导语:选择题从难度上讲是比其他类型题目降低了,但知识覆盖面广,要求解题熟练、准确、灵活、快速。下面就由我为大家分享10个高考数学选择题解题小妙招,希望能给大家带来帮助!
21届数学高考解答 21届高考数学试卷
21届数学高考解答 21届高考数学试卷
21届数学高考解答 21届高考数学试卷
高考数学选择题解题小妙招
1.特值检验法:
对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
例:△ABC的三个顶点在椭圆4x2+5y2=6上,其中A、B两点关于原点O对称,设直线AC的斜率k1,直线BC的斜率k2,则k1k2的值为
A. -5/4 B.-4/5 C.4/5 D. 2√5/5
解析:因为要求k1k2的值,由题干暗示可知道k1k2的值为定值。题中没有给定A、B、C三点的具置,因为是选择题,我们没有必要去求解,通过简单的画图,就可取最容易计算的值,不妨令A、B分别为椭圆的长轴上的两个顶点,C为椭圆的短轴上的一个顶点,这样直接确认交点,可将问题简单化,由此可得,故选B。
2.极端性原则3.剔除法::
将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。
利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的,从而达到正确选择的目的。这是一种常用的方法,尤其是为定值,或者有数值范围时,取特殊点代入验证即可排除。
4.数形结合法:
由题目条件,作出符合题意的`图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
5.递推归纳法:
通过题目条件进行推理,寻找规律,从而归纳出正确的方法。
6.顺推法:
利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。
例:银行将某资金给项目M和N投资一年,其中40%的资金给项目M,60%的资金给项目N,项目M能获得10%的年利润,项目N能获得35%的年利润,年终银行必须回笼资金,同时按一定的回扣率支付给储户. 为了使银行年利润不小于给M、N总投资的10%而不大于总投资的15%,则给储户回扣率最小值为
A.5% B.10% C.15% D.20%
解析:设共有资金为α, 储户回扣率χ, 由题意得解出0.1α≤0.1×0.4α+0.35×0.6α-χα≤0.15α
解出0.1≤χ≤0.15,故应选B.
7.逆推验证法(代入题干验证法):
将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。
例:设M和N都是正整数N,映射f:M→把M中的元素n映射到N中的元素2n+n,则在映射f下,象37的原象是
A.3 B.4 C.5 D.6
8.正难则反法:
从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。
9.特征分析法:
对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。
例: 256-1可能被120和130之间的两个数所整除,这两个数是:
A.123,125 B.125,127 C.127,129 D.125,127
解析:初中的平方公式,由256-1=(228+1)(228-1)=(228+1)(214+1)(27+1)(27-1)=(228+1)(214+1)·129·127,故选C。
10.估值选择法:
有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。
总结:高考中的选择题一般是容易题或中档题,个别题属于较难题,当中的大多数题的解答可用特殊的方法快速选择。例如:估值选择法、特值检验法、顺推法、数形结合法、特征分析法、逆推验证法等都是常用的解法. 解题时还应特别注意:选择题的四个选择支中有且一个是正确的,因而在求解时对照选择支就显得非常重要,它是快速选择、正确作答的基本前提。
2011年普通高等学校招生全国统一考试(浙江卷)
理科数学
一、选择题
(1)设函数 ,则实数 =
(A)-4或-2 (B)-4或2 (C)-2或4 (D)-2或2
(2)把复数 的共轭复数记作 ,i为虚数单位,若
(3)若某体的三视图如图所示,则这个体的直观图可以是
(4)下列命题中错误的是
(A)如果平面 ,那么平面 内一定存在直线平行于平面
(B)如果平面 不垂直于平面 ,那么平面 内一定不存在直线垂直于平面
(C)如果平面 ,平面 , ,那么
(D)如果平面 ,那么平面 内所有直线都垂直于平面
(5)设实数 满足不等式组 若 为整数,则 的最小值是
(A)14 (B)16 (C)17 (D)19
(6)若 , , , ,则
(A) (B) (C) (D)
(7)若 为实数,则“ ”是 的
(A)充分而不必要条件 (B)必要而不充分条件
(C)充分必要条件 (D)既不充分也不必要条件
(8)已知椭圆 与双曲线 有公共的焦点, 的一条渐近线与以 的长轴为直径的圆相交于 两点, 若 恰好将线段 三等分,则
(A) (B) (C) (D)
(9)有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率
(A) (B) (C) D
(10)设a,b,c为实数,f(x) =(x+a) .记S= 若 , 分别为元素S,T的元素个数,则下列结论不可能的是
(A) =1且 =0 (B)
(C) =2且 =2 (D) =2且 =3
非选择题部分 (共100分)
二、填空题:本大题共7小题,每小题4分,共28分
(11)若函数 为偶函数,则实数 = 。
(12)若某程序图如图所 示,则该程序运行后输出的k的值是 。
(13)设二项式(x- )n(a>0)的展开式中X的系数为A,常数项为B, 若B=4A,则a的值是 。
(14)若平面向量α,β满足|α|≤1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为 ,则α与β的夹角 的取值范围是 。
(15)某毕业生参加人才会,分别向甲、乙、丙三个公 司投递了,定该毕业生得到甲公司面试的概率为 ,得到乙公司面试的概率为 ,且三个公司是否让其面试是相互的。记X为该毕业生得到面试得公司个数。若 ,则随机变量X的数学期望
(16)设 为实数,若 则 的值是 .。
(17)设 分别为椭圆 的焦点,点 在椭圆上,若 ;则点 的坐标是 .
三、解答题;本大题共5小题,共72分。解答应写出文字说明、证明过程或演算步骤。
(18)(本题满分14分)在 中,角 所对的边分别为a,b,c.
已知 且【解析】 .
(Ⅰ)当 时,求 的值;
(Ⅱ)若角 为锐角,求p的取值范围;
(19)(本题满分14分)已知公不为0的等数列 的首项 为a( ),设数列的前n项和为 ,且 , , 成等比数列
(1)求数列 的通项公式及
(2)记 , ,当 时,试比较 与 的大小.
(20)(本题满分15分)如图,在三棱锥 中, ,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上,已知BC=8,PO=4,AO=3,OD=2
(Ⅰ)证明:AP⊥BC;
(Ⅱ)在线段AP上是否存在点M,使得二面角A-MC-β为直二面 角?若存在,求出AM的长;若不存在,请说明理由。
(21)(本题满分15分)已知抛物线 : = ,圆 : 的圆心为点M
(Ⅰ)求点M到抛物线 的准 线的距离;
(Ⅱ)已知点P是抛物线 上一点(异于原点),过点P作圆 的两条切线,交抛物线 于A,B两点,若过M,P两点的直线 垂直于 AB,求直线 的方程
(22)(本题满分14分)
设函数
(I)若 的极值点,求实数 ;
(II)求实数 的取值范围,使得对任意的 ,恒有 成立,注: 为自然对数的底数。
自己去考试吧找卷子吧
去考试吧找
网上提供的选择题没有解题过程,以下是我做的解答,尽量给出各种解法。
【1】A={4,5,7,9},B={3,4,7,8,9},U=A∪B,则CU(A∩B)的元素共有(A)。(A)3个 (B)4个 (C)5个 (D)6个
【解】U={3,4,5,7,8,9}, A∩B={4,7,9} ,则|CU(A∩B)|=6-3=3.
【2】(z的共轭)/(1+i)=2+i,则z=(B)。(A)-1+3i (B)1-3i (C)3+i (D)3-i
【解】(z的共轭)=(1+i)(2+i)=1+3i;于是z=1-3i.
【3】不等式|x+1|/|x-1|<1的解集是(D)。
(A){x|0 【解1】4个选项中(D)的范围,干脆走极端,取x=-100代入不等式左边,能满足:|-100+1|/|-100-1|=99/101<1,这说明前三个选项都不对。 【解2】代入发现x=0.5∈(0,1)不满足不等式:1.5/0.5>1,可见(A)、(B)都应排除;再取x=-1代入发现能使不等式成立:0 <1,可见排除(C). 【解3】原不等式即|x+1|<|x-1|,几何上表示数轴上到点-1的距离小于到点1的距离的动点,这样的点肯定在原点左侧(画个数轴一看便知)。 即 2x/(x-1)>0且2/(x-1)<0;即x<0或x>1,且x<1。综上得到x<0. 【注】本题还有别的解法,不过都很繁琐,算了吧。 【4】双曲线(x2/a2)-(y2/b2)=1(a>0 ,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率为(C)。 (A)根号3 (B)2 (C)根号5 (D)根号6 【解1】显然该双曲线与抛物线相切的渐近线方程是y=bx/a;另一方面,抛物线y=x2+1在点(x0,y0)的切线是(y+y0)/2=x0x+1. 依题意该切线过原点,即y0/2=1,所以y0=2,则x0=1.则切点坐标是(1,2);由于切点也在渐近线上,则2=b/a,于是c=(根号5)a;e=根号5. 【解2】直线y=bx/a与曲线y=x2+1相切,在切点(x0,y0)处有x02+1=bx0/a,2x0=b/a;解此方程组得到b=2a【以下同解1】。 【5】甲组有5名男生、3名女生,乙组有6名男生、2名女生。从这两组各选2人,则选出4人中恰有1名女生的不同选法共有(D)种。 (A)150 (B)180 (C)300 (D)345 【解】一组选1男1女,且另一组选2男:C15C13C26+ C25 C16 C12=225+120=345. 【6】设a,b,c都是单位向量,且ab=0,则(a-c)并且注意除a_1外{a_n}的任何一项必同时属于某个A_u和某个B_v。(b-c)的最小值为(D)。 (A)-2 (B)(根号2)-2 (C)-1 (D)1-(根号2) 注:暂以表示向量数量积运算。 【解1】(a-c)(b-c)=ab+cc-c(a+b)=1-|c||a+b|cos(c,a+b);注意a⊥b,所以|a+b|=根号2,则 (a-c)(b-c)=1-(根号2)cos(c,a+b)>=1-(根号2);其中等号当且仅当cos(c,a+b)=0即c与a+b同向时成立。 【解2】(坐标法)让a、b分别与x、y轴正向重合,则a(1,0),b(0,1). 设c(x,y),则x2+y2=1.于是 (a-c)(b-c)=(1-x,-y)(-x,1-y)=x2+y2-x-y=1-(x+y);为求上式最小值,只需求x+y值,故此不妨设x>0,y>0,于是由平均值不等式有x+y<=根号下(2(x2+y2))=根号2,其中等号当且仅当x=y=(根号2)/2时成立。 【7】三棱柱ABC-A1B1C1的侧棱与底边相等,A1在底面ABC的射影为BC的中点。则异面直线AB与CC1所成角的余弦为(D)。 (A)(根号3)/4 (B)(根号5)/4 (C)(根号7)/4 (D)3/4 【解1】设棱长及底边长均为1。设BC的中点为D,B1在底面的射影为E。易知所求角等于AB与BB1所成的角。作BF⊥AB并交AB的延长线于F,连EF,由三垂线定理有EF⊥BF。于是只需求cos∠B1BF=BF/BB=BF; 在Rt△BFE中,BF=BEcos30o=AD(根号3)/2=[(根号3)/2][ (根号3)/2]=3/4. 【解2】(向量法)设棱长边长均为1。【注:以下以UV表示U为起点V为终点的向量】 cos(AB,CC1)=ABCC1/|AB||CC1|=ABBB1=AB(BE+EB1)=AB(AD+DA1)=ABAD 【AB⊥DA1】 =|AB||AD|cos30o=3/4. 【解3】(坐标法)设棱长及底边长均为1。设BC的中点为O,以O为原点,射线OB、AD的延长线、射线OA1分别为x、y、z轴,建立空间直角坐标系。则有关各点坐标分别为 B(1/2,0,0),A(0,-(根号3)/2,0),A1(0,0,1/2),B1(1/2, (根号3)/2,1/2). 向量AB=(1/2, (根号3)/2,0), 向量BB1=(0, (根号3)/2,1/2). 所以 cos 【8】函数y=3cos(2x+θ)的图像关于点(4π/3,0)中心对称,则|θ|的最小值为(A). (A)π/6 (B)π/4 (C)π/3 (D)π/2 【解1】0=y(4π/3)=cos((2π/3)+θ),则θ+2π/3=kπ+π/2,k是整数; 即θ=kπ-π/6 (k是整数);可见k=0时|θ|=π/6最小。 【解2】y=3cos(2x+θ)=3sin((π/2)-(2x+θ))=-3sin(2x+θ-π/2); 0= y(4π/3)=-3sin((13π/6)+θ)=-3sin(θ+π/6); 则θ+π/6=kπ(k是整数)【以下同解1】。 【9】直线y=x+1与曲线y=ln(x+a)相切,a的值为(B)。 (A)1 (B)2 (C)-1 (D)-2 【解】在切点处有x+1=ln(x+a), 1=1/(x+a). 解该方程组:x=-1,a=2. 【10】二面角α-m-β=60o,动点P,Q分别在平面α,β内,P到β的距离为(根号3),Q到α的距离为2(根号3),则|PQ|的最小值为(C)。 (A)根号2 (B)2 (C)2(根号3) (D)4 【解】作PA⊥β,QC⊥α;作PB⊥m,QD⊥m;连AB、CD. 易知PB‖CD,QD‖AB,并且∠PBA=∠QDC=60o. 由题设PA=根号3,QC=2(根号3);则PB=2,CD=2,即PB=CD. 这意味着当P点与C点重合时|PQ|=2(根号3)为最小值。 【11】函数f(x)的定义域是R,f(x-1)和f(x+1)都是奇函数,则(D)。 (A)f(x)是偶函数 (B)f(x)是奇函数 (C)f(x)=f(x+2) (D)f(x+3)是奇函数 【解】(特例排除法)取f(x)=sin(πx),则f(x+1)=-sin(πx),f(x-1)=sin(πx)都是奇函数,满足题干要求。此时(A)不成立。 再取f(x)=cos(πx/2),则f(x+1)=-sin(πx/2),f(x-1)=sin(πx/2)都是奇函数,满足题干要求,此时(B)不成立;(C)不成立,因为f(x+2)=-cos(πx/2)≠f(x). 可见应选(D). 【12】椭圆C:x2/2+y2=1的右焦点为F,右准线为L,点A∈L,AF交C于B,向量FA=3(向量FB),则|AF|=(A)。 (A)根号2 (B)2 (C)根号3 (D)3 【解】a2=2,b=1,则c=1,焦点F(1,0),准线方程为x=2. 设B(x,y),准线与x轴交于P点,再作BQ⊥x轴,垂足为Q. 因为向量FA=3(向量FB),所以|FQ|/|FP|=1/3,即(x-1)/(2-1)=1/3,z则x=4/3;代入椭圆方程解得y=1/3; 再由|AP/|BQ|=3,可得到A的纵坐标是3y=1,则点A(2,1);|FA|=根号2. 去书店 解:(1)由M={1},根据题意可知k=1,所以n≥2时,Sn+1+Sn-1=2(Sn+S1), 即(Sn+1-Sn)-(Sn-Sn-1)=2S1,又a1=1, 则an+1-an=2a1=2,又a2=2, 所以数列{an}除去首项后,是以2为首项,2为公的等数列, 故当n≥2时,an=a2+2(n-2)=2n-2, 所以a5=8; (2)根据题意可知当k∈M={3,4}, 且n>k时,Sn+k+Sn-k=2(Sn+Sk)①,且Sn+1+k+Sn+1-k=2(Sn+1+Sk)②, ②-①得:(Sn+1+k-Sn+k)+(Sn+1-k-Sn-k)=2(Sn+1-Sn), 即an+1+k+an+1-k=2an+1,可化为:an+1+k-an+1=an+1-an+1-k 所以n≥8时,an-6,an-3,an,an+3,an+6成等数列,且an-6,an-2,an+2,an+6也成等数列, 从而当n≥8时,2an=an-3+an+3=an-6+an+6,()且an-2+an+2=an-6+an+6, 所以当n≥8时,2an=an-2+an+2,即an+2-an=an-an-2, 于是得到当n≥9时,an-3,an-1,an+1,an+3成等数列,从而an-3+an+3=an-1+an+1, 由()式可知:2an=an-1+an+1,即an+1-an=an-an-1, 当n≥9时,设d=an-an-1, 则当2≤n≤8时,得到n+6≥8,从而由()可知,2an+6=an+an+12,得到2an+7=an+1+an+13, 两式相减得:2(an+7-an+6)=an+1-an+(an+13-an+12), 则an+1-an=2d-d=d, 因此,an-an-1=d对任意n≥2都成立, 又由Sn+k+Sn-k-2Sn=2Sk,可化为:(Sn+k-Sn)-(Sn-Sn-k)=2Sk, 当k=3时,(Sn+3-Sn)-(Sn-Sn-3)=9d=2S3;同理当k=4时,得到16d=2S4, 两式相减得:2(S4-S3)=2a4=16d-9d=7d,解得a4= d, 因为a4-a3=d,解得a3= d,同理a2= d,a1= , 则数列{an}为等数列,由a1=1可知d=2, 所以数列{an}的通项公式为an=1+2(n-1)=2n-1. 既然有人给你解答了,我就讲一下思路。 第题主是否想询问”21届湖南高考数学平均分“?文科数学65.39,理科数学100.62。据统计2021年湖南高考各科平均分数为语文96.88,英语83.69,文科数学65.39,理科数学100.62,文科综合164.03,理科综合141.45。湖南省,简称“湘”,是中华省级行政区,省会长沙市,东临江西省,西接重庆市、贵州省,南毗广东省、广西壮族自治区,北连湖北省。1问就不写了。 第2问道理不多,首先要相信只有等数列才能同时满足那两个条件,在这个前提下大胆猜测结论,然后就是证明。高考难度通常比较低,中学生知识又少,要相信结论只能是很简单的。 先把条件用一遍 n>3时(S_{n+3}-S_{n})+(S_{n}-S_{n-3})=2S_3,即 a_{n+3}+a_{(A)3-i (B)3+i (C)1+3i (D)3n+2}+a_{n+1}-a_{n}-a_{n-1}-a_{n-2}=2S_3 () 把n用n+1代之后和这个式子减一下得到 a_{n+4}-2a_{n+1}+a_{n-2}=0,即a_{n+4}-a_{n+1}=a_{n+1}-a_{n-2} 这样就得到了类的三组间隔为3的等子列A_1={a_2,a_5,...}, A_2={a_3,a_6,...}, A_3={a_4,a_7,...} 同理把k=4的条件 a_{n+4}+a_{n+3}+a_{n+2}+a_{n+1}-a_{n}-a_{n-1}-a_{n-2}-a_{n-3}=2S_4 () 用一遍可以得到第二类的四组间隔为4的等子列B_1={a_2,a_6,...}, B_2={a_3,a_7,...}, B_3={a_4,a_8,...}, B_4={a_5,a_9,...} 下一步证明每一类内部的几个等数列的公是一样的,因为3和4互质,做到这里应该已经可以相信结论一定是对的。 用()-()得到a_{n+4}-a_{n-3}=2a_4,也就是说又得到一类间隔为7的等子列。定A_u的公为d_u,那么对于任何a_n属于A_u,利用7d_u=a_{n+21}-a_{n}=6a_4,所以d_u=6/7a_4,即类的三组序列的公相同,简记为d。同理考察a_{n+28}-a_{n}得第二类的四组序列公也相同,简记为D,其大小为D=2a_4。 (如果没有想到()-()这步,那么可以考察a_{n+12}-a_{n},注意a_{n}可以取遍所有的A_u和B_v,可以得到d_u和D_v和u,v无关,只不过无法直接得到d,D及a_4的关系) 下一步目标就很明确了,证明整个{a_n}(项除外)就是等数列,同样是从两类序列的公共点着手,取几个特殊点解方程即可。 利用 a_8 = a_2+2d = a_4+D a_10 = a_2+2D = a_4+2d 解出d/3=D/4,再代入 a_{n+4} = a_{n}+D = a_{n+1}+d 即得从a_2开始{a_n}是等数列且公为D-d。 结合前面的d=6/7a_4, D=2a_4即得D=8,d=6,a_4=7,从而得到a_n=2n-1,这恰好对第1项也成立。 (如果前面没想到()-()那步的话就把()变形成3d=2S_3,把()变成4D=2S_4,也可以解出同样的结论。总之一步纯粹是解线性方程组,已经不用动脑子了,大不了多取几个点) 这个问题很复杂,不做数学N年了 a1=1、an=3奇、an=4偶 问题是需要自己去做的,而不是去靠别人。 题目呢。高考过去这么多天。谁记得啊。 请教恩师呀 2n-1 而根据权威部门所发布的消息,2022年新高考全国卷的数学题处于中上等难度,相比往年的高考难度增加了一些,而这样做的目的就是加大考生与考生之间的竞争。 而高考中的数学题的基础分大概在30~50分之间,因为这个基础分是最基本的一些题型,只要考生在上课期间认真听课,认真复习这些分都能拿满。 一、2022年新高考全国卷的数学题处于中上等难度(11)函式y=2x - 的影象大致是 根据相关媒体,本次出题是由全国的高考专家库出题的,而这次高考数学题的难度为中上等,要比往年的高考难度增加了许多。 而本年度的高考很多考生都在反映数学题非常难,都是一些在课程上没有见过的题型,而这又从侧面反映了学校在教课期间并没有对数学题的一些知识内容进行扩展,而只是把重点放在了书本上,所以从这一点上考生们没有接触到新型题型,自然会感觉很难。 一般来讲,全国数学题考试卷总分在150分,而基础分都会设置在30分到50分左右,而根据专家透露的消息,2022年的高考基础分在30分到50分左右,这些题型在课本上都是能见得到的,只要考生在上课期间认真听讲,认真做笔记那么是完全可以拿到这些分数的,因为这是最基础的一种题型。 三、总结 总的来说,本年度的高考确实很难,甚至把深圳中学的一个学霸都给考哭了,而很多数学教师在做数学高考试卷的时候都感觉很难 通常要花费两个小时以上才能把所有题型做完,并且还拿不到满分。而还有考生反映往年的高考都有人保证数学成绩能拿满分,而今年的考生则反映没有人敢保证敢拿数学成绩的满分,这就直接表明本年度高考数学这个难度是很难的。 2010年全国高考一卷理科数学的一题的第二问。求详细解答 方法一: 由题意可知:数列an单调递增而且有界,根据极限存在定理,可知道,必然会有一个极限h使得lim(n→∞)an=h,対原式两边取极限,有lim(n→∞)a(n+1)=lim(n→∞) (c-1/an ),可得c= h+1/h,显然h>a1,即h>1,又由题意有a(n+1)<3,因此h≤3,可得c的范围是(2,10/3] 方法二: 首先因为an递增,显然a2>a1,代入递推式可知:c>2,然后设c=k+1/k,bn=1/(an-k),由于c>2,显然对于任意k>0且k≠1均满足,对递推式两边同时减去k,然后整理有:1/(a(n+1)-k)=(kan-k^2+k^2)/(an-k),继续化简有:b(n+1)=k+k^2bn看,又b1=1/1-k,根据不动点或者构造等比数列,可知: bn=k^2(n-1)(1/1-k^2)+k/1-k^2,从而an=[1-k^2/k^2(n-1)+k]+k,显然对于任意k>0且k≠1,1-k^2/k^2(n-1)+k均递减且趋向于0,因此an也趋向于k,但是,若k<1,从第二项开始均小于1,不满足题意,排除。又an<3,所以k≤3,综合上述k的范围是(1,3],从而可知可得c的范围是(2,10/3] 一开始审题只是想到种方法,第二种方法是做完问的时候察觉到的,我觉得为什么要c=5/2的情况下,an必须减2才能构造等比数列?而且问的时候顺便把an也算出来了,结果an也是等于一个无穷小+2,也就是说趋向于2,显然不仅c值,还有an的极限都与2有关,于是就把它推广,思路就清晰起来了,当an-k时,c=k+f(k),然后必然有an趋向于k,之后对递推式两边减k,有:a(n+1)-k=f(k)-1/an,因此只要保证右边有q1(an-k)/q2an(q1,q2是未知常量)就能像问一样的思路把bn求出来,对比一下就发现,q1/q2=f(k),q1k/q2=1,消去q1/q2,有f(k)=1/k,也就是c=k+1/k的由来了。 求07上海高考文科数学一题的详细解答! 去书店买今年的高考真题,那道题全上海都没几个人做出来,你在这是指望不上了,我高考数学139,就栽这道题上了 求2010年全国二卷理科数学一题的。要详细,谢谢! 2010高考数学理科全国卷2 :edu.qq./zt/2010/2010gkst/index.s 2011,2010新课标理科数学一题详细解答 给我你的email吧,我给你发过去 10年高考理科数学全国卷地8题 求详细解答 线上等! a=log3,2=1/log2,3 b=ln2=1/log2,32011江苏高考数学20题第二问详解你怎么做的啊
2022高考数学难度
擦2010年全国高考一卷理科数学的一题的第二问。求详细解答
2022高考数学难度介绍如下:
版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。