等数列大题求解技能与题目汇总:
高考数列大题 度文库 高考数学数列大题解题思路
高考数列大题 度文库 高考数学数列大题解题思路
高考数列大题 度文库 高考数学数列大题解题思路
数列是高中解析几何的关键内容,是学习高级数学科目的基础,在高考(高等学校招生考试)与各类数学科目比赛中都占用关键的地位,数列求和是数列的关键内容之一,除开等数列与等比数列有求和公式外,多数数列的求和都需要有一定的技能,这就是一些特别数列,要单独记忆。
求解过程要注重,通法与巧法的使用,第1选择用巧法,确实不好都可以用通法生成a1与d,再去求解。
关键公式的运用,公式,套用,求解
对递推公式的套用转换,要加强先化简,再裂项相消,就简易了训练,孰能生巧
方式2更简易些,一定要把握
错位相减法要注重,Sn相当于的两项全要写出来,乘以公比,错位写字,相减,末项前边是减号,之间部分用数列求和公式,再化简,紧接着把Sn前面的系数撤除。
高考数学压轴题的难点主要集中在函数(导数)、数列、不等式与圆锥曲线,尤其是数列问题更是倍受命题者的“宠爱”:数列与不等式交汇、数列与解析几何综合,数列与函数、导数“联袂”等几乎占据了高考压轴题的“半壁江山”。主要难点将会是2. 第二大题:概率统计 我总感觉,这块没啥可说的。因为考的不多而且非常容易。详细内容翻看一下小数老 师历史推送的文章就够用了。递推数列、不等式放缩与解析几何中的轨迹与范围问题。
高考数学必考题中,有一些题型相对较难,需要考生具备较高的数学思维能力和解题技巧。以下是一些比较难的题型: 1.函数与方程:函数与方程是高中数学的重要内容,涉及到函数的性质、图像、方程的解法等。其中,函数的复合与反函数、二次函数的最值问题、三角函数的图像变换等都是比较难以理解和掌握的知识点。
2.数列与数学归纳法:数列是高中数学的基础内容,涉及到等数列、等比数列、递推数列等。而数学归纳法是一种证明方法,需要考生具备较强的逻辑思维和推理能力。 3.概率与统计:概率与统计是高中数学的重要内容,涉及到概率的计算、的概率、随机变量的概率分布等。其中,二项分布、正态分布、条件概率等都是比较难以理解和应用的知识点。
4.解析几何:解析几何是高中数学的重要内容,涉及到直线与圆的位置关系、平面与空间的关系等。其中,直线与圆的交点问题、平面与空间的距离问题等都是比较难以理解和解决的知识点。1.先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号); 5.导数与微分:导数与微分是高中数学的重要内容,涉及到函数 一、分步列式,不要用综合或连等式的导数、导数的应用等。其中,导数的计算、导数的应用问题等都是比较难以理解和解决的知识点。
如果真的像楼上说的是a4+a7=2的话这题就好做了
已知为「An〕等比数列:A4+A7=2,A5A6=-8,则A1+A10=?
这是原8.注意条件概率公式;题
怎么可能是a3+a3啊?明显是错1.证明线面位置关系,一般不需要去建系,更简单;误的
数列大题是第三个数列求和对依照一定规律排序的数进行求和。求Sn实质上是求{Sn}的通项公式,应注重对其含意的了解。普遍的方式有公式法、错位相减法、倒序相加法、分组法、裂项法、数学归纳法、通项化归、并项求和,不过普遍的就记忆上图中的方式就行了。,. 道大题:三角函数 总共两种考法:10%~20%是解三角形,80%~90%是考三角函数本身。 解三角形 不管题目是什么,你要明白
3. 第三道大题:立体几何 这个题,
对于第二个式子,左右两边都加一个n,就可以证明An+n是等比数列,公比是2
求和分项求
2减一下就出来了^n的和为2^(n+1)-2
n的和为n(n+1)/2
数学就是多做,做多了什么都会
证明:两边同时加n得:An+n=2A(n-1)-2+2n
即An+n=2A(n-1)+2(n-1)
所以得(An+n)/[A(n-1)+(n-1)]=2
所以{An+n}是以2为首项,2为公比的等比数列
(1)an+n=2的n次幂
an=2的n次幂-n
(2)sn=2+2的2次+2的三次+...+2的n次—(1+2+3+4+....+n)
=2(2的n次-1)-1/2·n(1+n)
对任意m∈N,将数列{an}中不大于72m的项的个数记为bm,求数列{bm}的前m项和Sm。
m=1An的通项公式也就出来了,An=2^n-n, {an}中不大于721=72的项的个数记为b1,
... ...
这样,就得到了数列{bm}
高中数学大题解题方法与技巧同学认真思考过吗,没有的话,快来我这里看看。下面是由我为大家整理的“高中数学大题解题方法与技巧”,仅供参考,欢迎大家阅读。
高中数学大题解题方法与技巧
一、三角函数题
注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。
二、数列题
2.一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的设,否则不正确。利用上设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;
三、立体几何题
2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;
3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。
1.搞清随机试验包含的所有基本和所求包含的基本的个数;
2.搞清是什么概率模型,套用哪个公式;
3.记准均值、方、标准公式;
4.求概率时,正难则反(根据p1+p2+...+pn=1);
5.注意计数时利用列举、树图等基本方法;
6.注意放回抽样,不放回抽样;
7.注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;
9.注意平均分组、不完全平均分组问题。
五、圆锥曲线问题
1.注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;
2.注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;
3.战术上整体思路要保7分,争9分,想12分。
六、导数、极值、最值、不等式恒成立(或逆用求参)问题
2.注意一问有应用前面结论的意识;
3.注意分论讨论的思想;
4.不等式问题有构造函数的意识;
5.恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法);
高中物理大题答题技巧
审题要仔细,关键字眼不可疏忽
审题时一定要仔细,尤其要注意一些重要的关键字眼,不要以为是"容易题""陈题"就一眼带过,要注意"陈题"中可能有"新意"。也不要一眼看上去认为是"新题、难题"就畏难而放弃,要知道"难题"也只难在一点,"新题"只新在一处。由于疏忽看错题或畏难轻易放弃都会造成很大的遗憾。
物理过程的分析要注意细节,要善于找出两个相关过程的连接点(临界点)
对于一个复杂的物理问题,首先要根据题目所描述的情景建立正确的物理模型,然后对物理过程进行分析,对于多过程的物理问题,考生一定要注意分析物理过程的细节,弄清各个过程的运动特点及相关联系,找出相关过程之间的物理量之间的关系,做到了这一点,也就找到了解题的突破口,难题也就变得容易了。
高中物1.证明一个数列是等(等比)数列时,下结论时要写上以谁为首项,谁为公(公比)的等(等比)数列;理大题答题规范
从这几年的评卷来看,很多学生由于答题不规范,没有相应的应考技巧,导致丢失了很多应得之分,有些学生失分情况相当,一科达20分以上,其中不乏一些较好的学生。为避免这种情况,特别注意以下情形:
高考评分标准是分步给分,写出每一个过程对应的方程式,只要说明、表达正确都可以得相应的分数;有些学生喜欢写出一个综合式,或是连等式,而评分原则是"综合式找错",即只要发现综合式中有一处错,全部过程都不能得分。所以对于不会解的题,分步列式也可以得到相应的过程分,增加得分机会。
二、对复杂的数值计算题,结果要先解出符号表达,再代入数值进行计算
结果的表达式占有一定的分值,结果表达式正确计算过程出错,只会丢掉很少的分。若没有结果表达式又出现计算错误,失分机会很大。
三、简洁文字说明与方程式相结合
有的考生解题是从头到尾只有方程,没有必要的文字说明,方程中使用的符号表示什么不提出;有的考生则相反,文字表达太长,像写作文,关键方程没有列出。既耽误时间,又占据了答卷的空间,以上两种情形都会导致丢分。所以在答卷时提倡简洁文字表达,关键处的说明配合图示和物理方程式相结合。
四、尽量用常规方法,使用通用符号
有些考生解题时首先不从常规方法入手,而是为图简便而用一些特殊奇怪的方法,虽然是正确的,但阅卷老师短时间不易看清。同样,使用一些不是习惯的符号来表达一些特点的物理量,阅卷老师也可能会看错。这是因为阅卷现场老师的工作量很重,每天平均阅卷0多份,平均看一道题的时间不过几秒钟。
版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。