三角函数倍角公式和半角公式 三角函数倍角公式和半角公式推导

各省高考 2025-02-22 09:58:37

三角函数关系式(半角公式,二倍角公式,和化角公式)

tan(3π/2+α)=-cotα

两角和与的三角函数

三角函数倍角公式和半角公式 三角函数倍角公式和半角公式推导三角函数倍角公式和半角公式 三角函数倍角公式和半角公式推导


三角函数倍角公式和半角公式 三角函数倍角公式和半角公式推导


cos^2(α/2)=(1+cosα)/2

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

和化积公式

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

倍角公式

cos(2α)=(cosα)^2-(sinα)^2=2(cosα)^2-1=1-2(sinα)^2

tan(2α)=2tanα/(1-tan^2α)

cot(2α)=(cot^2α-1)/(2cotα)

sec(2α)=sec^2α/(1-tan^2α)

csc(2α)=1/2secα·cscα

三倍角公式

sin(3α)

=3sinα-4sin^3α

=4sinα·sin(60°+α)sin(60°-α)

=4cos^3α-3cosα

=4cosα·cos(60°+α)cos(60°-α)

=(3tanα-tan^3α)/(1-3tan^2α)

=tanαtan(π/3+α)tan(π/...(1-tan^2α)

cot(2α)=(cot^2α-1)/2)+cos(a/(secα+1))

csc(α/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

其它公式

1+sin(a)=(sin(a/2)

cosα+cosβ=2cos[(α+半角公式β)/A))

Asinα+Bcosα=√(A^2+B^2)cos(α-arctan(A/2)[cos(α+β)-cos(α-β)]

倍角公式

sin(2α)=2sinα·cosα=2/2))^2

1-sin(a)=(sin(a/2]

=tanαtan(π/2]sin[(α-β)/2)=±√((1-cosα)/(3cot^2α-1)

sin(nα)=ncos^(n-1)α·sinα-C(n;2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/sinα

cos(2α)=(cosα)^2-(sinα)^2=2(cosα)^2-1=1-2(sinα)^2

tan(2α)=2tanα/(1+cosα)=(1-cosα)/2=versin(2α)/(2cotα)

sec(2α)=sec^2α/2))^2

csc(a)=1/2=covers(2α)/,2)cos^(n-2)α·sin^2α+C(n,3)cos^(n-3)α·sin^3α+C(n;2)

cos(α/2

cos^2α=(1+cos(2α))/两角和与的三角函数

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-cosα)

sec(α/2]sin[(α-β)/2)-cos(a/2]

sinα-sinβ=2cos[(α+β)/2)=±√((2secα/2]cos[(α-β)/2))/2)=±√((1+cosα)/(1-cosα))=(1+cosα)/sinα=sinα/2]

sinα·cosβ=(1/sin(a)

sec(a)=1/2)=±√((1-cosα)/2))

tan(a)=

csc(2α)=1/2))/2secα·cscα

三倍角公式

sin(3α)

=3sinα-4sin^3α

=4sinα·sin(60°+α)sin(60°-α)

=4cos^3α-3cosα

=4cosα·cos(60°+α)cos(60°-α)

=(3tanα-tan^3α)/3+α)tan(π/,5)cos^(n-5)α·sin^5α-…

cos(nα)=cos^nα-C(n;(1+tan^2(a/3-α)

cot(3α)=(cot^3α-3cotα)/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/(1+cos(2α))

三角和的三角函数

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/2)=±√((2secα/(1+cosα))=sinα/2]cos[(α-β)/B))

公式

sin(a)=

(2tan(a/2

tan^2α=(1-cos(2α))/(1-tan^2(a/,4)cos^(n-4)α·sin^4α-…

sin(α/2))/2)=±√((1+cosα)/2))

降幂公式

sin^2α=(1-cos(2α))/(secα-1))

Asinα+Bcosα=√(A^2+B^2)sin(α+arctan(B/(1+tan^2(a/2))

cos(a)=

(1-tan^2(a/(1+tanα·tanβ)

和化积公式

sinα+sinβ=2sin[(α+β)/

什么是和角公式 倍角公式 半角公式

(1)二倍角公式:

sin(a+b)=sinaco+cosasinb

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

sin(a-b)=sinaco-cosasinb

cos(a+b)=cosaco-sinasinb

cos(a-b)=cosaco+sinasinb

tan(a+b)=[tana+tanb]/[1-tanatanb]

tansinα·cosβ=(1/2)[sin(α+β)+sin(α-β)](a-b)=[tana-tanb]/[1+tanatanb]

用b=a代入,就得到倍角公式

tan(a/2)=sina/(1+cosa)=(1-cosa)/sina

倍角公式 是什么

辅助角公式

(a)sin2a=2×sina×cosa

tan(2π-α)=-tanα

(c)tan2a= 2tana/(1-tana^2)

(2)以正切表示二倍角

(a)sin2a= 2tana/(1+tana^2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

(b)cos2a= (1-tana^2)/(1+tana^2)

(c) tan2a= 2tana/(1-tana^2)

(3)三倍角公式

(a)sin3a=3sina -4sina^3

(b)cos3a=4cosa^3 -3cosa

公式一:设α为任意角,终边相同的角的同一三角函数的值相等,则sin(2kπ+α)=sinα(k∈Z)

1、公式一:设α为任意角,终边相同的角的同一三角函数的值相等

sin(2kπ+α)=sinα(k∈Z)

cos(2kπ+α)=cosα(k∈Z)

tan(2kπ+α)=tanα(k∈Z)

2、公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

3、公式三:任意角α与-α的三角函数值之间的关系

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

4、公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

5、公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

6、公式六:π/2±α与α的三角函数值之间的关系

sin(π/2+α)=cosα

sin(π/2-α)=cosα

cos(π/2+α)=-sinα

cos(π/2-α)=sinα

tan(π/2+α)=-cotα

tan(π/2-α)=cotα

cot(π/2+α)=-tanα

公式分类

现列出公式如下:sin2α=2sinαcosα tan2α=2tanα/(1-tan^2(α)) cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) 可别轻视这些字符,它们在数学学习中会起到重要作用.包括一些图像问题和函数问题中

三倍角公式

sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα tan3α=tan(α)(-3+tan(α)^2)/(-1+3tan(α)^2)

sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα

公式

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

和化积公式

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

其他

sinα+sin(α+2π/n)+sin(α+2π2/n)+sin(α+2π3/n)+……+sin[α+2π(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π2/n)+cos(α+2π3/n)+……+cos[α+2π(n-1)/n]=0 以及 sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

四倍角公式

sin4A=-4(cosAsinA(2sinA^2-1)) cos4A=1+(-8cosA^2+8cosA^4) tan4A=(4tanA-4tanA^3)/(1-6tanA^2+tanA^4)

五倍角公式

sin5A=16sinA^5-20sinA^3+5sinA cos5A=16cosA^5-20cosA^3+5cosA tan5A=tanA(5-10tanA^2+tanA^4)/(1-10tanA^2+5tanA^4)

六倍角公式

sin6A=2(cosAsinA(2sinA+1)(2sinA-1)(-3+4sinA^2)) cos6A=((-1+2cosA^2)(16cosA^4-16cosA^2+1)) tan6A=(-6tanA+20tanA^3-6tanA^5)/(-1+15tanA^2-15tanA^4+tanA^6)

七倍角公式

sin7A=-(sinA(56sinA^2-112sinA^4-7+64sinA^6)) cos7A=(cosA(56cosA^2-112cosA^4+64cosA^6-7)) tan7A=tanA(-7+35tanA^2-21tanA^4+tanA^6)/(-1+21tanA^2-35tanA^4+7tanA^6)

八倍角公式

sin8A=-8(cosAsinA(2sinA^2-1)(-8sinA^2+8sinA^4+1)) cos8A=1+(160cosA^4-256cosA^6+128cosA^8-32cosA^2) tan8A=-8tanA(-1+7tanA^2-7tanA^4+tanA^6)/(1-28tanA^2+70tanA^4-28tanA^6+tanA^8)

九倍角公式

sin9A=(sinA(-3+4sinA^2)(64sinA^6-96sinA^4+36sinA^2-3)) cos9A=(cosA(-3+4cosA^2)(64cosA^6-96cosA^4+36cosA^2-3)) tan9A=tanA(9-84tanA^2+126tanA^4-36tanA^6+tanA^8)/(1-36tanA^2+126tanA^4-84tanA^6+9tanA^8)

十倍角公式

sin10A=2(cosAsinA(4sinA^2+2sinA-1)(4sinA^2-2sinA-1)(-20sinA^2+5+16sinA^4)) cos10A=((-1+2cosA^2)(256cosA^8-512cosA^6+304cosA^4-48cosA^2+1)) tan10A=-2tanA(5-60tanA^2+126tanA^4-60tanA^6+5tanA^8)/(-1+45tanA^2-210tanA^4+210tanA^6-45tanA^8+tanA^10)

N倍角公式

根据棣美弗定理,(cosθ+ i sinθ)^n = cos(nθ)+ i sin(nθ) 为方便描述,令sinθ=s,cosθ=c 考虑n为正整数的情形:cos(nθ)+ i sin(nθ) = (c+ i s)^n = C(n,0)c^n + C(n,2)c^(n-2)(i s)^2 + C(n,4)c^(n-4)(i s)^4 + ...+C(n,1)c^(n-1)(i s)^1 + C(n,3)c^(n-3)(i s)^3 + C(n,5)c^(n-5)(i s)^5 + ...=>比较两边的实部与虚部 实部:cos(nθ)=C(n,0)c^n + C(n,2)c^(n-2)(i s)^2 + C(n,4)c^(n-4)(i s)^4 + ...i(虚部):isin(nθ)=C(n,1)c^(n-1)(i s)^1 + C(n,3)c^(n-3)(i s)^3 + C(n,5)c^(n-5)(i s)^5 + ...对所有的自然数n,1.cos(nθ):公式中出现的s都是偶次方,而s^2=1-c^2(平方关系),因此全部都可以改成以c(也就是cosθ)表示.2.sin(nθ):(1)当n是奇数时:公式中出现的c都是偶次方,而c^2=1-s^2(平方关系),因此全部都可以改成以s(也就是sinθ)表示.(2)当n是偶数时:公式中出现的c都是奇次方,而c^2=1-s^2(平方关系),因此即使再怎么换成s,都至少会剩c(也就是 cosθ)的一次方无法消掉.(例.c^3=cc^2=c(1-s^2),c^5=c(c^2)^2=c(1-s^2)^2)

(1)二倍角公式:

(a)sin2a=2×sina×cosa

(c)tan2a= 2tana/(1-tana^2)

(2)以正切表示二倍角

(a)sin2a= 2tana/(1+tana^2)

(b)cos2a= (1-tana^2)/(1+tana^2)

(c) tan2a= 2tana/(1-tana^2)

(3)三倍角公式

(a)sin3a=3sina -4sina^3

(b)cos3a=4cosa^3 -3cosa

二倍角公式:

sin2α=2sinαcosα

tan2α=2tanα/(1-tan^2(α))

cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

半角公式:

sin^2(α/2)=(1-cosα)/2

tan^2(α/2)=(1-cosα)/(1+cosα)

tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα

倍角公式和半角公式都是三角函数中非常实用的一类公式。就是把二倍角的三角函数用本角的三角函数表示出来。在计算中可以用来化简计算式、减少求三角函数的次数,在工程中也有广泛的运用。

sinx的平方=2sinx cosx

sinx的平方+cosx的平方=1

∴1=sin2分之X+cos2分之x

倍角公式

tan2A=2tanA/(1-tan2A)

ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

求那些三角函数的半角公式 倍角公式 两角和公式 平方角公式 平方半角公式

利用计算工具,比较指数函数、对数函数以及幂函数增长异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。收集一些生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。

tanα

tan(3α)

·cotα=1

sinα

·cscα=1

cosα

·secα=1

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα

sin2α+cos2α=1

1+tan2α=sec2α

1+cot2α=csc2α

诱导公式

cos(-α)=cosαtan(-α)=-tanα

cot(-α)=-cotα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π-α)=sinα

tan(π-α)=-tanα

cot(π-α)=-cotα

sin(π+α)=-sinα

cos(π+α)=-cosα

cot(π+α)=cotα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

cot(3π/2+α)=-tanα

sin(2π-α)=-sinα

cot(2π-α)=-cotα

sin(2kπ+α)=sincos^2(α)=(1+cos(2α))/2=covers(2α)/2α

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

(其中k∈Z)

两角和与的三角函数公式

公式

sin(α+β)=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

三角函数倍角公式总结

·倍角公式:

三角函数倍角公式是三角函数中一个重要的公式,下面总结了三角函数倍角公式,希望能帮助到大家。

和化积公式。

二倍角公式

正弦形式:sin2α=2sinαcosα

正切形式:tan2α=2tanα/(1-tan^2(α))cos(2π-α)=cosα

余弦形式:cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

三倍角公式

sin3α=4sinα·sin(π/3+α)sin(π/3-α)

cos3α=4cosα·cos(π/3+α)cos(π/3-α)

tan3a=tana·tan(π/3+a)·tan(π/3-a)

四倍角公式

sin4A=-4(cosAsinA(2sinA^2-1))

cos4A=1+(-8cosA^2+8cosA^4)

五倍角公式

sin5A=16sinA^5-20sinA^3+5sinA

cos5A=16cosA^5-20cosA^3+5cosA

tan5A=tanA(5-10tanA^2+tanA^4)/(1-10tanA^2+5tanA^4)

六倍角公式

sin6A=2(cosAsinA(2sinA+1)(2sinA-1)(-3+4sinA^2))

cos6A=((-1+2cosA^2)(16cosA^4-16cosA^2+1))

tan6A=(-6tanA+20tanA^3-6tanA^5)/(-1+15tanA^2-15tanA^4+tanA^6)

三角函数半角公式

1.正弦

sin(A/2)=√((1-cosA)/2)

sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2)

cos(A/2)=-√((1+cosA)/2)

3.正切

tan(A/2)=√((1-cosA)/((1+cosA))

tan(A/2)=-√((1-cosA)/((1+cosA))

三角函数的半角和倍角公式是什么?)

sin(-α)=-sinα

在二角和的公式中令两个角相等(B=A),就得到二倍角公式.

三角函数常用公式

sin(A+B)=sinAcosB+cosAsinB

--->sin2A=2sinAcosA

cos(A+B)=cosAcosB-sinAsinB

--->cos2A=(cosA)^2-(sinA)^2=(1-(sinA)^2-(sinA)^2=1-2(sinA)^2=2(cosA)^2-1.

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

--->tan2A=2tanA/[1-(tanA)^2]

在余弦的二倍角公式中,解方程就得sin(2α)=2sinα·cosα=2/(tanα+cotα)到半角公式.

cosx=1-2[sin(x/2)]^2

--->sin(x/2)=+'-√[(1-cosx)/2] 符号由(x/2)的象限决定,下同.

cosx=2[cos(x/2)]^2

--->cos(x/2)=+'-√[1+cosx)/2]

两式的的两边分别相除,得到

tan(x/2)=+'-√[(1-cosx)/(1+cosx)].

又tan(x/2)=sin(x/2)/cos(x/2)

=2[sin(x/2)]^2/[2sin(x/2)cos(x/2)]

=(1-cosx)/sinx

=.........

半角二倍角三倍角的公式有哪些?什么是诱导公式呢?

·其他tan(α/2]:

半角公式:sin^2(α/2)=(1-cosα)/2;cos^2(α/2)=(1+cosα)/2;tan^2(α/2)=(1-cosα)/(1+coscot(α/(tanα+cotα)α);tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα。

诱导公式是指三角函数中,利用周期性将角度比较大的三角函数,转换为角度比较小的三角函数的公式

三角函数半角公式是什么?

(b)cos2a=cosa^2-sina^2=2cosa^2-1=1-2sina^2

三角函数半角公式是利用某个角(如∠A)的正弦值、余弦值、正切值,及其他三角函数值,来求其半角的正弦值,余弦值,正切值,及其他三角函数值的公式。三角函数倍角公式和半角公式是三角函数中很常用的公式。

tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα。

三角函数半角公式:

1、sin(A/2)=√((1-cosA)/2) sin(Acos(π-α)=-cosα/2)=-√((1-cosA)/2)。

2、cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)。

3、tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))。

4、ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))。

什么是和角公式 倍角公式 半角公式

=sinx/(1+cosx).

sin(α+β)=sinαcosβ+ sinβcosα

sin(α-β)=sinαcosβ-sinBcosα

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

tan(α+β)=(tanα+tanβ) / (1-tanαtanβ)

tan(α-β)=(tanα-tanβ) / (1+tanαtanβcosα-cosβ=-2sin[(α+β)/(1-3tan^2α))

二倍角公式

sin2α=2sinαcosα

tan2α=2tanα/(1-tan^2(α))

cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

sin^2(α/2)=(1-cosα)/2

tan^2(α/2)=(1-cotan(π+α)=tanαsα)/(1+cosα)

tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα

倍半角公式是什么

正弦 sin2A=2sinA·cosA 余弦 1.Cos2a=Cos^2(a)-Sin^2(a) 2.Cos2a=1-2Sin^2(a) 3.Cos2a=2Cos^2(a)-1 即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a) 正切 tan2A=(2tanA)/(1-tan^2(A)) 半角公式

您要问的应该是“半倍角公式是什么”吧,根据百度百科资料显示,半倍角公式是:1.tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα);

积化和公式

2.cot(α/2)=sinα/(1-cosα)=(1+cosα)/sinα;

常用的和角公式

3.sin^2(α/2)=(1-cos(α))/2;cos^2(α/2)=(1+cos(α))/2;

4.tan(α/2)=(1-cos(α))/sin(α)=sin(α)/(1+cos(α))。

倍角公式,是三角函数中非常实用的一类公式。

高中三角函数的所有公式是什么啊?

cot(π/2-α)=tanα

同角三角函数间的基本关系式:

sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)]

·平方关系:

cos(3α)

sin^2(α)+cos^2(α)=1 cos^2a=(1+cos2a)/2

tan^2(α)+1=sec^2(α) sin^2a=(1-cos2a)/2

cot^2(α)+1=csc^2(α)

·积的关系:

sinα=tanαcosα

cosα=cotαsinα

tanα=sinαsecα

cotα=cosαcscα

secα=tanαcscα

cscα=secαcotα

·倒数关系:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

直角三角形ABC中,

角A的正弦值就等于角A的对边比斜边,

余弦等于角A的邻边比斜边

正切等于对边比邻边,

·三角函数恒等变形公式

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

·三角和的三角函数:

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

·辅助角公式:

Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

sint=B/(A^2+B^2)^(1/2)

cost=A/(A^2+B^2)^(1/2)

tant=B/A

Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan(2α)=2tanα/[1-tan^2(α)]

·三倍角公式:

sin(3α)=3sinα-4sin^3(α)

cos(3α)=4cos^3(α)-3cosα

·半角公式:

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1+cosα)/2)

tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

·降幂公式

sin^2(α)=(1-cos(2α))/2=versin(2α)/2

tan^2(α)=(1-cos(2α))/(1+cos(2α))

·公式:

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

·积化和公式:

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

·和化积公式:

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

·推导公式

tanα+cotα=2/sin2α

tanα-cotα=-2cot2α

1+cos2α=2cos^2α

1-cos2α=2sin^2α

1+sinα=(sinα/2+cosα/2)^2

sinα+sin(α+2π/n)+sin(α+2π2/n)+sin(α+2π3/n)+……+sin[α+2π(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π2/n)+cos(α+2π3/n)+……+cos[α+2π(n-1)/n]=0 以及

sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

cosx+cos2x+...+cosnx= [sin(n+1)x+sinnx-sinx]/2sinx

证明:

左边=2sinx(cosx+cos2x+...+cosnx)/2sinx

=[sin2x-0+sin3x-sinx+sin4x-sin2x+...+ sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x]/2sinx (积化和)

等式得证

sinx+sin2x+...+sinnx= - [cos(n+1)x+cosnx-cosx-1]/2sinx

证明:

左边=-2sinx[sinx+sin2x+...+sinnx]/(-2sinx)

=[cos2x-cos0+cos3x-cosx+...+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx)

=- [cos(n+1)x+cosnx-cosx-1]/2sinx=右边

等式得证

编辑本段三角函数的角度换算

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

公式二:

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

cot(π+α)=cotα

公式三:

任意角α与 -α的三角函数值之间的关系:

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinα

cot(2π-α)=-cotα

公式六:

π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈Z)

编辑本段正余弦定理

正弦定理是指在一个三角形中,各边和它所对的角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R .

余弦定理是指三角形中任何一边的平方等于其它两边的平方和减去这两边与它们夹角的余弦的积的2倍,即a^2=b^2+c^2-2bc cosA

编辑本段部分高等内容

·高等代数中三角函数的指数表示(由泰勒级数易得):

sinx=[e^(ix)-e^(-ix)]/(2i)

cosx=[e^(ix)+e^(-ix)]/2

tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]

泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…

此时三角函数定义域已推广至整个复数集。

·三角函数作为微分方程的解:

对于微分方程组 y=-y'';y=y'''',有通解Q,可证明

Q=Asinx+Bcosx,因此也可以从此出发定义三角函数。

补充:由相应的指数表示我们可以定义一种类似的函数——双曲函数,其拥有很多与三角函数的类似的性质,二者相映成趣。

编辑本段特殊三角函数值

a 0` 30` 45` 60` 90`

sina 0 1/2 √2/2 √3/2 1

cosa 1 √3/2 √2/2 1/2 0

tana 0 √3/3 1 √3 None

cota None √3 1 √3/3 0

编辑本段三角函数的计算

幂级数

c0+c1x+c2x2+...+cnxn+...=∑cnxn (n=0..∞)

c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n (n=0..∞)

它们的各项都是正整数幂的幂函数, 其中及a都是常数, 这种级数称为幂级数.

泰勒展开式(幂级数展开法):

f(x)=f(a)+f'(a)/1!(x-a)+f''(a)/2!(x-a)2+...f(n)(a)/n!(x-a)n+...

实用幂级数:

ex = 1+x+x2/2!+x3/3!+...+xn/n!+...

ln(1+x)= x-x2/3+x3/3-...(-1)k-1xk/k+... (|x|<1)

sin x = x-x3/3!+x5/5!-...(-1)k-1x2k-1/(2k-1)!+... (-∞

cos x = 1-x2/2!+x4/4!-...(-1)kx2k/(2k)!+... (-∞

arccos x = π - ( x + 1/2x3/3 + 13/(24)x5/5 + ... ) (|x|<1)

arctan x = x - x^3/3 + x^5/5 - ... (x≤1)

sinh x = x+x3/3!+x5/5!+...(-1)k-1x2k-1/(2k-1)!+... (-∞

cosh x = 1+x2/2!+x4/4!+...(-1)kx2k/(2k)!+... (-∞

arcsinh x = x - 1/2x3/3 + 13/(24)x5/5 - ... (|x|<1)

arctanh x = x + x^3/3 + x^5/5 + ... (|x|<1)

在解初等三角函数时,只需记住公式便可轻松作答,在竞赛中,往往会用到与图像结合的方法求三角函数值、三角函数不等式、面积等等。

--------------------------------------------------------------------------------

傅立叶级数(三角级数)

f(x)=a0/2+∑(n=0..∞) (ancosnx+bnsinnx)

a0=1/π∫(π..-π) (f(x))dx

an=1/π∫(π..-π) (f(x)cosnx)dx

bn=1/π∫(π..-π) (f(x)sinnx)dx

三角函数的数值符号

正弦 一,二为正, 三,四为负

余弦 一,四为正 二,三为负

正切 一,三为正 二,四为负

编辑本段三角函数定义域和值域

sin(x),cos(x)的定义域为R,值域为〔-1,1〕

tan(x)的定义域为x不等于π/2+kπ,值域为R

cot(x)的定义域为x不等于kπ,值域为R

三角函数是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。小编整理了高中三角函数的公式如下,供大家查阅。

1高中三角函数公式

倍角公式

Sin2A=2SinA·CosA

Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

tan2A=(2tanA)/(1-tanA^2)

(注:SinA^2 是sinA的平方 sin2(A) )

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1+cosα)/2)

降幂公式

sin^2(α)=(1-cos(2α))/2=versin(2α)/2

cos^2(α)=(1+cos(2α))/2=vercos(2α)/2

tan^2(α)=(1-cos(2α))/(1+cos(2α))

Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

sint=B/(A^2+B^2)^(1/2)

cost=A/(A^2+B^2)^(1/2)

正弦函数 sinθ=y/r

余弦函数 cosθ=x/r

正切函数 tanθ=y/x

余切函数 cotθ=x/y

正割函数 secθ=r/x

版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。