高考数学文科向量知识点 文科向量知识框架图

各省高考 2024-11-10 09:50:27

2022高考数学必考知识点考点总结大全

一般全国卷文科数学的第20题会考解析几何题。解析几何也不是难题,只要大家平时努力,这些题目都算是相对简单的。所以大家不要有畏难情绪,认为这是2道大题就觉得有多难,其实如果你认认真真去做了,这道题还是有希望做对的。退一步来说,即便是真的不会了,那也可以得一些步骤分,前一两问还是没问题的。

数学是一切科学的基础,一不小心就容易出错,在高考上出错可就不好了.接下来是我为大家整理的2022高考数学必考知识点考点 总结 大全,希望大家喜欢!

高考数学文科向量知识点 文科向量知识框架图高考数学文科向量知识点 文科向量知识框架图


高考数学文科向量知识点 文科向量知识框架图


高考数学文科向量知识点 文科向量知识框架图


高考数学文科向量知识点 文科向量知识框架图


一般全国卷文科数学的第22至24题会考圆/坐标系与参数方程/不等式三道选做题。参数方程是大家选做最多的一道题,参数方程主要考查轨迹方程计算方法、三角换元求最值、极坐标方程和直角坐标方程转化等,这道题相对容易做。

目录

(a为常数);

2022高考数学必考知识点考点

高考数学必背知识

如何提高高考数学成绩

2022高考数学必考知识点考点

一、、简易逻辑(14课时,8个)

二、函数(30课时,12个)

1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例。

三、数列(12课时,5个)

1.数列;2.等数列及其通项公式;3.等数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式。

四、三角函数(46课时,17个)

1.角的概念的推广;2.弧度制;3.任意角的三角函数;4.单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式;7.两角和与的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16.余弦定理;17.斜三角形解法举例。

五、平面向量(12课时,8个)

1.向量;2.向量的加法与减法;3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移。

六、不等式(22课时,5个)

1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含的不等式。

七、直线和圆的方程(22课时,12个)

1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题;9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程。

八、圆锥曲线(18课时,7个)

1.椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质。

九、直线、平面、简单何体(36课时,28个)

1.平面及基本性质;2.平面图形直观图的画法;3.平面直线;4.直线和平面平行的判定与性质;5.直线和平面垂直的判定与性质;6.三垂线定理及其逆定理;7.两个平面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线所成的角;13.异面直线的公垂线;14.异面直线的距离;15.直线和平面垂直的性质;16.平面的法向量;17.点到平面的距离;18.直线和平面所成的角;19.向量在平面内的射影;20.平面与平面平行的性质;21.平行平面间的距离;22.二面角及其平面角;23.两个平面垂直的判定和性质;24.多面体;25.棱柱;26.棱锥;27.正多面体;28.球。

十、排列、组合、二项式定理(18课时,8个)

1.分类计数原理与分步计数原理;2.排列;3.排列数公式;4.组合;5.组合数公式;6.组合数的两个性质;7.二项式定理;8.二项展开式的性质。

十一、概率(12课时,5个)

1.随机的概率;2.等可能的概率;3.互斥有一个发生的概率;4.相互同时发生的概率;5.重复试验。

选修Ⅱ(24个)

十二、概率与统计(14课时,6个)

1.离散型随机变量的分布列;2.离散型随机变量的期望值和方;3.抽样 方法 ;4.总体分布的估计;5.正态分布;6.线性回归。

十三、极限(12课时,6个)

1.数学归纳法;2.数学归纳法应用举例;3.数列的极限;4.函数的极限;5.极限的四则运算;6.函数的连续性。

十四、导数(18课时,8个)

1.导数的概念;2.导数的几何意义;3.几种常见函数的导数;4.两个函数的和、、积、商的导数;5.复合函数的导数;6.基本导数公式;7.利用导数研究函数的单调性和极值;8.函数的值和最小值。

十五、复数(4课时,4个)

1.复数的概念;2.复数的加法和减法;3.复数的乘法和除法;4.复数的一元二次方程和二项方程的解法。

>>>

高考数学必背知识

1、圆的定义:

平面内到一定点的距离等于定长的点的叫圆,定点为圆心,定长为圆的半径。

2、圆的方程

(1)标准方程,圆心,半径为r;

(2)一般方程

当时,方程表示圆,此时圆心为,半径为

当时,表示一个点;当时,方程不表示任何图形。

(3)求圆方程的方法:

一般都采用待定系数法:先设后求。确定一个圆需要三个条件,若利用圆的标准方程,

需求出a,b,r;若利用一般方程,需要求出D,E,F;

另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。

3、直线与圆的位置关系:

直线与圆的位置关系有相离,相切,相交三种情况:

(1)设直线,圆,圆心到l的距离为,则有

(2)过圆外一点的切线:

①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程

(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2

4、圆与圆的位置关系:

通过两圆半径的和(),与圆心距(d)之间的大小比较来确定。

设圆,

两圆的位置关系常通过两圆半径的和(),与圆心距(d)之间的大小比较来确定。

当时两圆外离,此时有公切线四条;

当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;

当时两圆相交,连心线垂直平分公共弦,有两条外公切线;

当时,两圆内切,连心线经过切点,只有一条公切线;

当时,两圆内含;当时,为同心圆。

注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线

圆的辅助线一般为连圆心与切线或者连圆心与弦中点

一、随机

主要掌握好(三四五)

(1)的三种运算:并(和)、交(积)、;注意A-B可以表示成A与B的逆的积。

(2)四种运算律:交换律、结合律、分配律、德莫根律。

(3)的五种关系:包含、相等、互斥(互不相容)、对立、相互。

二、概率定义

(1)统计定义:频率稳定在一个数附近,这个数称为的概率;(2)古典定义:要求样本空间只有有限个基本,每个基本出现的可能性相等,则A所含基本个数与样本空间所含基本个数的比称为的古典概率;

(3)几何概率:样本空间中的元素有无穷多个,每个元素出现的可能性相等,则可以将样本空间看成一个几何图形,A看成这个图形的子集,它的概率通过子集图形的大小与样本空间图形的大小的比来计算;

(4)公理化定义:满足三条公理的任何从样本空间的子集到[0,1]的映射。

三、概率性质与公式

(1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特别地,如果A与B互不相容,则P(A+B)=P(A)+P(B);

(2):P(A-B)=P(A)-P(AB),特别地,如果B包含于A,则P(A-B)=P(A)-P(B);

(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互,则P(AB)=P(A)P(B);

贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;

如果一个B可以在多种情形(原因)A1,A2,....,An下发生,则用全概率公式求B发生的概率;如果B已经发生,要求它是由Aj引起的概率,则用贝叶斯公式.

(5)二项概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有A与A的逆可能发生,各次试验结果相互)时,要考虑二项概率公式.

分层抽样

先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,,将这些子样本合起来构成总体的样本。

两种方法

1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。

2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,用系统抽样的方法抽取样本。

3.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。

分层标准

(1)以调查所要分析和研究的主要变量或相关的变量作为分层的标准。

(2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。

(3)以那些有明显分层区分的变量作为分层变量。

分层的比例问题

(1)按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。

(2)不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次的子总体进行专门研究或进行相互比较。如果要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。

>>>

如何提高高考数学成绩

有的学生认为,要想学好数学,只要多做题,功到自然成。其实不然。一般说做的题太少,很多熟能生巧的问题就会无从谈起。因此,应该适当地多做题。但是,只顾钻入题海,堆积题目,在考试中一般也是难有作为的。打个比喻:有很多人,因为工作的需要,几乎天天都在写字。结果,写了几十年的字了,他写字的水平能有什么提高吗?一般说,他写字的水平常常还是原来的水平。要把提高当成自己的目标,要把自己的活动合理地系统地组织起来,要总结 反思 ,水平才能长进。

错题本和记笔记一样,整理错题不是誊写不是照抄,而是摘抄。你只顾着去采撷问题,就失去了理解和挑选题目的过程,笔记同理,如果老师说什么记什么,那只能说明你这节课根本没听,真正的人,是会把知识简化,把书本读薄的。

一些考生不能正确解答问题,往往都是审题不仔细,匆匆忙忙看完题目,在题目条件没有吃透情况下就匆匆下笔解题,自然无确解决问题。

解题,步就是要认真审题,提高对审题的重视,戒掉急于下笔的毛病,吃透题目当中每一个条件和结论,这样才能发现题目中的隐含条件,找到解题思路,降低因审题不仔细造成的解题出错。

永远记住,适当慢一点,学会耐心仔细去审题,准确地把握题目中的与“量”,从题目中挖掘尽可能多的信息,才能找到正确解题方向。

>>>

2022高考数学必考知识点考点总结大全相关 文章 :

★ 学习方法指导与技巧总结

★ 高考必背知识点总结与归纳

★ 2022高三数学知识点

★ 高考生物必备大题知识点归纳

★ 高三上册数学教学总结2022

★ 2022高考必背知识重点归纳

★ 高三数学期末知识点

★ 2022高考物理知识点归纳总结

★ 高三文科数学常考知识点整理归纳 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

[高考]请问文科数学哪些知识点是不考的

§3 空间直角坐标系

数学归纳法、极坐标与参数方程、矩阵、空间向量、二项4.1二次函数的图像式定理、排列组合、概率分布均是文科生不4.函数的周期性考察的,圆锥曲线大题注意一般是以椭圆、圆为载体,而抛物线和双曲线一般以小题出现;而概率文科主要以古典概型为主!

高三数学知识点及公式总结大全

★ 高考数学知识点复习考试指导文章

高三数学重要知识点精选总结1

第二,平面向量与三角函数、三角变换及其应用

1.课程内容:

必修课程由5个模块组成:

必修1:、函数概念与基本初等函数(指、对、幂函数)

必修2:立体几何初步、平面解析几何初步。

必修3:算法初步、统计、概率。

必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。

必修5:解三角形、数列、不等式。

以上是每一个高中学生所必须学习的。

上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。

此外,基础内容还增加了向量、算法、概率、统计等内容。

重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数

难点:函数、圆锥曲线

高考相关考点:

⑴与简易逻辑:的概念与运算、简易逻辑、充要条件

⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用

⑶数列:数列的有关概念等数列等比数列、数列求和、数列的应用

⑷三角函数:有关概念、同角关系与诱导公式、和、、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用

⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用

⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、不等式、不等式的应用

⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系

⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用

⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量

⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用

⑾概率与统计:概率、分布列、期望、方、抽样、正态分布

⑿导数:导数的概念、求导、导数的应用

⒀复数:复数的概念与运算

高三数学重要知识点精选总结2

①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).

⑶特殊棱锥的顶点在底面的射影位置:

①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.

③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心.

④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.

⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.

⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.

⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;

⑧每个四面体都有内切球,球心

是四面体各个二面角的平分面的交点,到各面的距离等于半径.

[注]:i.各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的等腰三角形不知是否全等)

ii.若一个三角锥,两条对角线互相垂直,则第三对角线必然垂直.

简证:AB⊥CD,AC⊥BD

BC⊥AD.令得,已知则.

iii.空间四边形OABC且四边长相等,则顺次连结各边的中点的四边形一定是矩形.

简证:取AC中点,则平面90°易知EFGH为平行四边形

EFGH为长方形.若对角线等,则为正方形.

高三数学重要知识点精选总结3

立体几何初步

(1)棱柱:

定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥

定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体

分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

表示:用各顶点字母,如五棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:

定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分

分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

表示:用各顶点字母,如五棱台

几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

(4)圆柱:

定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:

定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:

定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7)球体:

定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

高三数学重要知识点精选总结4

(1)先看“充分条件和必要条件”

当命题“若p则q”为真时,可表示为p=>q,则我们称p为q的充分条件,q是p的必要条件。这里由p=>q,得出p为q的充分条件是容易理解的。

但为什么说q是p的必要条件呢?

事(4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,实上,与“p=>q”等价的逆否命题是“非q=>非p”。它的意思是:若q不成立,则p一定不成立。这就是说,q对于p是必不可少的,因而是必要的。

(2)再看“充要条件”

若有p=>q,同时q=>p,则p既是q的充分条件,又是必要条件。简称为p是q的充要条件。记作p<=>q

回忆一下初中学过的“等价于”这一概念;如果从命题A成立可以推出命题B成立,反过来,从命题B成立也可以推出命题A成立,那么称A等价于B,记作A<=>B。“充要条件”的含义,实际上与“等价于”的含义完全相同。也就是说,如果命题A等价于命题B,那么我们说命题A成立的充要条件是命题B成立;同时有命题B成立的充要条件是命题A成立。

(3)定义与充要条件

数学中,只有A是B的充要条件时,才用A去定义B,因此每个定义中都包含一个充要条件。如“两组对边分别平行的四边形叫做平行四边形”这一定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。

显然,一个定理如果有逆定理,那么定理、逆定理合在一起,可以用一个含有充要条件的语句来表示。

“充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示“充分”。“仅当”表示“必要”。

(4)一般地,定义中的条件都是充要条件,判定定理中的条件都是充分条件,性质定理中的“结论”都可作为必要条件。

高三数学重要知识点精选总结5

1.函数的奇偶性

(1)若f(x)是偶函数,那么f(x)=f(-x);

(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);

(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);

(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;

2.复合函数的有关问题

(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定;

3.函数图像(或方程曲线的对称性)

(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;

(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;

(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;

(1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;

(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;

(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;

(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;

(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;

5.方程k=f(x)有解k∈D(D为f(x)的值域);

6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

7.(1)(a>0,a≠1,b>0,n∈R+);

(2)logaN=(a>0,a≠1,b>0,b≠1);

(3)logab的符号由口诀“同正异负”记忆;

(4)alogaN=N(a>0,a≠1,N>0);

8.判断对应是否为映射时,抓住两点:

(1)A中元素必须都有象且;

(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

9.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

10.对于反函数,应掌握以下一些结论:

(1)定义域上的单调函数必有反函数;

(2)奇函数的反函数也是奇函数;

(3)定义域为非单元素集的偶函数不存在反函数;

(4)周期函数不存在反函数;

(5)互为反函数的两个函数具有相同的单调性;

(6)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);

11.处理二次函数的问题勿忘数形结合

二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;

12.依据单调性

利用一次函数在区间上的保号性可解决求一类参数的范围问题;

13.恒成立问题的处理方法

(1)分离参数法;

(2)转化为一元二次方程的根的分布列不等式(组)求解;

(1)、高三数学必考知识点归纳公式大全

(2)、高三女儿数学只考了108分 老爸的这一做法绝了

(3)、2019扬州高三模拟统考语文数学试题难度点评

(4)、2019年湖北高三2月联考数学理试题及

(6)、高三复习班数学班主任工作总结

高考数学必考知识点?

阅读与欣赏

2011年高考数学考点(139个)

必修(115个)

一、、简易逻辑(14课时,8个)

1.; 2.子集; 3.补集;

4.交集; 5.并集; 6.逻辑连结词;

7.四种命题; 8.充要条件.

1.映射; 2.函数; 3.函数的单调性;

4.反函数; 5.互为反函数的函数图象间的关系; 6.指数概念的扩充;

7.有理指数幂的运算; 8.指数函数; 9.对数;

10.对数的运算性质; 11.对数函数. 12.函数的应用举例.

三、数列(12课时,5个)

1.数列; 2.等数列及其通项公式; 3.等数列前n项和公式;

4.等比数列及其通顶公式; 5.等比数列前n项和公式.

四、三角函数(46课时17个)

1.角的概念的推广; 2.弧度制; 3.任意角的三角函数;

4,单位圆中的三角函数线; 5.同角三角函数的基本关系式;

6.正弦、余弦的诱导公式’ 7.两角和与的正弦、余弦、正切;

8.二倍角的正弦、余弦、正切; 9.正弦函数、余弦函数的第四章函数的应用图象和性质;

10.周期函数; 11.函数的奇偶性; 12.函数 的图象;

16余弦定理; 17斜三角形解法举例.

五、平面向量(12课时,8个)

1.向量 2.向量的加法与减法 3.实数与向量的积;

4.平面向量的坐标表示; 5.线段的定比分点; 6.平面向量的数量积;

7.平面两点间的距离; 8.平移.

六、不等式(22课时,5个)

1.不等式; 2.不等式的基本性质; 3.不等式的证明;

4.不等式的解法; 小结5.含的不等式.

七、直线和圆的方程(22课时,12个)

1.直线的倾斜角和斜率; 2.直线方程的点斜式和两点式; 3.直线方程的一般式;

4.两条直线平行与垂直的条件; 5.两条直线的交角; 6.点到直线的距离;

7.用二元一次不等式表示平面区域; 8.简单线性规划问题. 9.曲线与方程的概念;

10.由已知条件列出曲线方程; 11.圆的标准方程和一般方程; 12.圆的参数方程.

八、圆锥曲线(18课时,7个)

1椭圆及其标准方程; 2.椭圆的简单几何性质; 3.椭圆的参数方程;

4.双曲线及其标准方程; 5.双曲线的简单几何性质; 6.抛物线及其标准方程;

7.抛物线的简单几何性质.

九、(B)直线、平面、简单何体(36课时,28个)

1.平面及基本性质; 2.平面图形直观图的画法; 3.平面直线;

4.直线和平面平行的判定与性质; 5,直线和平面垂直的判与性质;

6.三垂线定理及其逆定理; 7.两个平面的位置关系;

8.空间向量及其加法、减法与数乘; 9.空间向量的坐标表示;

10.空间向量的数量积; 11.直线的方向向量; 12.异面直线所成的角;

13.异面直线的公垂线; 14异面直线的距离; 15.直线和平面垂直的性质;

16.平面的法向量; 17.点到平面的距离; 18.直线和平面所成的角;

22.二面角及其平面角; 23.两个平面垂直的判定和性质; 24.多面体;

25.棱柱; 26.棱锥; 27.正多面体; 28.球.

十、排列、组合、二项式定理(18课时,8个)

1.分类计数原理与分步计数原理. 2.排列; 3.排列数公式’

4.组合; 5.组合数公式; 6.组合数的两个性质;

7.二项式定理; 8.二项展开式的性质.

十一、概率(12课时,5个)

1.随机的概率; 2.等可能的概率; 3.互斥有一个发生的概率;

4.相互同时发生的概率; 5.重复试验.

选修Ⅱ(24个)

十二、概率与统计(14课时,6个)

1.离散型随机变量的分布列; 2.离散型随机变量的期望值和方; 3.抽样方法;

4.总体分布的估计; 5.正态分布; 6.线性回归.

十三、极限(12课时,6个)

1.数学归纳法; 2.数学归纳法应用举例; 3.数列的极限;

4.函数的极限; 5.极限的四则运算; 6.函数的连续性.

十四、导数(18课时,8个)

1.导数的概念; 2.导数的几何意义; 3.几种常见函数的导数;

4.两个函数的和、、积、商的导数; 5.复合函数的导数; 6.基本导数公式;

7.利用导数研究函数的单调性和极值; 8函数的值和最小值.

十五、复数(4课时,4个)

1.复数的概念; 2.复数的加法和减法; 3.复数的乘法和除法;

4.数系的扩充.

给出地区

考纲

高考数学,(函数,三角函数,,不等式,平面向量,立体几何)哪个部分比较好学,现在还能补习抓分

复习参考题

首先,你要对自己有一定的信心,考试时平常心即可。

其次,做题先把会做的做了,(柿子捡软的捏,呵呵)

把最近5到十年内的,本省的真题,多做几次,做熟,不会做的自己可以翻书,或者老师或者班上的高手,建议做好请教班上的高手,,同龄同学思维方式还是接近些的。第二嘛,某些方面其实老师还不如学生,毕竟老师是在教,学生在学,学生对学是要比老师对学的体会高一点的。

第三,拿分最重要,就数学而言,选择题你不一定要算也能拿到分的,而且速度还要快,排除法,特殊值法,例如令X=0, f(x)=x 或者某常数。 填空的话,有些实在不会,就填 0 或者 1 -1, 三角函数的 就是 30 45 60 90 度高考的话 就是它们对应的弧度,不过不好打字。

立体几何的话,建立空间直角坐标系,写出坐标,文科的问题都能解决。

此外,请教下班上高手的心得,对你或多或少都有帮助(可以根据自己情况参考)

最简单,高考一道题,5分轻松拿下。

函数是高中数学的基础,1随机的概率很多内容以它为基础向上延伸。三角函数在它的部分基础上,不过很简单,一定要拿分。导数是建立在函数基础之上的;平面向量常与三角函数结合,拿分不难;

概率和立体几何大题问很容易大,建议认真学习。

复数出题也不难。不等式与排列组合最难拿分,解析几何计算量,(直线和园部分较为容易)不建议先看;

简单的说首先你的从基础开始学我现在可以给你归下类型:

1,,函数,数列,他们三个可以归在一起,是最基础的先弄清楚完了在弄函数和数列,其中有数列函数是考试重点,其中的做题方法要多多联系才知道。

2,三角函数,不等式,这俩个个你可以单独的学习,没有太紧密的联系,三角变化公式要熟记,即使记不住也应该学会怎么去导出这些公式。不等式没有太多说得关键是那些缩小放大及分裂多用多学。

3,平面向量,立体几何,解析几何,它们可以归为一类,而其中以平面向量为基础,基础弄懂了 别的很简单,数学一定要发散思维,多做题多思考。

4,排列组合,概率,学好排列组合概率不成问题。

5,导数是基础函数不等式等都有可能用到。

高考数学常考知识点整理大全

1直线的倾斜角与斜率

数学是高中生学习的最重要科目之一,在高考知识点复习过程中非常重要,那么数学考哪些知识点?下面是我为大家整理的关于高考数学常考知识点,希望对您有所帮助。欢迎大家阅读参考学习!

高考数学常考知识点

一、三角函数

1.周期函数:一般地,对于函数f(x),如果存在一个不为0的常数T使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期,把所有周期中存在的最小正数,叫做最小正周期三角函数属于高中数学中的重点内容,在高考理科数学中更是占据很重要的位置。

2.三角函数的图像:可以利用三角函数线用几何法作出,在度要求不高的情况下,常用五点法作图,要特别注意“五点”的取法。

3.三角函数的定义域:三角函数的定义域是研究其他一切性质的前提,求三角函数的定义域实际上就是解最简单的三角不等式,通常可用三角函数的图像或三角函数线来求解,注意数形结合思想的应用。

二、反三角函数主要是三个:

y=arcsin(x),定义域[-1,1] ,值域[-π/2,π/2]图象用红色线条;

y=arccos(x),定义域[-1,1] , 值域[0,π],图象用蓝色线条;

y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2),图象用绿色线条;

sin(arcsin x)=x,定义域[-1,1],值域 [-1,1] arcsin(-x)=-arcsinx

arcsin(-x)=-arcsinx

arccos(-x)=π-arccosx

arctan(-x)=-arctanx

arccot(-x)=π-arccotx

arcsinx+arccosx=π/2=arctanx+arccotx

sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)

当x∈[—π/2,π/2]时,有arcsin(sinx)=x

当x∈[0,π],arccos(cosx)=x

x∈(—π/2,π/2),arctan(tanx)=x

x∈(0,π),arccot(cotx)=x

x〉0,arctanx=π/2-arctan1/x,arccotx类似

若(arctanx+arctany)∈(—π/2,π/2),则arctanx+arctany=arctan(x+y/1-xy)

四、三角函数与平面向量的综合问题

(1)巧妙“转化”--把以“向量的数量积、平面向量共线、平面向量垂直”“向量的线性运算”形式出现的条件还其本来面目,转化为“对应坐标乘积之间的关系”;

(2)巧挖“条件”--利用隐含条件”正弦函数、余弦函数、的有界性“,把不等式的恒成立问题转化为含参数ψ的方程,求出参数ψ的值,从而可求函数的解析式;

(3)活用”性质“--活用正弦函数与余弦函数的单调性、对称性、周期性、奇偶性,以及整体换元思想,即可求其对称轴与单调区间。

五、见三角函数“对称”问题,启用图象特征代数关系:(A≠0)

1.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于过最值点且平行于y轴的直线分别成轴对称;

2.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于其中间零点分别成中心对称;

3.同样,利用图象也可以得到函数y=Atan(wx+φ)和函数y=Acot(wx+φ)的对称性质。

高中数学重点知识点

高中数学重点知识点讲解:直线的倾斜角

定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°

高中数学重点知识点讲解:直线的斜率

①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。在高中数学里直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。当时,。当时,;当时,不存在。

②过两点的直线的斜率公式:

注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

(2)k与P1、P2的顺序无关;

(3)以后高中数学涉及到求斜率可不通过倾斜角而由直线上两2.重难点及考点:点的坐标直接求得;

(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

试卷不同考试的时候文理数学卷子是不一样的,就如同学习内容一样,文科数学卷子比理科数学卷子简单一些。还有就是考试题,对于同一个知识点,理科数学试题比较难理解,文科则比较直白。高中数学重点知识点讲解:直线方程

①点斜式:

直线斜率k,且过点

注意:高中数学在关于直线方程解法中,当直线的斜率为0°时,k=0,直线的方程是y=y1。当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。

②斜截式:,直线斜率为k,直线在y轴上的截距为b

③两点式:()直线两点,

④截矩式:

其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。

⑤一般式:(A,B不全为0)

⑤一般式:(A,B不全为0)

注意:○1各式的适用范围

○2特殊的方程如:平行于x轴的直线:

(b为常数);平行于y轴的直线:

高考数学的答题顺序是什么

高考数学的答题顺序:先易后难

就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。

高考数学的答题顺序:先熟后生

高考数学的答题顺序:先同后异

先做同科同类型的题目,思考比较集中,知识和方法的沟通比较容易,有利于提高单位时间的效益。高考题一般要求较快地进行“兴奋灶”的转移,而“先同后异”,可以避免“兴奋灶”过急、过频的跳跃,从而减轻大脑负担,保持有效精力。

点击查看:高中数学知识点 总结 及复习资料

高考数学的答题顺序:先小后大

小题一般是信息量少、运算量小,易于把握,不要轻易放过,应争取在大题之前尽快解决,从而为解决大题赢得时间,创造一个宽松的心理基矗

高考数学的答题顺序:先点后面

近年的高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面6.先高后低。即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。

高考数学常考知识点整理大全相关 文章 :

★ 高考数学必考知识点考点2020大全总结

★ 高考数学必考重点知识大全

★ 高三数学知识点考点总结大全

★ 高考数学常考知识点总结

★ 高考数学必考知识点考点2020大全

★ 高考数学知识点归纳整理

★ 高考数学必考考点2020大全总结

★ 高考数学知识点总结大全

★ 高考数学常考知识点

★ 2020高考数学知识点归纳总结大全

高二文科数学内容有什么?

iv.若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形.

全集U={高考要考的内容}

2.3直线与圆、圆与圆的位置关系

A=二、函数(30课时,12个){高一所学内容}

B=A的补集。。。

文科选修1-1,1-2

理科选修2-1、2-2、2-3、4-4、4-5

高一数学平面向量知识点总结

--------------------------------------------------------------------------------

平面向量是高中数学中基本内容,也是联系代数与几何的一种工具,为高考的重点内容。下面我给大家带来 高一数学 平面向量知识点,希望对你有帮助。

19.向量在平面内的射影; 20.平面与平面平行的性质; 21.平行平面间的距离;

目录

高一数学平面向量知识点

高一数学知识点

高一数学学习方法

高一数学平面向量知识点

向量:既有大小,又有方向的量.

数量:只有大小,没有方向的量.

有向线段的三要素:起点、方向、长度.

零向量:长度为的向量.

单位向量:长度等于个单位的向量.

相等向量:长度相等且方向相同的向量

加法运算

AB+BC=AC,这种计算法则叫做向量加法的三角形法则。

已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。

对于零向量和任意向量a,有:0+a=a+0=a。

|a+b|≤|a|+|b|。

向量的加法满足所有的加法运算定律。

减法运算

与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。

(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。

数乘运算

实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ > 0时,λa的方向和a的方向相同,当λ< 0时,λa的方向和a的方向相反,当λ = 0时,λa = 0。

设λ、μ是实数,那么:(1)(λμ)a = λ(μa)(2)(λμ)a = λa μa(3)λ(a ± b) = λa ±λb(4)(-λ)a =-(λa) = λ(-a)。

向量的加法运算、减法运算、数乘运算统称线性运算。

向量的数量积

已知两个非零向量a、b,那么|a||b|cos θ叫做a与b的数量积或内积,记作a?b,θ是a与b的夹角,|a|cos θ(|b|cos θ)叫做向量a在b方向上(b在a方向上)的投影。零向量与任意向量的数量积为0。

a.b的几何意义:数量积a.b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积。

两个向量的数量积等于它们对应坐标的乘积的和。

<<<

高一数学知识点

1、柱、锥、台、球的结构特征

(1)棱柱:

定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥

定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

表示:用各顶点字母,如五棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底 面相 似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:

定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。

分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.

表示:用各顶点字母,如五棱台

几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

(4)圆柱:

定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:

定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:

定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7)球体:

定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

2、空间几何体的三视图

定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)

注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;

俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;

侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

3、空间几何体的直观图——斜二测画法

斜二测画法特点:

①原来与x轴平行的线段仍然与x平行且长度不变;

②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

<<<

高一 数学 学习 方法

认真听课做笔记

在课堂教学中培养好的听课习惯是很重要的。当然听是主要的,听能使注意力集中,要把老师讲的关键性部分听懂、听会。听的时候注意思考、分析问题,但是光听不记,或光记不听必然顾此失彼,课堂效益低下,因此应适当地有目的性的记好笔记,领会课上老师的主要精神与意图。科学的记笔记可以提高45分钟课堂效益。

把握教材去理解

要提高数学能力,当然是通过课堂来提高,要充分利用好课堂这块阵地,学习高一数学的过程是活的,老师教学的对象也是活的,都在随着教学过程的发展而变化,尤其是当老师注重能力教学的时候,教材是反映不出来的。数学能力是随着知识的发生而同时形成的,无论是形成一个概念,掌握一条法则,会做一个习题,都应该从不同的能力角度来培养和提高。课堂上通过老师的教学,理解所学内容在教材中的地位,弄清与前后知识的联系等,只有把握住教材,才能掌握学习的主动。

提高思维敏捷力

如果数学课没有一定的速度,那是一种无效学习。慢腾腾的学习是训练不出思维速度,训练不出思维的敏捷性,是培养不出数学能力的,这就要求在数学学习中一定要有节奏,这样久而久之,思维的敏捷性和数学能力会逐步提高。

避免遗留问题

在数学课堂中,老师一般少不了提问与板演,有时还伴随着问题讨论,因此可以听到许多的信息,这些问题是很有价值的。对于那些典型问题,带有普遍性的问题都必须及时解决,不能把问题的结症遗留下来,甚至沉淀下来,有价值的问题要及时抓住,遗留问题要有针对性地补,注重实效。

<<<

高一数学平面向量知识点 总结 相关 文章 :

★ 高一数学平面向量知识点总结

★ 高一数学平面向量知识点

★ 高中数学必修4平面向量知识点总结

★ 数学必修4向量公式归纳

★ 高一数学平面向量知识点分析

★ 高中高一数学知识点总结

★ 数学必修4平面向量公式总结

★ 高中数学必修4平面向量知识点

★ 高一数学知识点总结归纳

★ 高中数学平面解析几何知识点归纳 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

高考数学必考知识点归纳有哪些?

高考数学必考知识点归纳:

,函数与导数

主要若A?B,则p是q的必要条件。考查运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

这一部分是高考的重点但不是难点,主要出一些基础题或&向量的运算中档题。

第三,数列及其应用

这部分是高考的重点而且是难点,主要出一些综合题。

第四,不等式

主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。

第★ 2022高三数学知识点整理五,概率和统计

这部分和我们的生活联系比较大,属应用题。

第六,空间位置关系的定性与定量分析

主要是证明平行或垂直,求角和距离。主要考察对定理的熟悉程度、运用程度。

第七,解析几何

高考的难点,运算量大,一般含参数。高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。

高中数学。。

公式

问题一:高中数学主要学习哪些内容 必修部分: 、函数、基本初等函数、立体几何初步、空间向量与立体几何、算法初步、常用逻辑用语、平面几何初步、圆锥曲线、三角函数、平面向量、解三角形、数列、不等式、推理与证明、导数及其应用、复数、计数原理、概率、随机变量及其分布、数学建模、

§3 的基本运算

选修部分盯几何证明与选讲、矩阵与变换、坐标系与参数方程、不等式选讲。

必修必考,选修选考。不明白可在线问。

问题二:高中文科数学主要学哪些内容 必修一

§1 的含义与表示

§2 的基本关系

3.1交集与并集

3.2全集与补集

第二章 函数

§1 生活中的变量关系

§2 对函数的进一步认识

2.1函数的概念

2.2函数的表示方法

2.3映射

§3 函数的单调性

§4 二次函数性质的再研究

4.2二次函数的性质

§5 简单的幂函数

第二章指数函数与对数函数

§1 正指数函数

§2 指数扩充及其运算性质

2.1指数概念的扩充

2.2指数运算是性质

§3 指数函数

3.1指数函数的概念

3.2指数函数 的图像和性质

3.3指数函数的图像和性质

§4 对数

4.1对数及其运算

4.2换底公式

§5 对数函数

5.1对数函数的概念

5.2 的图像和性质

5.3对数函数的图像和性质

§6 指数函数、幂函数、对数函数增长的比较

§1 函数和方程

1.1利用函数性质判定方程解的存在

1.2利用二分法求方程的近似解

§2 实际问题的函数建模

2.1实际问题的函数刻画

2.2用函数模型解决实际问题

2.3函数建模案例

必修二

章立体几何初步

§1 简单几何体

1.1简单旋转体

1.2简单多面体

§2 直观图

§3 三视图

3.1简单组合体的三视图

3.2由三视图还原成实物图

§4 空间图形的基本关系与公理

4.1空间图形基本关系的认识

4.2空间图形的公理

§5 平行关系

5.1平行关系的判定

5.2平行关系的性质

§6 垂直关系

6.1垂直关系的判定

6.2垂直关系的性质

§7 简单几何体的面积和体积

7.1简单几何体的侧面积

7.2棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积

7.3球的表面积和体积

第二章 解析几何初步

§1 直线和直线的方程

1.1直线的倾斜角和斜率

1.2直线的方程

1.3两条直线的位置关系

1.4两条直线的交点

1.5平面直接坐标系中的距离公式

§2 圆和圆的方程

2.1圆的标准方程

2.2圆的一般方程

3.1空间直接坐标系的建立

3.2空间直角坐标系中点的坐标

必修三

章统计

§1 从普查到抽样

§2 抽样方法

2.1简单随机抽样

2.2分层抽样与系统抽样

§3 统计图表

§4 数据的数字特征

4.1平均数、中位数、众数、极、方

4.2标准

§5 用样本估计总体

5.1估计总体的分布

5.2估计总体的数字特征

§6 统计活动:结婚年龄的变化

§7 相关性

§8最小二乘估计

第二章算法初步

§1 算法的基本思想

1.1算法案例分析

1.2排序问题与算法的多样性

§2 算法框图的基本结构及设计

2.1顺序结构与选择结构

2.2变量与赋值

2.3循环结构

§3 几种基本语句

3.1条件语句

3.2 循环语句

第三章 概率

§1 随机的概率

1.1频率与概率

1.2生活中的概率

§2 古典概型

2.1古典概型的特征和概率计算公式

2.2建立概率模型

2.3互斥

§3 模拟方法――概率的应用

必修四

章三角函数

§1 周期现象

§2 角的概念的推广

§3 弧度制

§4 正弦函数和余弦函数的定义与诱导公式

4.1任意角的正弦函数、余弦函数的定义

4.2单位圆与周期性

4.3单位圆与诱导公式

§5 正弦函数的性质与图像

5.1从单位圆看正弦函数的性质

5.2正弦函数的图像

5.3正弦函数的性质

§6 余弦函数的图像和性质

6.1余弦函数的图像

6.2余弦函数的......>>

问题三:高一数学主要讲述了什么? 和函数。期中包括函数的定义域,值域,单调性奇偶性,图像翻折问题。这些是研究所用函数都需要研究的性质。要研究的具体函数有二次函数,幂函数,指数函数 对数函数,复合函数,分式函数,分段函数。期中二次函数最重要,贯穿整个高中。之后开始三角函数,向量,数列内容。

问题四:高中数学有多少本书要学?分别是哪些? 必修有5本,选修如果全学的话有3本(学理的学2-1,2-2,2-3,学文的好像学1-1,1-2),后面还有四本选修,4-1,4-2,4-4,4-5,五本是选修的,各地方可能不同。

高中数学是全国高中生学习的一门学科。包括《 与函数》《三角函数》《不等式》《数列》《复数》《排列、组合、二项式定理》《立体几何》《平面解析几何》等部分。

问题五:高一人教版数学要学的知识有哪些 高一数学目录

-人教版

必修一

章 与函数概念

1

2函数及其表示

3函数的基本性质

实习作业

第二章基本初等函数(Ⅰ

)2

.1

指数函数

复习参考题2.

2对数函数

2.

3幂函数

3.

1函数与方程

3.

2函数模型及其应用

实习作业

必修二

章空间几何体

1空间几何体的结构

2空间几何体的三视图和

直观图

3空间几何体的表面积与

体积

实习作业

第二章点、直线、平面之间

的位置关系

2.

1空间点、直线、平面之

间的位置关系

2.

2直线、

平面平行的判定

及其性质

2.

3直线、

平面垂直的判定

及其性质

第三章直线与方程

3.

3.

2直线的方程

3.

3直线的交点坐标与距离

必修三

章算法初步

1算法与程序框图

2基本算法语句

3算法案例

阅读与思考割圆术

第二章统计

2.

1随机抽样

阅读与思考一个的案

例阅读与思考广告中数据的

可靠性

阅读与思考如何得到敏感

性问题的诚实反应

2.

2用样本估计总体

阅读与思考生产过程中的

质量控制图

2.

3变量间的相关关系

阅读与思考相关关系的强

与弱

实习作业

第三章概率

3.

阅读与思考天气变化的认

识过程

3.

2古典概型

3.

3几何概型

阅读与思考概率与密码

必修四

章三角函数

1任意角和弧度制

2任意角的三角函数

3三角函数的诱导公式

4三角函数的图象与性质

5函数

(ω

x+

ψ)

6三角函数模型的简单应

用小结

第二章平面向量

2.

1平面向量的实际背景及

基本概念

2.

2平面向量的线性运算

2.

3平面向量的基本定理及

坐标表示

2.

4平面向量的数量积

2.

5平面向量应用举例

第三章三角恒等变换

3.

1两角和与的正弦、

余弦和正切公式

3.

2简单的三角恒等变换

章解三角形

1正弦定理和余弦定理

探究与发现解三角形的进

一步讨论

2应用举例

阅读与思考海伦和秦九韶

3实习作业

第二章数列

2.

1数列的概念与简单表示

法阅读与思考斐波那契数列

阅读与思考估计根号下

2的

值2

.2

等数列

2.

3等数列的前

n项和

2.

4等比数列

2.

5等比数列前

n项和

阅读与思考九连环

探究与发现购房中的数学

3.

......>>

问题六:高中数学学习什么最为重要呢,哪方面的知识要学好呢 高一主要以函数及数列为主,而且这两个订面的知识在高考占的分数也不小,建议你高一打好基础。高二有立体几何,这个就比较简单了。多炼吧,不懂就问,养成好的习惯,个人感觉只要付出,学习任何东西都是不难的。

问题七:现在国内高中下来数学都学什么的? 给你目录你就知道了

高中人教版(B)教材目录介绍

高中数学(B版)必修一

1.1 与 的表示方法

1.2 之间的关系与运算

本章小结

聪明在于学习,天才由于积累――自学成才的华罗庚

第二章 函数

2.1 函数

2.2 一次函数和二次函数

2.3 函数的应用(Ⅰ)

2.4 函数与方程

本章小结(1)

函数概念的形成与发展

第三章 基本初等函数(Ⅰ)

3.1 指数与指数函数

3.2 对数与对数函数

3.3 幂函数

3.4 函数的应用(Ⅱ)

实习作业

本章小结

对数的发明

对数的功绩

附录1 科学计算自由软件――SCILAB

附录1 部分中英文词汇对照表

后记

高中数学(B版)必修二

1.1 空间几何体

实习作业

1.2 点、线、面之间的位置关系

本章小结

第二章 平面解析几何初步

2.1 平面真角坐标系中的基本公式

2.2 直线方程

2.3 圆的方程

2.4 空间直角坐标系

本章小结

附录 部分中英文词汇对照表

后记

?/P>

高中数学(B版)必修三

章 算法初步

1.1 算法与程序框图

1.2 基本算法语句

1.3 古代数学中的算法案例

本章小结

附录 参考程序

第二章 统计

2.1 随机抽样

2.2 用样本估计总体

2.3 变量的相关性

实习作业

本章小结

附录 随机数表

第三章 概率

3.1 随机现象

3.2 古典概型

3.3 随机数的含义与应用

3.4 概率的应用

本章小结

后记

?/P>

高中数学(B版)必修四

章 基本初等函(Ⅱ)

1.1 任意角的概念与弧度制

1.2 任意角的三角函数

1.3 三角函数的图象与性质

数学建模活动

本章小结

第二章 平面向量

2.1 向量的线性运算

2.2 向量的分解与向量的坐标运算

2.3 平面向量的数量积

2.4 向量的应用

本章小结

第三章 三角恒等变换

3.1 和角公式

3.2 倍角公式和半角公式

3.3 三角函数的积化和与和化积

本章小结

附......>>

问题八:高中数学理科都学哪几本选修(人教版)都讲了什么内容 选修有2-1:圆锥曲线,2-2:复数,导数,2-3排列组合,4-4:坐标系

高中数学知识点总结 高中数学知识点有哪些呢?下面是我为大家分享有关高中数学知识点总结,欢迎大家阅读与学习! 一、与简易逻辑 1.的元素具有确定性、无序性和互异性. 2.对 , 时,必须注意到“极端”情况: 或 ;求的子集时是否注意到 是任何的子集、 是任何非空的真子集. 3.对于含有 个元素的有限 ,其子集、真子集、非空子集、非空真子集的个数依次为 4.“交的补等于补的并,即 ”;“并的补等于补的交,即 ”. 5.判断命题的真 关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”. 6.“或命题”的真特点是“一真即真,要全”;“且命题”的真特点是“一即,要真全真”;“非命题”的真特点是“一真一”. 7.四种命题中“‘逆’者‘交换’也”、“‘否’者‘否定’也”.原命题等价于逆否命题,但原命题与逆命题、否命题都不等价.反证法分为三步:设、推矛、得果.注意:命题的否定是“命题的非命题,也就是‘条件不变,仅否定结论’所得命题”,但否命题是“既否定原命题的条件作为条件,又否定原命题的结论作为结论的所得命题” . 8.充要条件 二、函 数 1.指数式、对数式 2.(1)映射是“‘全部射出’加‘一箭一雕’”;映射中个 中的元素必有像,但第二个 中的元素不一定有原像( 中元素的像有且下一个,但 中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域是映射中像集 的子集”. (2)函数图像与 轴垂线至多一个公共点,但与 轴垂线的公共点可能没有,也可任意个. (3)函数图像一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图像. 3.单调性和奇偶性 (1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同.偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.注意:(1)确定函数的奇偶性,务必先判定函数定义域是否关于原点对称.确定函数奇偶性的常用方法有:定义法、图像法等等.对于偶函数而言有: . (2)若奇函数定义域中有0,则必有 .即 的定义域时, 是 为奇函数的必要非充分条件. 3)确定函数的单调性或单调区间,在解答题中常用:定义法(取值、作、鉴定)、导数法;在选择、填空题中还有:数形结合法(图像法)、特殊值法等等. (4)既奇又偶函数有无穷多个( ,定义域是关于原点对称的任意一个数集). (7)复合函数的单调性特点是:“同性得增,增必同性;异性得减,减必异性”.复合函数的奇偶性特点是:“内偶则偶,内奇同外”.复合函数要考虑定义域的变化.(即复合有意义) 4.对称性与周期性(以下结论要消化吸收,不可强记) (1)函数 与函数 的图像关于直线 ( 轴)对称.推广一:如果函数 对于一切 ,都有 成立,那么 的图像关于直线 (由“ 和的一半 确定”)对称.推广二:函数 , 的图像关于直线 (由 确定)对称. (2)函数 与函数 的图像关于直线 ( 轴)对称. (3)函数 与函数 的图像关于坐标原点中心对称.推广:曲线 关于直线 的对称曲线是 ;曲线 关于直线 的对称曲线是 . (5)类比“三角函数图像”得:若 图像有两条对称轴 ,则 必是周期函数,且一周期为 .如果 是R上的周期函数,且一个周期为 ,那么 .特别:若 恒成立,则 .若 恒成立,则 .若 恒成立,则 .三、数 列1.数列的通项、数列项的项数,递推公式与递推数列,数列的'通项与数列的前 项和公式的关系: (必要时请分类讨论). 注意: 2.等数列 中: (1)等数列公的取值与等数列的单调性. (2) 两等数列对应项和()组成的新数列仍成等数列. (3) 仍成等数列.(4“首正”的递减等数列中,前 项和的值是所有非负项之和;“首负”的递增等数列中,前 项和的最小值是所有非正项之和; (5)有限等数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和”-“奇数项和”=总项数的一半与其公的积;若总项数为奇数,则“奇数项和”-“偶数项和”=此数列的中项. (6)两数的等中项惟一存在.在遇到三数或四数成等数列时,常考虑选用“中项关系”转化求解. (7)判定数列是否是等数列的主要方法有:定义法、中项法、通项法、和式法、图像法(也就是说数列是等数列的充要条件主要有这五种形式). 3.等比数列 中: (1)等比数列的符号特征(全正或全负或一正一负),等比数列的首项、公比与等比数列的单调性. (2) 成等比数列; 成等比数列 成等比数列. (3)两等比数列对应项积(商)组成的新数列仍成等比数列. (4) 成等比数列. (5)“首大于1”的正值递减等比数列中,前 项积的值是所有大于或等于1的项的积;“首小于1”的正值递增等比数列中,前 项积的最小值是所有小于或等于1的项的积; (6)有限等比数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和”=“奇数项和”与“公比”的积;若总项数为奇数,则“奇数项和”=“首项”加上“公比”与“偶数项和”积的和. (7)并非任何两数总有等比中项.仅当实数 同号时,实数 存在等比中项.对同号两实数 的等比中项不仅存在,而且有一对 .也就是说,两实数要么没有等比中项(非同号时),如果有,必有一对(同号时).在遇到三数或四数成等数列时,常优先考虑选用“中项关系”转化求解. (8)判定数列是否是等比数列的方法主要有:定义法、中项法、通项法、和式法(也就是说数列是等比数列的充要条件主要有这四种形式). 4.等数列与等比数列的联系 (1)如果数列 成等数列,那么数列 ( 总有意义)必成等比数列. (2)如果数列 成等比数列,那么数列 必成等数列. (3)如果数列 既成等数列又成等比数列,那么数列 是非零常数数列;但数列 是常数数列仅是数列既成等数列又成等比数列的必要非充分条件. (4)如果两等数列有公共项,那么由他们的公共项顺次组成的新数列也是等数列,且新等数列的公是原两等数列公的最小公倍数.如果一个等数列与一个等比数列有公共项顺次组成新数列,那么常选用“由特殊到一般的方法”进行研讨,且以其等比数列的项为主,探求等比数列中那些项是他们的公共项,并构成新的数列. 注意:(1)公共项仅是公共的项,其项数不一定相同,即研究 .但也有少数问题中研究 ,这时既要求项相同,也要求项数相同.(2)三(四)个数成等(比)的中项转化和通项转化法. ;

就是这样

版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。