2019数学高考37题 2019年高考数学20题

各省高考 2025-02-10 10:34:06

高考数学常考题型答题技巧与方法有哪些

.......中学教才全解里的题很好建议看看

高考像漫漫人生路上的一道坎,无论成败与否,我认为现在都不重要了,重要的是要 总结 高考的得与失,以便在今后的人生之路上迈好每一个坎!下面就是我给大家带来的高考数学常考题型答题技巧与 方法 ,希望大家喜欢!

2019数学高考37题 2019年高考数学20题2019数学高考37题 2019年高考数学20题


2019数学高考37题 2019年高考数学20题


2019数学高考37题 2019年高考数学20题


4.限时答题,先提速后纠正错误

高考数学常考题型答题技巧与方法

1、解决问题

主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含的问题转化为不含的问题。

具体转化方法有:

①分类讨论法:根据符号中的数或式子的正、零、负分情况去掉。

②零点分段讨论法:适用于含一个字母的多个的情况。

③两边平方法:适用于两边非负的方程或不等式。

④几何意义法:适用于有明显几何意义的情况。

2、因式分解

提取公因式

选择用公式

十字相乘法

分组分解法

拆项添项法

3、配方法

利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。配方法的主要根据有:

4、换元法

解某些复杂的特型方程要用到“换元法”。换元法解方程的一般步骤是:

设元→换元→解元→还元

5、待定系数法

待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。其解题步骤是:①设②列③解④写

6、复杂代数等式

复杂代数等式型条件的使用技巧:左边化零,右边变形。

①因式分解型:

(-----)(----)=0两种情况为或型

②配成平方型:

(----)2+(----)2=0两种情况为且型

(1)求值的思路列欲求值字母的方程或方程组

(2)求取值范围的思路列欲求范围字母的不等式或不等式组

8、化简二次根式

基本思路是:把√m化成完全平方式。即:

10、代数式求值

(1)直接代入法

(2)化简代入法

(3)适当变形法(和积代入法)

11、解含参方程

方程中除过未知数以外,含有的 其它 字母叫参数,这种方程叫含参方程。解含参方程一般要用‘分类讨论法’,其原则是:

(1)按照类型求解

(2)根据需要讨论

(3)分类写出结论

12、恒相等成立的有用条件

(1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。

(2)ax2+bx+c=0对于任意x都成立关于x的方程ax2+bx+c=0有无数解a=0、b=0、c=0。

13、恒不等成立的条件

由一元二次不等式解集为R的有关结论容易得到下列恒不等成立的条件:

14、平移规律

讨论函数性质的重要方法是图像法——看图像、得性质。

值域图像在Y轴上对应的部分

单调性从左向右看,连续上升的一段在X轴上对应的区间是增区间;从左向右看,连续下降的一段在X轴上对应的区间是减区间。

最值图像点处有值,图像点处有最小值

奇偶性关于Y轴对称是偶函数,关于原点对称是奇函数

16、函数、方程、不等式间的重要关系

方程的根

函数图像与x轴交点横坐标

17、一元二次不等式的解法

一元二次不等式可以用因式分解转化为二元一次不等式组去解,但比较复杂;它的简便的实用解法是根据“三个二次”间的关系,利用二次函数的图像去解。具体步骤如下:

二次化为正

解集横轴中

18、一元二次方程根的讨论

一元二次方程根的符号问题或m型问题可以利用根的判别式和根与系数的关系来解决,但根的一般问题、特别是区间根的问题要根据“三个二次”间的关系,利用二次函数的图像来解决。“图像法”解决一元二次方程根的问题的一般思路是:

题意

二次函数图像

不等式组8. 高考数学不同题型的答题技巧

不等式组包括:a的符号;△的情况;对称轴的位置;区间端点函数值的符号。

19、基本函数在区间上的值域

我们学过的一次函数、反比例函数、二次函数等有名称的函数是基本函数。基本函数求值域或最值有两种情况:

(1)定义域没有特别限制时---记忆法或结论法;

(2)定义域有特别限制时---图像截断法,一般思路是:

画出图像

截出一断

20、最值型应用题的解法

应用题中,涉及“一个变量取什么值时另一个变量取得值或最小值”的问题是最值型应用题。解决最值型应用题的基本思路是函数思想法,其解题步骤是:

列函数

求最值

写结论

21、穿线法

穿线法是解高次不等式和分式不等式的方法。其一般思路是:

首项化正

求根标根

右上起穿

奇穿偶回

注意:①高次不等式首先要用移项和因式分解的方法化为“左边乘积、右边是零”的形式。②分式不等式一般不能用两边都乘去分母的方法来解,要通过移项、通分合并、因式分解的方法化为“商零式”,用穿线法解。

高考数学常考题型答题技巧与方法有哪些相关 文章 :

1. 2019高考数学选择题答题技巧及方法

2. 高中数学常考题型答题技巧与方法及顺口溜

3. 高考数学必考题型以及题型分析

4. 高考数学选择题答题技巧有哪些

5. 2017高考数学常考的题型总结

6. 2017高考常考数学题型归纳

7. 高考数学答题技巧及复习方法

9. 高考数学的核心考点及答题技巧方法

求近三年高考数学题

也不错

几何

三、解答题

买“五年高考,三年模拟”试题都是按章节分类的,很好找

买本《十年高考》

设变量既然你不会下,就只好去买了

把常用的公式和一些妙招一定要背熟,配合着题练习~

昨一百道公式方法记不住也是白搭~

可怜的孩子,被老师逼迫成这样了

去书店买吧!

高考数学选择题多少分 高考数学分值分布

你想知道高考数学试卷选择一共占多少分吗?你是否明白高考数学的分值分布情况?下面我就为大家详细介绍下,具体内容如下。

高考数学选择题多少分 在高考数学的试卷中,选择题一共8小题,每小题5分一共40分。填空一共5个,每题6分,一共30分。选择填空总共70分。具体是这样在高考数学试卷上分布的:

一、选择题 1~8 每小题5分 共40分

二、填空题9~14 每小题6分 共30分

15.三角函数或者解三角形 13分

17.立体几何14分 (16 17位置可能互换)

18.导数题 13分

19.解析几何体 椭圆 双曲线 抛物线 之类的 14分

20.定义新运算 推理与证明 13分

共计150分

高考数学分值分布 1.与简易逻辑。分值在5~10分左右(一道或两道选择题),高考数学考查的重点是抽象思维能力,主要考查与的运算关系,将加强对的计算与化简的考查,并有可能从有限向无限发展。简易逻辑多为考查“充分与必要条件”及命题真伪的判别。

2.函数与导数,函数是高中数学的主要内容,它把中学数学的各个分支紧密地联系在一起,是中学数学全部内容的主线。在高考数学中,至少三个小题一个大题,分值在30分左右。以指数函数、对数函数、生成性函数为载体结合图象的变换(平移、伸缩、对称变换)、四性问题(单调性、奇偶性、周期性、对称性)、反函数问题常常是选择题、填空题考查的主要内容,其中函数的单调性和奇偶性有向抽象函数发展的趋势。函数与导数的结合是高考的热点题型,文科以三次(或四次)函数为命题载体,理16.概率题 13分科以生成性函数(对数函数、指数函数及分式函数)为命题载体,以切线问题、极值最值问题、单调性问题、恒成立问题为设置条件,与不等式、数列综合成题,是解答题试题的主要特点。

3.不等式; 高考数学一般不会单独命题,会在其他题型中“隐蔽”出现,分值一般在10左右。不等式作为一种工具广泛地应用在涉及函数、数列、解几等知识的考查中,不等式重点考五种题型:解不等式(组);证明不等式;比较大小;不等式的应用;不等式的综合性问题。选择题和填空题主要考查不等式性质、解法及均值不等式。解答题会与其它知识的交汇中考查,如含参量不等式的解法(确定取值范围)、数列通项或前n 项和的有界性证明、由函数的导数确定最值型的不等式证明等。

4.数列:数列是高中数学的重要内容,又是初等数学与高等数学的重要衔接点,所以在历年的高考数学解答题中都占有重要的地位.题量一般是一个小题一个大题,有时还有一个与其它知识的综合题。分值在20分左右,文科以应用等、等比数列的概念、性质求通项公式、前n 项和为主;理科以应用Sn 或an 之间的递推关系求通项、求和、证明有关性质为主。数列是特殊的函数,而不等式是深刻认识函数与数列的工具,三者综合的求解题与求证题是对基础知识和基础能力的双重检验,是高考命题的新热点。

9、观察法5.三角函数:分值在20分左右(两小一大)。三角函数高考数学题大致为以下几类:一是三角函数的恒等变形,即应用同角变换和诱导公式,两角和公式,二倍角公式,求三角函数值及化简、证明等问题;二是三角函数的图象和性质,即图像的平移、伸缩变换与对称变换、画图与视图,与单调性、周期性和对称性、最值有关的问题;三是三角形中的三角问题.

高考数学对这部分内容的命题有如下趋势:⑴降低了对物理模型是一种理想化的物理形态,是物理知识的一种直观表现,模型思维法是利用类比、抽象、简化、理想化等手段,突出物理过程的主要因素,忽略次要因素,把研究对象的物理本质特征抽象出来,从而进行分析和推理的一种思维方法.在遇到以新颖的背景、陌生的材料和前沿的知识为命题素材,联系工农业生产、高科技或相关物理理论的题目时,如何能根据题意从题干中抽象出我们所熟悉的物理模型是解题的关键.三角变形的要求,加强了对三角函数的图象和性质的考察.⑵多是基础题,难度属中档偏易.⑶强调三角函数的工具性,加强了三角函数与其他知识的综合,如与向量知识、三角形问题、解析几何、立体几何的综合。以三角形为载体,以三角函数为核心,以正余弦公式为主体,考查三角变换及其应用的能力,已成为考试热点。

6.向量:分值在10分左右,一般有一道小题的纯向量题,另外在函数、三角、解析几何与立体几何中均可能结合出题。向量是高考数学新增的重点内容,它融代数特征和几何特征于一体。

高考数学选择题解题步骤

高考数学难度比例为7:2:1,也就是说80%都是基础题。然而数学却是高考中最拉分的。90%的学生都缺少一套科学,高效的解题 方法 和步骤,尤其到了冲刺阶段!那么接下来给大家分享一些关于高考数学选择题解题步骤,希望对大家有所帮助。

1.突破运算

运算是考场解题的奠基石,运算能力不过关,解题基本无法进行到,据估计高三学生绝大多数同学都或多或少有运算困扰,但是却苦于无从提高,因为这被公认为是“基础”没有人也没有资料专门讲解,如果有也是把很多题目放在一块,这是造成很多学生运算一直无法提高的主要原因.

2.突破概念公式图形

这一块内容在课本或者资料上都有详细归纳,但高一高二解题一般公式书归纳的内容基本可以,但是进入高三,随着题目的复杂化,你会发现,课本或者公式书上的内容还远远不够,我就举一些高一课本中的简单例子,如函数的奇偶性周期性等考试中会涉及很多结论,而这些可能在书上或一般公式书都没有,怎么办?这就需要你自己 总结 ,又如函数的零点定理,它只是充分条件而不是必要条件,那么需要添加什么才能变成充要条件呢,再比如空间几何经常会考一些内外接球,可能你会计算,但是在考场上如果你没有归纳出内外接球半径计算公式,那么最终你可能由于时间关系外加紧张,可能会出现错误。

同时考试中涉及的图形可能并不完全是课本中熟知的,而是课本中基本图形的扩展图形,什么是扩展图形呢,我举一个简单例子,如直线大家都会画,那么对x或y添加,或者对x,y同时加它的图形你还会画吗?又如反比例函数y=1/x,扩展图形y=2x+1/x ,y=-2x+1/x, y=(-2x+1)/(x+3)等你知道吗?

突破选择题主要包括:选项特征,选择题快速计算技巧,选择题题目特征及解法,以及一些常见选择题的特殊结论等

解答题是考试中我们遇到的另外一种题型,但是它的解法不同于选择题,由于高考中解答题的特殊性,使我们可以通过一些策略可以取得令人满意的分数。

一般高考考场中的解答题题型基本是固定的,所以我们可以通过归纳出的一些结论,特殊公式,一般解题思路及模板等再结合四步解题思路完成解答题的快速求解。

高考数学选择题秒杀方法与技巧

一:直选法——简单直观

这种方法一般适用于基本不需要“转变”或推理的简单题目.这些题目主要考查考生对物理识记内容的记忆和理解程度,属常识性知识题目.常见考纲中的Ⅰ级要求内容。

二:比较排除法——排除异己

这种方法要在读懂题意的基础上,根据题目的要求,先将明显的错误或不合理的备选一个一个地排除掉,只剩下正确的。如果选项是完全肯定或否定的判断,可通过举反例的方式排除;如果选项中有相互矛盾或者是相互排斥的选项,则两个选项中可能有一种说法是正确的,当然,也可能两者都错,但绝不可能两者都正确。

对较难直接判断选项的正误量,可以让某些物理量巧取满足题设条件的特殊值或极值,带入到各选项中逐个进行检验,凡是用特殊值或极值检验证明是不正确的选项,就一定是错误的,可以排除。这种方法往往可以省去严密的逻辑推理或繁杂的数学证明。

四:极限思维法——无所不极

物理中体现的极限思维常见方法有极端思维法、微元法。当题目所涉及的物理量随条件单调变化时,可用极限法是把某个物理量推向极端,即极大或极小,极左或极右,并据此做出科学的推理分析,从而给出判断或导出一般结论。

微元法是把物理过程或研究对象分解为众多细小的

“微元”,只需对这些“微元”进行必4.突破-解答题要的数学方法或物理思想处理,便可使问题得于求解。

五:代入法——事半功倍

对于一些计算型的选择题,可以将题目选项中给出的直接代入进行检验,或在计算程中某阶段代入检验,常可以有效地减少数算量。

六:对比归谬法——去伪存真

对于一些选项间有相互关联的高考选择题,有时可能会出现如果选项A正确即会有选项B正确或选项C也正确的情况,对于应为单选或双选的选择题可用此方法进行排除错误选项。

七:整体、隔离法——双管齐下

研究对象为多个时,首先要想到利用整体、隔离法去求解。常用思路是整体求外力,隔离求内力,先整体后隔离,两种方法配合使用。

八:对称分析法——左右开弓

九:图像图解法——立竿见影

根据题目的内容画出图像或示意图,如物体的运动图像、受力示意图、光路图等,再利用图像分析寻找,利用图像或示意图解答时,具有形象、直观的特点,便于了解各物理量之间的关系,能够避免繁琐的计算,迅速简便地找出正确的。

很多物理过程具有可逆性,如运动的可逆性,光路的可逆性等,在沿着正向“由因到果”去分析受阻时,可“反其道而行之”,沿着逆向“由果到因”的过程去思考,常常收到化难为易、出奇制胜的效果。

十一:举例求证法——避实就虚

有些选择题中带有“可能”、“可以”等不确定的词语,只要能举出一个特殊例子证明它正确,就可以肯定这个选择项是正确的;有些选择题的选项中带有“一定”“不可能”等肯定的词语,只要能举出一个反例驳倒这个选项,就可以排除这个选项。

十二:转换对象法——反客为主

在一些问题中,如以题目中给出的物体作为研究对象去分析问题,有可能十分复杂或无法解答,这时可以变换研究对象,转换为我们熟悉的问题,使分析问题变得简单易行,再去找出待求量。

十三:二级结论法——迅速准确

“二级结论”是指由基本规律和基本公式导出的结论,熟记并巧用.一些“二级结论”可以使思维简化,节约解题时间,其能常常使我们 “看到题就知道”,达到迅速准确的目的。

十四:比例分析法——化繁为简

十五:控制变量法——以寡敌众

对多变量问题,有时采用每一次只改变其中一个变量而控制其余几个量不方法有:变的方法,使其变成较简单的单变量问题,大大降低问题的分析复杂程度,这种方法是科学探究中和重要思想方法,也是物理中常用的探索问题和分析问题的科学方法之一。

对于以字母形式出现的计算型选择题,物理公式表达了物理量间的数量和单位的双重关系,所以可以用物理量的单位来衡量和检验该物理量的运算结果是否正确。常用此方法来判断计算结果的正确性,选择题中常用其来排除一些错误选项。

十七:等效替换法——殊途同归

也可称等效处理法,类比分析法。是把较陌生、复杂的物理现象、物理过程在保证某种效果、特性或关系相同的前提下,转化为简单、熟悉的物理现象或物理过程来研究,从而认识清楚研究对象本质和规律的一种思想方法。常用的如等效重力场、类平抛运动、等效电源、力或运动的合成与分解的等效性、万有引力与库仑力的类比性等。

十八:临界分析法——以点带面

求解物理量的范围问题可以采用临界分析法,充分利用临界条件进行快速求解,常见的临界条件如:物体“刚好脱离”:接触但弹力为零件物体“刚要相对滑动”:受到静摩擦力;粒子“刚要飞出磁场”:轨迹与磁场相切,等等。

十九:建立模型法——即物明理

二十:计算推理法——有理有据

根据题给条件,利用有关的物理规律、物理公式或物理原理通过逻辑推理或计算得出正确,然后再与备选对照做出选择。

1.先易后难,逐步增加习题的难度

人们认识事物的过程都是从简单到复杂。简单的问题解多了,从而使概念清晰了,对公式、定理以及解题步骤熟悉了,解题时就会形成跳跃性思维,解题的速度就会大大提高。

我们在学习时,应根据自己的能力,先去解那些看似简单,却很重要的习题,以不断提高解题速度和解题能力。随着速度和能力的提高,再逐渐增加难度,就会达到事半功倍的效果。

中下题目通常占全卷的80%以上,是试题的主要部分,是考生得分的主要来源。谁能保质保量地拿下这些题目,就已算是打了个胜仗,有了胜利在握的心理,对攻克高难题会更放得开。

解决应用性问题,首先要全面调查题意,迅速接受概念,此为"面";透过冗长叙述,抓住重点词句,提出重点数据,此为"点";综合联系,提炼关系,依靠数学方法,建立数学模型,此为"线",如此将应用性问题转化为纯数学问题。当然,求解过程和结果都不能离开实际背景。

很多同学做题慢的一个重要原因就是平时做作业习惯了拖延时间,导致形成了一个不太好的解题习惯。所以,提高解题速度就要先解决“拖延症”。比较有效的方式是限时答题,例如在做数学作业时,给自己限时,先不管正确率,首先保证在规定时间内完成数学作业,然后再去纠正错误。这个过程对提高书写速度和思考效率都有较好的作用。当你习惯了一个较快的思考和书写后,解题速度自然就会提高,及改正了拖延的毛病,也提高了成绩。

高考数学选择题解题步骤相关 文章 :

★ 高考数学选择题答题技巧汇总大全

★ 数学选择题八大解题方法

★ 高考常用的选择题解题方法

★ 高考数学选择题答题技巧

★ 高考数学基础题型答题技巧及解题步骤

★ 2020高考数高考数学选择题解题步骤学选择题解题技巧

★ 高考数学题型归纳及选择题答题技巧

高考数学选择题多少分?

得出结论

高考数学选择题总分60,共12题,每题5分。填空4题,每题4分,共16分。第三大题是解答题,解答题占72分共有6个小题,这六个小题考核内容是相对固定的,有数列,三角函数,概率题,立体几何,解析几何,导数等,通常解析几何放在倒数第二题,大约占12分,导数放在倒数题,大约占15~18分,这两个题加起来不会超过30分,至于其他四个题目分值也不均匀,8分,10分,12分的都有可能。六个大题除了一个导数题是三个小题之外其他题目一般都只有两个小题。一般来说,高考数学中与简易逻辑。

★ 2019高考数学选择题答题技巧及方法

高考数学时间分配

三:特殊值法、极值法——投机取巧

数学试卷答题时间分配

2019年高考数学答题技巧套路模板和时间分配方法注意事项

注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。

2018高考在即,很多同学反映,在平时的模拟考试中,总会出现试题做不完的情况。要知道,这可是高考的大忌!根源在于答题时间分配不科学,对一些答题注意事项把握不准。

高考数学解题技巧

下面和大家分享高考数学答题时间分配的原则及注意事项,大家可以作为参考,尽快学会在考场上合理利用时间!(本文适合大多数考生,可根据自己实际情况做稍微调整!)

高考数学答题时间、分配策略

一.充分利用考前5分钟

很多学生或家长不知道,按照大型的考试的要求,考前五分钟是发卷时间,考生填写准考证。这五分钟是不准做题的,但是可以看题。发现很多考生拿到试卷之后,就从个题开始看,给大家的建议是,拿过这套卷子来,这五分钟是用来制定整个战略的关键时刻。之前没看到题目,你只是空想,当你看到题目以后,你得利用这五分钟迅速制定出整个考试的战略来。

二.进入考试先审题

考试开始后,很多学生喜欢奋笔疾书;但切记:审题一定要仔细,一定要慢。数学题经常在一个字、一个数据里边暗藏着解题的关键,这个字、这个数据没读懂,要么找不着解题的关键,要么你误读了这个题目。你在误读的基础上来做的话,你可能感觉做得很轻松,但这个题一分不得。所以审题一定要仔细,你只有把题意弄明白了,这个题目才有可能做对。会做的题目是不耽误时间的,真正耽误时间的是在审题的过程中,在找思路的过程中,只要找到思路了,单纯地写那些步骤并不占用时间。

三.节约时间的关键是一次做对

有些学生,好不容易遇到一个简单的题目,就一味地求快,争取时间去做不会做的题目。殊不知,前面的选择题和后边的大题,难易距是很大的,但是分值的含金量是一样的,有些学生看不上前边小题的分数,觉得后边大题的分数才“值钱”,这是的误区。希望在考试的时候,一定要培养一次就做对的习惯,不要指望通过的检查力挽狂澜。越是重要的考试,往往越没有时间回来检查,因为题目越往后越难,可能你陷在里面出不来,抬起头来的时候已经开始收卷了。

四.答题策略

巧解选择、填空题

解选择、填空题的基本原则是“小题不可大做”。

思路:,直接从题干出发考虑,探求结果;

第二,从题干和选择联合考虑;

第三,从选择出发探求满足题干的条件。

解填空题基本方法有:

直接求解法、图像法、构造法和特殊化法(如特殊值、特殊函数、特殊角、特殊数列、图形的特殊位置、特殊点、特殊方程、特殊模型等)。

细答解答题

1.规范答题很重要 。

找到解题方法后,书写要简明扼要,快速规范,不拖泥带水,高考评分是按步给分,关键步骤不能丢,但允许合理省略非关键步骤。答题时,尽量使用数学符号,这比文字叙述要节省时间且严谨。即使过程比较简单,也要简要地写出基本步骤,否则会被扣分。经常看到考生的卷面出现“会而不对”、“对而不全”的情况,造成考生自己的估分与实际得分相很多。尤其是平面几何初步中的“跳步”书写,使考生丢分,所以考生要尽可能把过程写得详尽、准确。

2.分步列式。

尽量避免用综合或连等式。高考评分是分步给分,写出每一个过程对应的式子,只要表达正确都可以得到相应的分数。有些考生喜欢写出一个综合或连等式,这种方式就不好,因为只要发现综合式中有一处错误,就可能丢过程分。对于没有得出结果的试题,分步列式也可以得到相应的过程分,由此增加得分机会。

3.尽量保证证明过程及计算方法大众化。

解题时,使用通用符号,不易吃亏。有些考生为图简便使用一些特殊方法,可一旦结果有错,就会影响得分。

高考考场特别注意:

1.临进考场前不等式解集端点,不要与同学扎堆,以免紧张情绪相互蔓延,你可以独自静处一会儿,在允许的情况下提前15-20分钟进入考场,看一看考场四周,熟悉一下环境,如果有认识的同学,可打招呼以放松心态。

2.坐在座位上,尽快进入角色;不再考虑成败、得失;文具摆好,摘下擦一擦,把这些动作权当考前稳定情绪的“心灵体”,提醒自己做到保持静心、增强信心、做题专心、考试细心。

3.拿到试卷5分钟内一般不允许答题,可以对试卷作整体观察,看看这份试卷的名称是否正确、共多少页、页码顺序有无错误、每一页卷面是否清晰、完整,同时听好监考老师的要求(有时监考老师还会宣读更正错误试题)。

4.在考场上,有时明明知道试题的,由于紧张,一时想不起来,可事后不加思素,也会“油然而生”,这种现象在心理学上叫“舌尖现象”,遇到“舌尖现象”,是把回忆搁置起来,去解其它问题,等抑制过去后,需要的知识经验往往会自然出现。考试时,一时想不起某道试题的,可以暂停回忆,转移一意,先解决其它题目,过一定的时间后,所需要的也许就回忆起来了。

葛军参与过哪些年份的高考数学命题?

选择题在考试中占据半壁江山,选择题的解题的解答直接会影响到整个试卷的做题规划,那么如何在较短的时间内提高选择题的解题效率是我们无法回避的现实问题。那么选择题到底该如何突破呢?

葛军在微上公开声明称,自己只参加过2004年、2007年、2008年、2010年江苏省高考数学卷的命题工作,除此之外,都是谣言。 扩展资料 葛军,男,1964年10月生,江苏省南通市如东县人,南京师范大学,硕士生导师,新课标高中数学(苏教版)教材编写组核心成员,数学奥林匹克高级教练。曾任南京师范大学附属实验学校,南京师范大学教师教育学院副,现任南京师范大学附属中学,多次参与江苏高考数学卷命题,且因“试题难度大”而被称为“数学帝”。2019年6月11日,葛军在微上公开声明称,自己只参加过2004年、2007年、2008年、2010年江苏省高考数学卷的命题工作,除此之外,都是谣言。没有参与过任何一年高考全国数学卷的'命题工作,也没有参与任何江苏以外省份的高考命题工作。

定义域图像在X轴上对应的部分

其他信息:

2022年高考数学命题人不是葛军。 高考命题人主要由三个群体组成:相关学科大学、高中教师和教学研究人员 。三者的比例依次递减,即大学占比,各科命题组组长一般都为大学。 葛军:高考数学试题不是更难了,而是容易了 在教育在线最近对话葛军的一段采访中,葛军老师说:“从整体上看,高考应该来说是趋于容易了,而且是性容易,不只是数学。” 葛军认为容易分两种: 一是相对性容易,一是性容易。 我们的考试内容一般分为三类: 一是所有学生必须掌握的基本内容。 二是大多数学生能够掌握的内容。 三是要求少数孩子掌握的内容。 相对性容易就是,在这个层面上,有少量内容带有一定思维含量,将一些容易的基本知识换个角度来考,事实上解题方法学生是会的,这样的考察方式可以让学生基础打的更扎实,而不是纯粹的反复做简单容易的题,能力没有提高。 另外,从试卷来看,对于知识点的考察没有问题,基本都覆盖了,只是对数学思维方法的要求变低了,在试题中体现少了。 提高数学成绩的方法 一、课内重视听讲,课后及时复习 接受一种新的知识,主要实在课堂上进行的,所以要重视课堂上的学习效率,找到适合自己的学习方法,上课时要跟住老师的思路,积极思考。下课之后要及时复习,遇到不懂的地方要及时去问,在做作业的时候,先把老师课堂上讲解的内容回想一遍,还要牢牢的掌握公式及推理过程,尽量不要去翻书。尽量自己思考,不要急于翻看。还要经常性的总结和复习,把知识点结合起来,变成自己的知识体系。 二、多做题,养成良好的解题习惯 要想学好数学,大量做题是必可避免的,熟练地掌握各种题型,这样才能有效的提高数学成绩。刚开始做题的时候先以书上习题为主,答好基础,然后逐渐增加难度,开拓思路,练习各种类型的解题思路,对于容易出现错误的题型,应该记录下来,反复加以联系。在做题的时候应该养成良好的解题习惯,集中注意力,这样才能进入的状态,形成习惯,这样在考试的时候才能运用自如。

葛军2023年不会出全国乙卷。数学作为三大主科之一,知识难度大,想取得3.面—点—线高分不容易,不是努力就能学会的学科,每年高考过后,数学题都会成为众人讨论的话题。

“数学试题坚持素养导向、能力为重的命题原则;倡导理论联系实际,设计真实问题情境,体现数学的应用价值;科学把握数学题型的开放性与数学思维的开放性,全面体现了基础性、综合性、应用性和创新性的考查要求。”考试中心命题专家告诉记者,高考数学命题发挥数学应用广泛、联系实际的学科特点,深入挖掘我国经济建设和科技发展等方面的学科素材,学生关注我国现实与经济、科技进步与发展,增强认同,增强理想信念与爱国情怀。更值得关注的是,高考数学加大开放题的创新力度,利用开放题考查数学学科核心素养和关键能力,发挥数学科高考的选拔功能。葛军:

葛军,1964年10月21日出生于江苏如东,毕业于南京师范大学数学科学学院,博士学历,曾在南京师范大学,数学奥林匹克高级教练,现任南京师范大学附属中学及南师附中秦淮科技高中。 2010年,葛军为江苏高考副组长,葛军多次参与了江苏高考数学卷命题,而在所有有葛军参与的命题,全部都让学生叫苦不已,因“试题难度大”而被称为“数学帝”,同年三月,他获得首届江苏省基础教育成果一等奖。葛军主编了《新编奥林匹克数学竞赛辅导(高中)》《奥数教程(初三)》《小学数学奥林匹克启蒙》。

几乎没有这种可能,因为葛军是南京师范大学附属中学的,为了避嫌,几乎不可能参加高考数学命题,即使参加也不会在江苏省出卷。而且这种流言已经传了好几年了,2013、2014和今年都有这种传言,事实是2013和2014葛军都没有参与高考命题。

2019年高考,哪个省份的试卷最难?

你们老师太残忍了,十套太多了吧...如果基础不好的话多做点基础题吧...

我觉得是江苏卷最难。

试卷对考生的对于有对称性的物理问题,我们可以充分利用其特点,快速简便地求解问题数学基本能力与数学综合能力进行了较为全面的检测。试卷还关注考生在数学应用意识与创新意识方面的表现。

全卷对基础知识、基本技能、基本思想方法的考查占了较重。填空题的前10题、解答题的前2题,源于教材属于基础题。

填空题的后四题均为原创题,这些问题的求解并不能从简单模仿中获取思路,需要有一定的创新意识,展现出分明的层次,为不同水平的考生15、图像法提供了发挥空间。共8个C级考点,38个B级考点中的37个,25个A级考点中的20个,试卷设计了多级水平台阶。

#高考数学解题技巧

根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:

#高考数学解题技巧如下:

画两个物理量的数学关系明确时,利用他们的比例规律可以使数学计算简化,应用此方法必须明确研究的物理问题中涉及的物理量是什么关系,明确哪些相同量,哪些是不同量。出示意图

解决问题、代数式求值、解含参方程、一元二次不等式的解法,具体如下:

一、解决问题

主要包括化简、求值、方程、不等式、函数等题,基本思路是把含的问题转化为不含的问题。具体转化方法有:

1、分类讨论法:根据符号中的数或式子的正、零、负分情况去掉。

3、两边平方法:适用于两边非负的方程或不等式。

4、几何意义法:适用于有明显几何意义的情况。

二、代数式求值

方法有:直接代入法、化简代入法、适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。

三、解含参方程

方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。解含参方程一般要用分类讨论法,其原则是:按照类型求解、根据需要讨论、分类写出结论。

四、一元二次不等式的解法

可以用因式分解转化为二元一次不等式组去解,但比较复杂;它的简便的实用解法是根据“三个二次”间的关系,利用二次函数的图像去解。具体步骤为:二次化为正、判别且求根、画出示意图、解集横轴中。

版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。