高考数学必背概率公式 高考数学概率的知识点

各省高考 2025-02-27 05:47:29

高中必背88个数学公式

高中必背88个数学公式有:圆的公式、椭圆公式、两角和公式、倍角公式、半角公式、和化积、等数列、等比数列、抛物线等公式。

高考数学必背概率公式 高考数学概率的知识点高考数学必背概率公式 高考数学概率的知识点


高考数学必背概率公式 高考数学概率的知识点


高考数学必背概率公式 高考数学概率的知识点


一、高中必背88个数学公式——圆的公式

1、圆体积=4/3(pi)(r^3)

2、面积=(pi)(r^2)

3、周长=2(p7、棱台:V=h[S1+S2+(S1S2)^1/2]/3(S1上底面积,S2下底面积,h-高)i)r

4、圆的标准方程(x-a)2+(y-b)2=r2【(a,b)是圆心坐标】

二、高中必背88个数学公式——椭圆公式

1、椭圆周长公式:l=2πb+4(a-b)

2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的.

3、椭圆面积公式:s=πab

4、椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

以上椭圆周长、面积公式中虽然没有出现椭圆周率t,但这两个公式都是通过椭圆周率t推导演变而来。

三、高中必背88个数学公式——两角和公式

1、四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。sin(a+b)=sinaco+cosasinbsin(a-b)=sinaco-sinbcosa

2、cos(a+b)=cosaco-sinasinbcos(a-b)=cosaco+sinasinb

3、tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)

4、ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)

四、高中必背88个数学公式——倍角公式

1、tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga

2、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

2022高中必背88个数学公式 高中所有数学公式整理

把数列的还有概率的。

2022高中必背88个数学公式有哪些,我整理了相关信息,希望会对大家有所帮助!

点线面三位一体,柱锥台球为代表。距离都从点出发,角度皆为线线成。

2022年高中必背数学公式有哪些 圆的公式

1、圆体积=4/3(pi)(r^3)

2、面积=(pi)(r^2)

3、周长=2(pi)r

4、圆的标准方程(x-a)2+(y-b)2=r2【(a,b)是圆心坐标】

椭圆公式

1、椭圆周长公式:l=2πb+4(a-b)

2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的.

3、椭圆面积公式:s=πab

4、椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

以上椭圆周长、面积公式中虽然没有出现椭圆周率t,但这两个公式都是通过椭圆周率t推导演变而来。

两角和公式

1、sin(a+b)=sinaco+cosasinbsin(a-b)=sinaco-sinbcosa

2、cos(a+b)=cosaco-sinasinbcos(a-b)=cosaco+sinasinb

3、tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)

4、ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)

倍角公式

1、tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga

2、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

1、sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)

2、cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)

3、tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa))

4、ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa))

和化积

1、2sinaco=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)

2、2cosaco=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)

3、sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+co=2cos((a+b)/2)sin((a-b)/2)

4、tana+tanb=sin(a+b)/cosacotana-tanb=sin(a-b)/cosaco

5、ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb

等数列

等比数列

抛物线

1、抛物线:y=ax+bx+c就是y等于ax的平方加上bx再加上c。

a>0时,抛物线开口向上;a<0时抛物线开口向下;c=0时抛物线经过原点;b=0时抛物线对称轴为y轴。

2、顶点式y=a(x+h)+k就是y等于a乘以(x+h)的平方+k,-h是顶点坐标的x,k是顶点坐标的y,一般用于求值与最小值。

3、抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0)。

4、准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程:y^2=2pxy^2=-2pxx^2=2pyx^2=-2py。

高中必备数学公式有哪些 一、正余弦定理

正弦定理:a/sinA=b/sinB=c/sinC=2R R为三角形外接圆的半径

余弦定理:a2=b2+c2-2bccosA

二、诱导公式

一:设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)

二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα

三:任意角α与-α的三角函数值之间的关系:

sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα

四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα

五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα

六:π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

四、倍角公式

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

五、半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

六、和化积

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

七、某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4 12+23+34+45+56+67+…+n(n+1)=n(n+1)(n+2)/3

谁知道高考数学(文)必背的公式有哪些啊

我认为比较重要的就有分式函数:f(x)=ax+b/x(a,b属于R)的单调性.它的单调性要根据图像来记忆,它的图像恕我在这儿画不出来,你可以请教你的数学老师.

公式主要就是课本上的那些

另外补充的还有弦长公式:d=根号下(1+k平方)丨x1-x2丨=根号下(1+k^-2)丨y1-y2丨

三角函数中asinx+bcosx=根号下(a平方+b平方)倍的sin(x+arctan(b/a))用得最多,至于什么和化积,积化合等考试不会考的.

其它的结论你的数学老师在课堂上会讲的.

祝你在排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。高考的时候数学考出好成绩,祝你高考时金榜题名!

基本上老师都会是强调又强调。

现在除了,三8、y=cosxy'=-sinx角函数的那几个和化积,积化合不考,其余的基本都要的。

其实就这几个公式你也记着,能够拓展思路,大大简化运算。

你是要高考么?

如果是高考的话。

还有空间几何

向量

三角函数。

都要看会。

高中数学必背的88个公式 背好这些公式答题不失分

13+23+33+43+53+63+n3=n2(n+1)2/4 12+23+34+45+56+67++n(n+1)=n(n+1)(n+2)/3

高中数学是让很多同学都头疼的一个科目,无论你是文科生还是理科生,想要高考考高分,高中数学都是你必须要考的,也是要考出好成绩的,箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。不然就会给你的整个成绩拉后腿。想,下面我为大家整理了高中数学必背的88个公式,背好这些公式答题不失分,希望对你有帮助。

高中数学必背的88个公式

高中数学常用公式

5、圆的一般方程x2+y2+dx+ey+f=0【d2+e2-4f>0】

在高中阶段中数学的学习,公式是必背的。高中数学的难度一直都是所有科目中的,尤其是对于女生来说,而掌握公式是学好数学的必要条件。下面小编给大家整理了关于高中数学常用公式的内容,欢迎阅读,内容仅供参考!

static/uploads/yc/20211129/abf274035c6d617dfc6c7f2016de3249.jpg"width="484"height="300"/>

高中数学常用公式

1三角不等式

|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤bc(n,m)=p(n,m)/m!=n!/((n-m)!m!);c(n,m)=c(n,n-m);

|a-b|≥|a|-|b|-|a|≤a≤|a|

一元二次方程的解-b+√(b2-4ac)/2a,-b-√(b2-4ac)/2a

根与系数的关系X1+X2=-b/aX1·X2=c/a注:韦达定理

判别式b2-4a=0注:方程有相等的两实根

b2-4ac>0注:方程有一个实根

b2-4ac<0注:方程有共轭复数根

2三角函数公式

两角和公式

sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式tan2A=2tanA/(1-tan2A)

ctg2A=(ctg2A-1)/2ctga

3半角公式

cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))

4和化积

2sinAcosB=sin(A+B)+sin(A-B)

2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B)

-2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB

某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n·2

2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/41·2+2·3+3·4+4·5+5·6+6·7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径

余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角

圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标

圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0

抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py

直棱柱侧面积S=c·h

斜棱柱侧面积S=c'·h

正棱锥侧面积S=1/2c·h'

正棱台侧面积S=1/2(c+c')h'

圆台侧面积S=1/2(c+c')l=pi(R+r)l

球的表面积S=4pi·r2

圆柱侧面积S=c·h=2pi·h

弧长公式l=a·ra是圆心角的弧度数r>0扇形面积公式s=1/2·l·r

锥体体积公式V=1/3·S·H圆锥体体积公式V=1/3·pi·r2h

斜棱柱体积V=S'L注:其中S'是直截面面积,L是侧棱长

柱体体积公式;V=s·h圆柱体V=pi·r2h

正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径

余弦定理b^2=a^2+c^2-2accosB注:角B是边a和边c的夹角

圆的标准方程(x-a)^2+(y-b)^2=^r2注:(a,b)是圆心坐标

圆的一般方程x^2+y^2+Dx+Ey+F=0注:D^2+E^2-4F>0

抛物线标准方程y^2=2pxy^2=-2pxx^2=2pyx^2=-2py

直棱柱侧面积S=c·h斜棱柱侧面积S=c'·h

正棱锥侧面积S=1/2c·h'正棱台侧面积S=1/2(c+c')h'

圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi·r2

圆柱侧面积S=c·h=2pi·h圆锥侧面积S=1/2·c·l=pi·r·l

弧长公式l=a·ra是圆心角的弧度数r>0扇形面积公式s=1/2·l·r

锥体体积公式V=1/3·S·H

柱体体积公式V=s·h圆柱体V=pi·r2h

倍角公式

tan2A=2tanA/[1-(tanA)^2]

cos2a=(cosa)^2-(sina)^2=2(cosa)^2-1=1-2(sina)^2

半角公式

cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))

cot(A/2)=√((1+cosA)/((1-cosA))cot(A/2)=-√((1+cosA)/((1-cosA))

5和化积

2sinAcosB=sin(A+B)+sin(A-B)

2cosAsinB=sin(A+B)-sin(A-B))

2cosAcosB=cos(A+B)-sin(A-B)

-2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2

cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB

6某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2

2+4+6+8+10+12+14+…+(2n)=n(n+1)5

1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6

1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4

1·2+2·3+3·4+4·5+5·6+6·7+…+n(n+1)=n(n+1)(n+2)/3

7常用导数公式

1、y=c(c为常数)y'=0

2、y=x^ny'=nx^(n-1)

3、y=a^xy'=a^xlna

4、y=e^xy'=e^x

5、y=logaxy'=logae/x

6、y=lnxy'=1/x

7、y=sinxy'=cosx

9、y=tanxy'=1/cos^2x

10、y=cotxy'=-1/sin^2x

11、y=arcsinxy'=1/√1-x^2

12、y=arccosxy'=-1/√1-x^2

13、y=arctanxy'=1/1+x^2

14、y=arccotxy'=-1/1+x^2

怎样学好高中数学

一、基础知识点是解决数学问题的开始

把书中所有的名词定义和公式全都记住,不愿意背的同学可以每天都翻书看看,多读几遍,这样也助于自己对数学知识点的记忆。

或者说专门找一个小笔记本来抄写公式或定义,容易翻看又方便携带。没事多看看就记下来了。这真的是高效学习数学的一个小窍门哦。

二、重视数学问题的解题步骤

数学大题的解题过程都是按照步骤得分的,因此万万不可随意糊弄过去,这次同学们可能不在意,但当成绩出来之后,才知道后悔就什么都晚了。

所以在课上对于老师讲的规范一定要记下来,这样也好作为日后自己解题时的标准步骤,让自己尽量不丢分,这才是高效的学习方法,不丢分多得分。

三、经典题型收集整理装订

一般数学的两道大题就占了卷纸一面的二分之一,所以每次老师讲过之后,把标准写在空白处,可以的话就把这半页卷子裁下来。

以后的卷子也一样,订在一起,像是错题本或练习册一样,没事就可以用来复习。在卷子的背面可以抄一些类似的大题变形题或是历年高考中出现的经典题。

也可以自己再做一遍,加强自己这道数学题的理解。长时间的积累会让自己的数学成绩有个显著的提高。

高中数学技巧解题方法

1,适用条件:[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。x为分离比,必须大于1。注上述公式适合一切圆锥曲线。如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

2,函数的周期性问题(记忆三个):1、若f(x)=-f(x+k),则T=2k;

3,若f(x)=m/(x+k)(m不为0),则T=2k;3、若f(x)=f(x+k)+f(x-k),则T=6k。注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。

4,关于对称问题(无数人搞不懂的问题)总结如下:1,若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2;2、函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;3、若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称

5,函数奇偶性1、对于属于R上的奇函数有f(0)=0;2、对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项3,奇偶性作用不大,一般用于选择填空

6,数列爆强定律:1,等数列中:S奇=na中,例如S13=13a7(13和7为下角标);2等数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等3,等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立4,等比数列爆强公式:S(n+m)=S(m)+qmS(n)可以迅速求q

7,数列的利器,特征根方程。(如果看不懂就算了)。首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p(n-1)+x,这是一阶特征根方程的运用。二阶有点麻烦,且不常用。所以不赘述。希望同学们牢记上述公式。当然这种类型的数列可以构造(两边同时加数)

高三数学提升的小窍门

一、数学公式定理掌握好

基本的是做课本上的例题,课本上的例题思路比较简单,一个知识点对应的一个例题,把这些例题看过一遍后,能自己做出来,做题过程是的记忆数学公式定理的过程,这一步不能省,不要想办法背数学公式定理,只有边用边记忆,才能真正的理解和应用。

二、进行专题、难题训练提高

做题的时候不要怕难题,有的学生看到难题就放下来,一直练习自己会做的题目,这样很难得到提高,可以尝试多做难题,不要有畏惧心理,如果一直不去攻克难题,那考试分数肯定提不上来。

首先,看到难题要大胆的去做,思维活跃起来,多想知识点,这个方法不行,没关系,再分析,再审题,找其他的方法,如果一直不会,可以参,看看里是怎样答题的,解题思路是什么样的,里面的解题方法是自己不会的还是自己会的没有想到的,然后自己去总结去反思。

.高中数学排列组合以及概率的所有计算方法以及公式..

1.排列及计算公式

从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m)表示.

p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).

2.组合及计算公式

从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号

c(n,m) 表示.

3.其他排列与组合公式

从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.

n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为

n!/(n1!n2!...nk!).

k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m整理错题集).

排列(Pnm(n为下标,m为上标))

Pnm=n×(n-1).(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标) =n!;0!=三、两角和公式1;Pn1(n为下标1为上标)=n

组合(Cnm(n为下标,m为上标))

高中必背数学公式

sin(A+B)=sinAcosB+cosAsinB

高中数学公式是高考数学复习至关重要的知识点,为了帮助高三考生进准备一个笔记本,把自己平时出错的内容都整理上去,每隔一段时间把错题集上的问题解决一下,在高考试前一周专门针对错题集进行复习。这样就能避免之前烦的错误考试时再出现。整理错题集能很大程度提高复习效率。行高考数学的复习。下面我给你分享高中必背数学公式,欢迎阅读。

高中必背数学公式:一元二次方程的解

-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a

根与系数的关系x1+x2=-b/ax1x2=c/a注:韦达定理

判别式b2-4a=0注:方程有相等的两实根

b2-4ac>0注:方程有两个不相等的个实根

b2-4ac<0注:方程有共轭复数根

高中必背数学公式:立体图形及平面图形的公式

圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标

圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0

抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py

直棱柱侧面积S=ch斜棱柱侧面积S=c'h

正棱锥侧面积S=1/2ch'正棱台侧面积S=1/2(c+c')h'

圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pir2

圆柱侧面积S=ch=2pih圆锥侧面积S=1/2cl=pirl

弧长公式l=ara是圆心角的弧度数r>0扇形面积公式s=1/2lr

锥体体积公式V=1/3SH圆锥体体积公式V=1/ir2h

柱体体积公式V=sh圆柱体V=pir2h

高中必背数学公式:图形周长、面积、体积公式

长方形的周长=(长+宽)×2

正方形的周长=边长×4

长方形的面积=长×宽

正方形的面积=边长×边长

三角形的面积

已知三角形底a,高h,则S=ah/2

已知三角形三边a,b,c,半周长p,则S=√[p(p-a)(p-b)(p-c)](海伦公式)(p=(a+b+c)/2)

和:(a+b+c)(a+b-c)1/4

已知三角形两边a,b,这两边夹角C,则S=absinC/2

设三角形三边分别为a、b、c,内切圆半径为r

则三角形面积=(a+b+c)r/2

设三角形三边分别为a、b、c,外接圆半径为r

则三角形面积=abc/4r

高三数学知识点及公式总结大全

函数求值域的方法要熟练.立体几何中向量的运用能够降低难度.数列部分有一些常见题型和一些小结论你要注意掌握,我在这里就不一一罗列了.导数公式一定要记牢.重点的就是这些的.

高三数学重要知识点精选总结1

1.课程内容:

必修课程由5个模块组成:

必修1:、函数概念与基本初等函数(指、对、幂函数)

必修2:立体几何初步、平面解析几何初步。

必修3:算法初步、统计、概率。

必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。

必修5:解三角形、数列、不等式。

以上是每一个高中学生所必须学习的。

上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。

此外,基础内容还增加了向量、算法、概率、统计等内容。

2.重难点及考点:

重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数

难点:函数、圆锥曲线

高考相关考点:

⑴与简易逻辑:的概念与运算、简易逻辑、充要条件

⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用

⑶数列:数列的有关概念等数列等比数列、数列求和、数列的应用

⑷三角函数:有关概念、同角关系与诱导公式、和、、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用

⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用

⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、不等式、不等式的应用

⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系

⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用

⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量

⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用

⑾概率与统计:概率、分布列、期望、方、抽样、正态分布

⑿导数:导数的概念、求导、导数的应用

⒀复数:复数的概念与运算

高三数学重要知识点精选总结2

①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).

②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.

⑶特殊棱锥的顶点在底面的射影位置:

①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.

②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心.

③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心.

④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.

⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.

⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.

⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;

⑧每个四面体都有内切球,球心

是四面体各个二面角的平分面的交点,到各面的距离等于半径.

[注]:i.各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的等腰三角形不知是否全等)

ii.若一个三角锥,两条对角线互相垂直,则第三对角线必然垂直.

简证:AB⊥CD,AC⊥BD

BC⊥AD.令得,已知则.

iii.空间四边形OABC且四边长相等,则顺次连结各边的中点的四边形一定是矩形.

iv.若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形.

简证:取AC中点,则平面90°易知EFGH为平行四边形

EFGH为长方形.若对角线等,则为正方形.

高三数学重要知识点精选总结3

立体几何初步

(1)棱柱:

定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥

定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体

分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

表示:用各顶点字母,如五棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:

定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分

分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

表示:用各顶点字母,如五棱台

几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

(4)圆柱:

定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:

定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:

定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7)球体:

定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

高三数学重要知识点精选总结4

(1)先看“充分条件和必要条件”

当命题“若p则q”为真时,可表示为p=>q,则我们称p为q的充分条件,q是p的必要条件。这里由p=>q,得出p为q的充分条件是容易理解的。

但为什么说q是p的必要条件呢?

事实上,与“p=>q”等价的逆否命题是“非q=>非p”。它的意思是:若q不成立,则p一定不成立。这就是说,q对于p是必不可少的,因而是必要的。

(2)再看“充要条件”

若有p=>q,同时q=>p,则p既是q的充分条件,又是必要条件。简称为p是q的充要条件。记作p<=>q

回忆一下初中学过的“等价于”这一概念;如果从命题A成立可以推出命题B成立,反过来,从命题B成立也可以推出命题A成立,那么称A等价于B,记作A<=>B。“充要条件”的含义,实际上与“等价于”的含义完全相同。也就是说,如果命题A等价于命题B,那么我们说命题A成立的充要条件是命题B成立;同时有命题B成立的充要条件是命题A成立。

(3)定义与充要条件

数学中,只有A是B的充要条件时,才用A去定义B,因此每个定义中都包含一个充要条件。如“两组对边分别平行的四边形叫做平行四边形”这一定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。

显然,一个定理如果有逆定理,那么定理、逆定理合在一起,可以用一个含有充要条件的语句来表示。

“充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示“充分”。“仅当”表示“必要”。

(4)一般地,定义中的条件都是充要条件,判定定理中的条件都是充分条件,性质定理中的“结论”都可作为必要条件。

高三数学重要知识点精选总结5

1.函数的奇偶性

(1)若f(x)是偶函数,那么f(x)=f(-x);

(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);

(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);

(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;

2.复合函数的有关问题

(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定;

3.函数图像(或方程曲线的对称性)

(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;

(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;

(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;

4.函数的周期性

(1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;

(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;

(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;

(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;

(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;

(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;

5.方程k=f(x)有解k∈D(D为f(x)的值域);

6.a≥f(x)恒成立a②解本题用了哪些基本知识与基本图形?≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

7.(1)(a>0,a≠1,b>0,n∈R+);

(2)logaN=(a>0,a≠1,b>0,b≠1);

(3)logab的符号由口诀“同正异负”记忆;

(4)alogaN=N(a>0,a≠1,N>0);

8.判断对应是否为映射时,抓住两点:

(1)A中元素必须都有象且;

(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

9.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

10.对于反函数,应掌握以下一些结论:

(1)定义域上的单调函数必有反函数;

(2)奇函数的反函数也是奇函数;

(3)定义域为非单元素集的偶函数不存在反函数;

(4)周期函数不存在反函数;

(5)互为反函数的两个函数具有相同的单调性;

(6)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);

11.处理二次函数的问题勿忘数形结合

二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;

12.依据单调性

利用一次函数在区间上的保号性可解决求一类参数的范围问题;

13.恒成立问题的处理方法

(1)分离参数法;

(2)转化为一元二次方程的根的分布列不等式(组)求解;

(1)、高三数学必考知识点归纳公式大全

(2)、高三女儿数学只考了108分 老爸的这一做法绝了

(3)、2019扬州高三模拟统考语文数学试题难度点评

(4)、2019年湖北高三2月联考数学理试题及

(5)、高三数学教师教学工作总结

(6)、高三复习班数学班主任工作总结

高中数学概率A几几怎么算?请告诉我公式是什么?谢谢!

斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长

A(n,m)是组合公式,表示从n个数中选取m个数进行随机排列能有几种方法,数相同但是顺序不同得到的方法是不相同的。

tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)

A(n,m)就是从n向1方向的前m个数相乘,A(n,m)=n(n-1)(n-2)...(n-m+1)

给你举个例子,A(4 在下,3在上)=432

再例如A(n,3)=n(n-1)(n-2)

叙述不好,希望对你有帮助,如果不懂,可以继续发问

A(n,m) 其中n在下,m在上,显然要求m≤n

A(n,m)=n(n-1)(n-2)……(n-m+1)

n 的阶乘除以m的阶乘

版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。