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为

(A)

(B) (C) (D)

【】D

【解析】由三视图得,在正方体

中,截去四面体 ,如图所示,,设正方体棱长为 ,则 ,故剩余几何体体积为 ,所以截去部分体积与剩余部分体积的比值为 .

(7)过三点A(1,3),B(4,2),C(1,-7)的圆交于y轴于M、N两点,则

=(A)2

(B)8(C)4 (D)10

(8)右边程序抗土的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”。执行该程序框图,若输入a,b分别为14,18,则输出的a=

A.0B.2C.4D.14

【】B

【解析】程序在执行过程中,

, 的值依次为 , ; ; ; ; ; ,此时 程序结束,输出 的值为2,故选B.

(9)已知A,B是球O的球面上两点,∠AOB=90,C为该球面上的动点,若三棱锥O-ABC体积的值为36,则球O的表面积为

A.36πB.64πC.144πD.256π

【解析】如图所示,当点C位于垂直于面

的直径端点时,三棱锥 的体积,设球 的半径为 ,此时 ,故 ,则球 的表面积为 ,故选C.

10.如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A、B两点距离之和表示为x的函数f(x),则f(x)的图像大致为

【】B

的运动过程可以看出,轨迹关于直线 对称,且 ,且轨迹非线型,故选B.

(11)已知A,B为双曲线E的左,右顶点,点M在E上,?ABM为等腰三角形,且顶角为120°,则E的离心率为

(A)√5(B)2(C)√3(D)√2

【】D

(12)设函数f’(x)是奇函数

的导函数,f(-1)=0,当 时, ,则使得 成立的x的取值范围是

(A)

(B)

(C)

(D)

【】A

记函数

,则 ,因为当 时, ,故当 时, ,所以 在 单调递减;又因为函数 是奇函数,故函数 是偶函数,所以 在 单调递减,且 .当 时, ,则 ;当 时, ,则 ,综上所述,使得 成立的 的取值范围是 ,故选A.

二、填空题

(13)设向量

, 不平行,向量 与 平行,则实数 _________.

【】

【解析】因为向量

与 平行,所以 ,则 所以 .

(14)若x,y满足约束条件

,则 的值为____________.

【】

(15)

的展开式中x的奇数次幂项的系数之和为32,则 __________.

【】

【解析】由已知得

,故 的展开式中x的奇数次幂项分别为 , , , , ,其系数之和为 ,解得 .

(16)设

是数列 的前n项和,且 , ,则 ________.

【】

【解析】由已知得

,两边同时除以 ,得 ,故数列 是以 为首项, 为公

的等数列,则 ,所以 .

三.解答题

(17)?ABC中,D是BC上的点,AD平分∠BAC,?ABD是?ADC面积的2倍。

(Ⅰ)求

;(Ⅱ)若

=1,

=求

和的长.

(18)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:

A地区:62738192958574645376

78869566977888827689

B地区:738362514653736482

93486581745654766579

(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);

(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个不等级:

满意度评分

低于70分

70分到89分

不低于90分

满意度等级

非常满意

记时间C:“A地区用户的满意度等级高于B地区用户的满意度等级”。设两地区用户的评价结果相互。根据所给数据,以发生的频率作为相应发生的概率,求C的概率

19.(本小题满分12分)

如图,长方体ABCD—A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形。

(1)在图中画出这个正方形(不必说明画法和理由);

(2)求直线AF与平面α所成的角的正弦值。

20.(本小题满分12分)

已知椭圆C:

,直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M。

(1)证明:直线OM的斜率与l的斜率的乘积为定值;

(2)若l过点

,延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由。

21.(本小题满分12分)

设函数

。(1)证明:

在 单调递减,在 单调递增;

(2)若对于任意

,都有 ,求m的取值范围。

请考生在第22、23、24题中任选一题作答,如果多做,则按所做的题记分。作答时请写清题号

选修4-1:几何证明选讲

如图,O为等腰三角形ABC内一点,⊙O与ΔABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点。

(1)证明:EF∥BC;

(2)若AG等于⊙O的半径,且

,求四边形EBCF的面积。

23.(本小题满分10分)

选修4-4:坐标系与参数方程

在直角坐标系xOy中,曲线C1:

(t为参数,t≠0),其中0≤α<π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2: ,C3: 。

(1)求C2与C3交点的直角坐标;

(2)若C1与C2相交于点A,C1与C3相交于点B,求

的值。

24.(本小题满分10分)

选修4-5:不等式选讲

设a,b,c,d均为正数,且a+b=c+d,证明:

(1)若ab>cd;则

;(2)

是 的充要条件。

附:全部试题

;

版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。