高考数学必考的公式有哪些?数学神级秒杀公式结论都有哪些?下文我给大家整理了高考数学的公式结论,供参考!
数学高考公式好记的 数学高考公式好记的有哪些?
数学高考公式好记的 数学高考公式好记的有哪些?
数学高考公式好记的 数学高考公式好记的有哪些?
数学高考公式好记的 数学高考公式好记的有哪些?
数学32条秒杀公式整理
函数高考数学神级秒杀公式大全 1.函数的周期性问题:
①若f(x)=-f(x+k),则T=2k;
②若f(x)=m/(x+k)(m不为0),则T=2k;若f(x)=f(x+k)+f(x-k),则T=6k。
注意点:
a.周期函数,周期必无限
b.周期函数未必存在最小周期,如:常数函数。
c.周期函数加周期函数未必是周期函数。
③关于对称问题
若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2;
函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;
若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称。
2.函数奇偶性。
①对于属于R上的奇函数有f(0)=0;
②对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项
3.函数单调性:若函数在区间D上单调,则函数值随着自变量的增大(减小)而增大(减小)。
4.函数对称性:
①若f(x)满足f(a+x)+f(b-x)=c则函数关于(a+b/2,c/2)成中心对称。
②若f(x)满足f(a+x)=f(b-x)则函数关于直线x=a+b/2成轴对称。
5.函数y=(sinx)/x是偶函数。在(0,π)上单调递减,(-π,0)上单调递增。利用上述性质可以比较大小。
6.函数y=(lnx)/x在(0,e)上单调递增,在(e,+∞)上单调递减。另外y=x2(1/x)与该函数的单调性一致。
7.复合函数。
(1)复合函数奇偶性:内偶则偶,内奇同外。
(2)复合函数单调性:同增异减。
8.数列定律。
等数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等。
9.隔项相消。对于Sn=1/(1×3)+1/(2×4)+1/(3×5)+…+1/[n(n+2)]=1/2[1+1/2-1/(n+1)-1/(n+2)]
注:隔项相加保留四项,即首两项,尾两项。
10.面积公式:S=1/2∣mq-np∣其中向量AB=(m,n),向量BC=(p,q)注:这个公式可以解决已知三角形三点坐标求面积的问题!
11.空间立体几何中:以下命题均错。
①空间中不同三点确定一个平面;
②垂直同一直线的两直线平行;
③两组对边分别相等的四边形是平行四边形;
④如果一条直线与平面内无数条直线垂直,则直线垂直平面;
⑤有两个面互相平行,其余各面都是平行四边形的几何体是棱柱;
⑥有一个面是多边形,其余各面都是三角形的几何体都是棱锥。
12.所有棱长均相等的棱锥可以是三、四、五棱锥。
13.求f(x)=∣x-1∣+∣x-2∣+∣x-3∣+…+∣x-n∣(n为正整数)的最小值。为:当n为奇数,最小值为(n2-1)/4,在x=(n+1)/2时取到;当n为偶数时,最小值为n2/4,在x=n/2或n/2+1时取到。
14.椭圆中焦点三角形面积公式:S=b2tan(A/2)在双曲线中:S=b2/tan(A/2)说明:适用于焦点在x轴,且标准的圆锥曲线。A为两焦半径夹角。
15.[转化思想]切线长l=√(d2-r2)d表示圆外一点到圆心得距离,r为圆半径,而d最小为圆心到直线的距离。
16.对于y2=2px,过焦点的互相垂直的两弦AB、CD,它们的和最小为8p。
17.易错点:若f(x+a)[a任意]为奇函数,那么得到的结论是f(x+a)=-f(-x+a)〔等式右边不是-f(-x-a)〕,同理如果f(x+a)为偶函数,可得f(x+a)=f(-x+a)牢记!
18.三角形垂心定理.
①向量OH=向量OA+向量OB+向量OC(O为三角形外心,H为垂心
②若三角形的三个顶点都在函数y=1/x的图象上,则它的垂心也在这个函数图象上。
19.与三角形有关的定理:
①在非Rt△中,有tanA+tanB+tanC=tanAtanBtanC
②任意三角形射影定理(又称余弦定理):在△ABC中a=bcosC+ccosB;b=ccosA+acosC;c=acosB+bcosA
③任意三角形内切圆半径r=2S/a+b+c(S为面积)
立体几何?
iii.空间四边形OABC且四边长相等,则顺次连结各边的中点的四边形一定是矩形.线线线面到面面
面面面线到线线
sin(-a)=-sina,cos(-a)=cosa,tan(-a)=-tana高考的立体几何
几何计算各一半
基本都考三垂线
这两句话懂了立体几何就了
问老师
(1)先看“充分条件和必要条件”或者看看自己考败的试卷,制成一个错题集,这样记得的公式就不用费sin(2k兀+a)=sin(a)时间了
小兄弟,你的提问证明你不喜看书,也不懂看书的重要性,因为你的问题就在高中数学5本书里,你认认真真的把课本看看应付高考足矣,因为书上的公式都全着呢,你又何必在这求人帮你总结呢?
我不是说你不该在这提问,而是怕你不好好看书,却老想着走捷径成功,这是很不现实的,“与其临渊羡鱼,不如退而结网。”当你塌下心来把书看透时,就是你时!祝你学好数学!
1.元素具有①确定性②互异性③无序性
2.表示方法①列举法
②描述法
③韦恩图
④数轴法
3.的运算
⑴A∩(B∪C)=(A∩B)∪(A∩C)
⑵Cu(A∩B)=CuA∪CuB
Cu(A∪B)=CuA∩CuB
4.的性质
⑴n元的子集数:2n
真子集数:2n-1;非空真子集数:2n-2
高中数学概念总结
一、
个元素,则A的所有不同的子集个数为
,所有非空真子集的个数是
。二正方形的面积=边长×边长次函数
的图象的对称轴方程是
,顶点坐标是
。用待定系数法求二次函数的解析式时,解析式的设法有三种形式,即
,和
(顶点式)。
2、
幂函数
,当n为正奇数,m为正偶数,m 3、 的大致图象是 由图象知,函数的值域是 ,单调递增区间是 ,单调递减区间是 。二、 三角函数 以角 的顶点为坐标原点,始边为x轴正半轴建立直角坐标系,在角 的终边上任取一个异于原点的点 ,点P到原点的距离记为 ,则sin =,cos =,tg =,ctg =,sec =,csc =。 2、同角三角函数的关系中,平方关系是: ;倒数关系是: ;相除关系是: ,。 3、诱导公式可用十个字概括为:奇变偶不变,符号看象限。如: ,= ,。 4、 的值是 ,最小值是 ,周期是 ,频率是 ,相位是 ,初相是 ;其图象的对称轴是直线 ,凡是x2+y2+Dx+Ey+F=0该图象与直线 的交点都是该图象的对称中心。 三角函数 以角 的顶点为坐标原点,始边为x轴正半轴建立直角坐标系,在角 的终边上任取一个异于原点的点 ,点P到原点的距离记为 ,则sin =,cos =,tg =,ctg =,sec =,csc =。 2、同角三角函数的关系中,平方关系是: ;倒数关系是: ;相除关系是: ,。 3、诱导公式可用十个字概括为:奇变偶不变,符号看象限。如: ,= ,。 4、 的值是 ,最小值是 ,周期是 ,频率是 ,相位是 ,初相是 ;其图象的对称轴是直线 ,凡是该图象与直线 的交点都是该图象的对称中心。 圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程 注:D2+E2-4F>0 抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py -b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a 根与系数的关系 X1+X2=-b/a X1X2=c/a 注:韦达定理 判别式 b2-4a=0 注:方程有相等的两实根 b2-4ac>0 注:方程有一个实根 b2-4ac<0 注:方程有共轭复数根 就是做联系那样你就可以记很多公式. 比如三角的.和化积,积化和.半角公式,公式. 如果要具体的可以加我的QQ. 最重要的是三角函数和立体几何的向量法那些公式,高考是必考的. 高中数学公式是高考数学复习至关重要的知识点,为了帮助高三考生进行高考数学的复习。下面我给你分享高中必背数学公式,欢迎阅读。 数学的公式是要记但我告诉你个记忆的好方法啊高中必背数学公式:一元二次方程的解 -b+√(b2-4ac)/2a-b-√(b2-4ac)/2a 根与系数的关系x1+x2=-b/ax1x2=c/a注:韦达定理 判别式b2-4a=0注:方程有相等的两实根 b2-4ac>0注:方程有两个不相等的个实根 b2-4ac<0注:方程有共轭复数根 高中必背数学公式:立体图形及平面图形的公式 圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标 圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0 抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py 直棱柱侧面积S=ch斜棱柱侧面积S=c'h 正棱锥侧面积S=1/2ch'正棱台侧面积S=1/2(c+c')h' 圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pir2 圆柱侧面积S=ch=2pih圆锥侧面积S=1/2cl=pirl 弧长公式l=ara是圆心角的弧度数r>0扇形面积公式s=1/2lr 锥体体积公式V=1/3SH圆锥体体积公式V=1/ir2h 斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长 柱体(x+1)(x+2)(x+3)(x+4)-120体积公式V=sh圆柱体V=pir2h 高中必背数学公式:图形周长、面积、体积公式 长方形的周长=(长+宽)×2 正方形的周长=边长×4 长方形的面积=长×宽 三角形的面积 已知三角形底a,高h,则S=ah/2 已知三角形三边a,b,c,半周长p,则S=√[p(p-a)(p-b)(p-c)](海伦公式)(p=(a+b+c)/2) 和:(a+b+c)(a+b-c)1/4 已知三角形两边a,b,这两边夹角C,则S=absinC/2 设三角形三边分别为a、b、c,内切圆半径为r 则三角形面积=(a+b+c)r/2 设三角形三边分别为a、b、c,外接圆半径为r 则三角形面积=abc/4r 人们在研究自然界物与物之间时发现的一些联系,并通过一定的方式表达出来的一种表达方法 1.公式本质 2.错误公式特征 自称是科学的,但含糊不清,缺乏具体的度量衡。无法使用作定义(例如,外人也可以检验的通用变量、属于、或对象)。无法满足简约原则,即当众多变量出现时,无法从最简约的方式成得。使用暖昧语言的语言,大量使用技术术语来使得文章看起来像是科学的。 缺乏边界条件:严谨的科学理论在限定范围上定义清晰,明确指出预测现象在何时何地适用,何时何地不适用。数学公式法注意事项一定不会出现不能用公式法解一元二次方程的情况但在能直接开方或者因式分解时用直接开方法和分解因式法。 3.预习复习 课前预习,你的课前预习不仅仅是看看书就好了,而应该试图自己理解这节讲什么(关键是自己理解),很简单就是你看了一遍三角函数,就合上书想想三角函数是什么?上课时老师讲的很多东西是在加强你的印象,而且你之前的问题会一个个解开。 课下,你应该再读一遍这节课学习的内容,然后每个公式和定义都要自己推导一遍!!这个十分关键。没有量的积累,哪有质的飞越嘛!做作业平时以及限时训练首先刷卷子,一定要限时做题!只有你在紧迫下适应了写题的氛围,你才能在考试中达到较好的状态! 在应试教育中,只有多记公式,掌握解题技巧,熟悉各种题型,把自己变成一个做题机器,才能在考试中取得的成绩。 1⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系、两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA)) 高考数学概率公式如下: 1、的概率公式 P(A)=n(A)/n(S),其中n(A)表示A发生的可能性,n(S)表示样本空间的总数。 2、条件概率公式 P(A|B)=P(A∩B)/P(B),其中P(A∩B)表示A和B同时发生的概率,P(B)表示B发生的概率。 3、全概率公式 P(A)=ΣP(A|Bi)×P(Bi),其中Bi表示样本空间的一组互不相交的,P(A|Bi)表示在Bi发生的条件下A发生的概率,P(Bi)表示Bi发生的概率。 4、贝叶斯公式 P(Bi|A)=P(A|Bi)×P(Bi)/ΣP(A|Bj)×P(Bj),其中P(Bi|A)表示在A发生的条件下Bi发生的概率,P(A|Bi)表示在Bi发生的条件下A发生的概率,P(Bi)表示Bi发生的概率,ΣP(A|Bj)×P(Bj)表示全概率。 概率的基本性质思维就是升维和降维的过程: 1、必然概率为1,不可能概率为0,因此0≤2.3分组分解法P(A)≤1。 2、当A与B互斥时,满足加法公式:P(A∪B)=P(A)+P(B)。 3、若A与B为对立,则A∪B为必然,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B)。 4、互斥与对立的区别与联系,互斥是指A与B在一次试验中不会同时发生,其具体包括三种不同的情形: (2)A不发生且B发生。 (3)A与B同时不发生,而对立是指A与B有且一个发生。 一些高中数学学习网站 如果时间不够,自己选择可看可不看 十字交叉双乘法没有公式,下面说一下: 那就是利用x^2+(p+q)x+pq=(x+q)(x+p)其中PQ为常数。x^2是X的平方 1.因式分解 即和化积,其结果要分解到不能再分为止。而且可以肯定一个多项式要能分解因式,则结果,因为:数域F上的次数大于零的多项式f(x),如果不计零次因式的异,那么f(x)可以的分解为以下形式: f(x)=aP1k1(x)P2k2(x)…Piki(x),其中α是f(x)的次项的系数,P1(x),P2(x)……Pi(x)是首1互不相等的不可约多项式,并且Pi(x)(I=1,2…,t)是f(x)的Ki重因式。 ()或叫做多项式f(x)的典型分解式。证明:可参见《高代》P52-53 初等数学中,把多项式的分解叫因式分解,其一般步骤为:一提二套三分组等 2.方法介绍 2.1提公因式法: 如果多项式各项都有公共因式,则可先考虑把公因式提出来,进行因式分解,注意要每项都必须有公因式。 例15x3+10x2+5x 解析显然每项均含有公因式5x故可考虑提取公因式5x,接下来剩下x2+2x+1仍可继续分解。 解:原式=5x(x2+2x+1) =5x(x+1)2 2.2公式法 即多项式如果满足特殊公式的结构特征,即可采用套公式法,进行多项式的因式分解,故对于一些常用的公式要求熟悉,除教材的基本公式外,数学竞赛中常出现的一些基本公式现整理归纳如下: a2-b2=(a+b)(a-b) a2±2ab+b2=(a±b)2 a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) a3±3a2b+3ab2±b2=(a±b)3 a2+b2+c2+2ab+2bc+2ac=(a+b+c)2 a12+a22+…+an2+2a1a2+…+2an-1an=(a1+a2+…+an)2 a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-ac-bc) an+bn=(a+b)(an-1-an-2b+…+bn-1)(n为奇数) 说明由因式定理,即对一元多项式f(x),若f(b)=0,则一定含有一次因式x-b。可判断当n为偶数时,当a=b,a=-b时,均有an-bn=0故an-bn中一定含有a+b,a-b因式。 例2分解因式:①64x6-y12②1+x+x2+…+x15 解析各小题均可套用公式 解①64x6-y12=(8x3-y6)(8x3+y6) =(2x-y2)(4x2+2xy2+y4)(2x+y2)(4x2-2xy2+y4) ②1+x+x2+…+x15= =(1+x)(1+x2)(1+x4)(1+x8) 注多项式分解时,先构造公式再分解。 当多项式的项数较多时,可将多项式进行合理分组,达到顺利分解的目的。当然可能要综合其他分法,且分组方法也不一定。 例1分解因式:x15+m12+m9+m6+m3+1 解原式=(x15+m12)+(m9+m6)+(m3+1) =m12(m3+1)+m6(m3+1)+(m3+1) =(m3+1)(m12+m6++1) =(m3+1)[(m6+1)2-m6] 例2分解因式:x4+5x3+15x-9 解析可根据系数特征进行分组 解原式=(x4-9)+5x3+15x =(x2+3)(x2-3)+5x(x2+3) =(x2+3)(x2+5x-3) 2.4十字相乘法 对于形如ax2+bx+c结构特征的二次三项式可以考虑用十字相乘法, 即x2+(b+c)x+bc=(x+b)(x+c)当x2项系数不为1时,同样也可用十字相乘进行作。 例3分解因式:①x2-x-6②6x2-x-12 解①1x2 1x-3 原式=(x+2)(x-3) ②2x-3 3x4 原式=(2x-3)(3x+4) 注:“ax4+bx2+c”型也可考虑此种方法。 2.5双十字相乘法 在分解二次三项式时,十字相乘法是常用的基本方法,对于比较复杂的多项式,尤其是某些二次六项式,如4x2-4xy-3y2-4x+10y-3,也可以运用十字相乘法分解因式,其具体步骤为: (1)用十字相乘法分解由前三次组成的二次三项式,得到一个十字相乘图 (2)把常数项分解成两个因式填在第二个十字的右边且使这两个因式在第二个十字中交叉之积的和等于原式中含y的一次项,同时还必须与个十字中左端的两个因式交叉之积的和等于原式中含x的一次项 例5分解因式 ①4x2-4xy-3y2-4x+10y-3②x2-3xy-10y2+x+9y-2 ③ab+b2+a-b-2④6x2-7xy-3y2-xz+7yz-2z2 解①原式=(2x-3y+1)(2x+y-3) 2xy-3 ②原式=(x-5y+2)(x+2y-1) x-5y2 x2y-1 ③原式=(b+1)(a+b-2) 0ab1 ab-2 ④原式=(2x-3y+z)(3x+y-2z) 2x-3yz 3x-y-2z 说明:③式补上oa2,可用双令a=0,b=1,m=n=-1n=5十字相乘法,当然此题也可用分组分解法。 如(ab+a)+(b2-b-2)=a(b+1)+(b+1)(b-2)=(b+1)(a+b-2) ④式三个字母满足二次六项式,把-2z2看作常数分解即可: 2.6拆法、添项法 对于一些多项式,如果不能直接因式分解时,可以将其中的某项拆成二项之或之和。再应用分组法,公式法等进行分解因式,其中拆项、添项方法不是,可解有许多不同途径,对题目一定要具体分析,选择简捷的分解方法。 例6分解因式:x3+3x2-4 解析法一:可将-4拆成-1,-3即(x3-1)+(3x2-3) 法二:添x4,再减x4,.即(x4+3x2-4)+(x3-x4) 法三:添4x,再减4x即,(x3+3x2-4x)+(4x-4) 法四:把3x2拆成4x2-x2,即(x3-x2)+(4x2-4) 法五:把x3拆为,4x2-3x3即(4x3-4)-(3x3-3x2)等 解(选择法四)原式=x3-x2+4x2-4 =x2(x-1)+4(x-1)(x+1) =(x-1)(x+2)2 2.7换元法 换元法就是引入新的字母变量,将原式中的字母变量换掉化简式子。运用此 种方法对于某些特殊的多项式因式分解可以起到简化的效果。 解析若将此展开,将十分繁琐,但我们注意到 (x+1)(x+4)=x2+5x+4 故可用换元法分解此题 解原式=(x2+5x+4)(x2+5x+6)-120 令y=x2+5x+5则原式=(y-1)(y+1)-120 =y2-121 =(y+11)(y-11) =(x2+5x+16)(x2+5x-6) =(x+6)(x-1)(x2+5x+16) 注在此也可令x2+5x+4=y或x2+5x+6=y或x2+5x=y请认真比较体会哪种换法更简单? 2.8待定系数法 待定系数法是解决代数式恒等变形中的重要方法,如果能确定代数式变形后的字母框架,只是字母的系数高不能确定,则可先用未知数表示字母系数,然后根据多项式的恒等性质列出n个含有特殊确定系数的方程(组),解出这个方程(组)求出待定系数。待定系数法应用广泛,在此只研究它的因式分解中的一些应用。 例7分解因式:2a2+3ab-9b2+14a+3b+20 分析属于二次六项式,也可考虑用双十字相乘法,在此我们用待定系数法 先分解2a2+3ab+9b2=(2a-3b)(a+3b) =2a2+3ab-9b2+(m+2n)a+(3m-3n)b+mn…………… 比较两个多项式(即原式与式)的系数 m+2n=14(1)m=4 3m-3n=-3(2)=> mn=20(3)n=5 ∴原式=(2x-3b+4)(a+3b+5) 注对于()式因为对a,b取任何值等式都成立,也可用令特殊值法,求m,n 令a=1,b=0,m+2n=14m=4 => 对于整系数一元多项式f(x)=anxn+an-1xn-1+…+a1x+a0 若f()=0,则一定会有(x-)再用综合除法,将多项式分解 例8分解因式x3-4x2+6x-4 解这是一个整系数一元多项式,因为4的正约数为1、2、4 ∴可能出现的因式为x±1,x±2,x±4, ∵f(1)≠0,f(1)≠0 但f(2)=0,故(x-2)是这个多项式的因式,再用综合除法 21-46-4 2-44 1-220 所以原式=(x-2)(x2-2x+2) 当然此题也可拆项分解,如x3-4x2+4x+2x-4 =x(x-2)2+(x-2) =(x-2)(x2-2x+2) 分解因式的方法是多样的,且其方法之间相互联系,一道题很可能要同时运用多种方法才可能完成,故在知晓这些方法之后,一定要注意各种方法灵活运用,牢固掌握! 没必要自己弄,书店一本(数理化大全)全有,才十元。又详细,又好。 高三文科数学公式 一、对数函数 log.a(MN)=logaM+logN loga(M/N)=logaM-logaN logaM^n=nlogaM(n=R) logbN=logaN/logab(a>0,b>0,N>0 a、b均不等于1) 二、简单几何体的面积与体积 S直棱柱侧=ch(底面周长乘以高) S正棱椎侧=1/2ch′(底面的周长和斜高的一半) 设正棱台上、下底面的周长分别为c′,c,斜高为h′,S=1/2(c+c′)h S圆柱侧=cl S圆台侧=1/2(c+c′)l=兀(r+r′)l S球=4兀R^3 V柱体=Sh V锥体=(1/3)Sh V球=(4/3)兀R^3 三、两直线的位置关系及距离公式 (1)数轴上两点间的距离公式|AB|=|x2-x1| (2) 平面上两点A(x1,y1),(x2,y2)间的距离公式 |AB|=sqr[(x2-x1)^2+(y2-y1)^2] (3) 点P(x0,y0)到直线l:Ax+By+C=0的距离公式 d=|Ax0+By0+C|/sqr (A^2+B^2) (4) 两平行直线l1:=Ax+By+C=0,l2=Ax+By+C2=0之间的距离d=|C1- C2|/sqr(A^2+B^2) 同角三角函数的基本关系及诱导公式 cos(2k兀+a)=cosa tan(2兀+a)=tana sin(2兀-a)=-sina,cos(2兀-a)=cosa,tan(2兀-a)=-tana sin(兀+a)=-sina sin(兀-a)=sina cos(兀+a)=-cosa cos(兀-a)=-cosa tan(兀+a)=tana 四、二倍角公式及其变形使用 1、二倍角公式 sin2a=2sinacosa cos2a=(cosa)^2-(sina)^2=2(cosa)^2-1=1-2(sina)^2 tan2a=(2tana)/[1-(tana)^2] 2、二倍角公式的变形 (cosa)^2=(1+cos2a)/2 (sina)^2=(1-cos2a)/2 tan(a/2)=sina/(1+cosa)=(1-cosa)/sina 五、正弦定理和余弦定理 正弦定理: a/sinA=b/sinB=c/sinC 余弦定理: a^2=b^2+c^2-2bccosA b^2=a^2+c^2-2accosB c^2=a^2+b^2-2abcosC cosA=(b^2+c^2-a^2)/2bc cosB=(a^2+c^2-b^2)/2ac cosC=(a^2+b^2-c^2)/2ab tan(兀-a)=-tana sin(兀/2+a)=cosa sin(兀/2-a)=cosa cos(兀/2+a)=-sina cos(兀/2-a)=sina tan(兀/2+a)=-cota tan(兀/2-a)=cota (sina)^2+(cosa)^2=1 sina/cosa=tana 两角和与的余弦公式 cos(a-b)=cosaco+sinasinb cos(a-b)=cosaco-sinasinb 两角和与的正弦公式 sin(a+b)=sinaco+cosasinb sin(a-b)=sinaco-cosasinb 两角和与的正切公式 tan(a+b)=(tana+tanb)/(1-tanatanb) tan(a-b)=(tana-tanb)/(1+tanatanb) 高中数学知识点速记口诀 1.《与函数》 内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。 复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。 指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。 函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数; 正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。 两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴; 求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。 幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数, 奇母偶子偶函数,偶母非奇偶函数;图象象限内,函数增减看正负。 2.《三角函数》 三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。 同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割; 中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角, 顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小, 变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变, 将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值, 余弦积减正弦积,换角变形众公式。和化积须同名,互余角度变名称。 计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。 逆反原则作指导,升幂降次和积。条件等式的证明,方程思想指路明。 公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用; 1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范; 三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围; 利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集; 3.《不等式》 解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。 高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。 证不等式的 方法 ,实数性质威力大。求与0比大小,作商和1争高下。 直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。 还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。 4.《数列》 等等比两数列,通项公式N项和。两个有限求极限,四则运算顺序换。 数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换, 取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考: 一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化: 首先验证再定,从K向着K加1,推论过程须详尽,归纳原理来肯定。 5.《复数》 对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是辐角度。 箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。 代数运算的实质,有i多项式运算。i的正整数次慕,四个数值周期现。 一些重要的结论,熟记巧用得结果。虚实互化本领大,复数相等来转化。 利用方程思想解,注意整体代换术。几何运算图上看,加法平行四边形, 减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。 三角形式的运算,须将辐角和模辨。利用棣莫弗公式,乘方开方极方便。 辐角运算很奇特,和是由积商得。四条性质离不得,相等和模与共轭, 两个不会为实数,比较大小要不得。复数实数很密切,须注意本质区别。 6.《排列、组合、二项式定理》 加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。 两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。 排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。 不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。 关于二项式定理,杨辉三角形。两条性质两公式,函数赋值变换式。 7.《立体几何》 点线面三位一体,柱锥 台球 为代表。距离都从点出发,角度皆为线线成。 垂直平行是重点,证明须弄清概念。线线线面和面面、三对之间循环现。 方程思想整体求,化归意识动割补。计算之前须证明,画好移出的图形。 立体几何辅助线,常用垂线和平面。射影概念很重要,对于解题最关键。 异面直线二面角,体积射影公式活。公理性质三垂线,解决问题一大片。 8.《平面解析几何》 有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称。 笛卡尔的观点对,点和有序实数对,两者一一来对应,开创几何新途径。 两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。 三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。 四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。 解析几何是几何,得意忘形学不活。图形直观数入微,数学本是数形学。 高三文科 数学 学习方法 一:加深理解 对数学课本里的概念要重新的认识,进一步加深对公式,定理的理解和掌握,认真看书,多练习,全面掌握,结合所有资料,提高解题的能力和更深知识的理解。 二:认真做笔记 上课时,一定要认真听,做笔记。听课不只是要听而已,还在积极的思考老师提出的问题,想想如何解决这个问题,应该要用什么方法,什么公式等等。老师上课时讲的,都会有一些的解题方法和思路,还有平时都会出错的问题,如何去解决,判断。所以上课做好笔记是必须的。 三:反复练习高中必背数学公式
(1)A发生且B不发生。数学公式高考
S圆锥侧=1/2(x+2)(x+3)=x2+5x+6cl=兀rl高考数学必背公式整理
若A中有n高考数学概率公式
12.依据单调性总结一下高考数学基本公式
2.9因式定理、综合除法分解因式高三文科数学公式总结
表示:用各顶点字母,如五棱台
版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。